AUTHOR=Chen Jinwen , Leng Jiaxu , Gao Xinbo , Mo Mengjingcheng , Guan Shibo TITLE=Atomic number prior guided network for prohibited items detection from heavily cluttered X-ray imagery JOURNAL=Frontiers in Physics VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.1117261 DOI=10.3389/fphy.2022.1117261 ISSN=2296-424X ABSTRACT=
Prohibited item detection in X-ray images is an effective measure to maintain public safety. Recent prohibited item detection methods based on deep learning has achieved impressive performance. Some methods improve prohibited item detection performance by introducing prior knowledge of prohibited items, such as the edge and size of an object. However, items within baggage are often placed randomly, resulting in cluttered X-ray images, which can seriously affect the correctness and effectiveness of prior knowledge. In particular, we find that different material items in X-ray images have clear distinctions according to their atomic number Z information, which is vital to suppress the interference of irrelevant background information by mining material cues. Inspired by this observation, in this paper, we combined the atomic number Z feature and proposed a novel atomic number Z Prior Guided Network (ZPGNet) to detect prohibited objects from heavily cluttered X-ray images. Specifically, we propose a Material Activation (MA) module that cross-scale flows the atomic number Z information through the network to mine material clues and reduce irrelevant information interference in detecting prohibited items. However, collecting atomic number images requires much labor, increasing costs. Therefore, we propose a method to automatically generate atomic number Z images by exploring the color information of X-ray images, which significantly reduces the manual acquisition cost. Extensive experiments demonstrate that our method can accurately and robustly detect prohibited items from heavily cluttered X-ray images. Furthermore, we extensively evaluate our method on HiXray and OPIXray, and the best result is 2.1%