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Unsupervised monocular depth estimation is challenging in ill-posed regions, such
as weak texture scenes, projection occlusion, and redundant error of detail
information, etc. In this paper, in order to tackle these problems, an improved
unsupervised monocular depth estimation method for the ill-posed region is
proposed through cascading training depth estimation network and pose
estimation network by loss function. Firstly, for the depth estimation network, a
feature extraction network using asymmetric convolution is designed instead of
traditional convolution, which strengthens the extraction of the feature information
and improves the accuracy of the weak texture scenes. Meanwhile, a feature
extraction network integrating multi-scale receptive fields with the structure of
different scale convolution and dilated convolution stack is designed to increase
the underlying receptive field of the depth estimation network, which strengthens
the fusion ability of the network for multi-scale detail information, and improves the
integrity of the model output details. Secondly, a pose estimation network using an
attention mechanism is presented to strengthen the pose detail information of
keyframes and suppress redundant errors of the pose information of non-
keyframes. Finally, a loss function with minimum reprojection error is adopted to
alleviate the occlusion problem of the projection process between adjacent pixels
and enhance the quality of the output depth images of the model. The experiments
demonstrate that our method achieves state-of-the-art performance on KITTI
monocular datasets.
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1 Introduction

As an important research focus in the field of computer vision, monocular depth estimation
aims to explore the mapping relationship between image and depth, and predict the depth
information from a single image. Monocular depth estimation plays an important role in visual
tasks, especially in intelligent fields such as autonomous driving, 3D map construction, AR
(Augmented Reality) synthesis, etc.

At present, the mainstream way of monocular depth estimation task is to train the deep
neural network by using a large number of marked real depth images as the training set, so as to
obtain the depth value of the corresponding pixel from the image. In this way, deep neural
networks are used to generate high-quality depth images with different optimization strategies
[1–4]. However, supervised depth estimation methods need to collect a large amount of real-
depth information data and require an immense amount of computing time in the training
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process, which greatly increases the difficulty and complexity of the
algorithm. Comparatively speaking, unsupervised monocular depth
estimation only requires monocular video sequences or stereo image
pairs to realize the depth information estimation of each pixel of a
single image [5–7]. In recent years, unsupervised monocular depth
estimation have been favored by researchers [8–10]. Among them,
Zhou [10] innovatively proposes an unsupervised training framework
which cascades the depth estimation network and the pose estimation
network through the loss function to predict the depth information of
the image, improving the accuracy of model estimation and becoming
one of the most dominant frameworks in current unsupervised
monocular depth estimation.

However, current unsupervised monocular depth estimation studies,
including Zhou’s method, still face great challenges in dealing with ill-
posed regions problems, such as weak texture scenes, occlusion of pixel
projections, and lack of detailed information in depth images, etc. As a
result, the depth information obtained by the model cannot fully reflect
the image-depth mapping relationship. To solve these problems, we
propose an improved unsupervised monocular depth estimation which
included a depth estimation network, pose estimation network, and the
loss function. Firstly, in the depth estimation network, asymmetric
convolution structure and multi-scale field structure are proposed to
enhance the feature extraction capability of the network, to alleviate the
influence of weak texture scenes. Secondly, in the pose estimation
network, the redundant information of pose estimation of adjacent
image frames is reduced by the attention mechanism structure.
Finally, the minimum reprojection error is introduced into the loss
function to reduce the influence of occluded pixels and inter-frame
motion which results in out-of-bounds regions on depth information
prediction during pixel projection. By improving the depth estimation
network, pose estimation network, and loss function, the accuracy of the
unsupervisedmonocular depth estimationmodel for depth information is
improved, and the robustness and generalization performance of the
model is enhanced.

The main contributions of our works are as follows:

• We propose an unsupervised monocular depth estimation
method improved for ill-posed regions by training a depth
estimation network and a pose estimation network in cascade
with loss functions.

• We improve the unsupervised depth estimation network by using
asymmetric convolution, multiscale perceptual field structure, SE
structure andminimum reprojection error in ill-posed regions, such
as weak texture scenes, pixel projection occlusion, lack of detailed
information in depth images, and so on.

• Our approach demonstrate state-of-the-art performance at
KITTI monocular datasets.

2 Approach

At present, the unsupervised monocular depth estimation model
takes video sequences as input and constructs an unsupervised
learning framework for monocular depth and camera pose
estimation based on unstructured video sequences. Specifically, an
end-to-end learning method is used to jointly train a depth estimation
network and a pose estimation network in an encoder-decoder
manner, so as to obtain the depth information in a single frame of
a video sequence in an unsupervised manner [11].

However, current unsupervised monocular depth estimation
algorithms still have limitations when dealing with ill-posed
regions, such as weak texture scenes, occlusion of pixel projection,
detail information lack of depth images, and redundant errors of
continuous image frames for pose information.

In order to further improve the unsupervised monocular depth
estimation model and cope with the above complex scenes, this paper
improves the unsupervised monocular depth estimation model, which
consists of depth estimation network, pose estimation network, and
the loss function. We predict the depth information and pose
information of 2D images by cascading the depth estimation
network and pose estimation network, then we take the pixel error
between the reconstructed image and the input image as the
supervised signal of the whole network to achieve the depth
estimation of unsupervised monocular estimated images. Firstly, for
the depth estimation network, inspired by Ding [11], the AC
(Asymmetric Convolution) is designed to extract the features of the
input image from vertical, horizontal, and overall directions, so as to
alleviate the influence of weak texture scenes. Through RFB (Receptive
Field Block) which is a multi-scale receptive field structure [12], the
ability to obtain all and local information is enhanced in the receptive
field area of different scales of the network. Secondly, for the pose
estimation network, SE(Squeeze-and-Excitation) structure [13] is
introduced to reduce the error region of pose estimation. Finally,
for the loss function, the concept of minimizing reprojection error is
introduced to reduce the impact of pixel projection occlusion in depth
information estimation.

The overall structure of improved unsupervised monocular depth
estimation network is shown in Figure 1. Firstly, multi-scale feature
maps which is equivalent to 1/2, 1/4, 1/8, 1/16 resolution of the input
image frame are generated in the improved depth estimation network,
and then these features are mapped to the depth decoder with
parameter sharing, and the estimated depth is restored to the same
size as the resolution of the input image frame through the upsampling
structure. Secondly, for the improved pose estimation network, the
relative pose of 6 degrees of freedomwhich includes displacement with
3 degrees of freedom and spatial rotation with 3 degrees of freedom is
generated by the pose estimation network. Finally, the depth
information and pose information obtained by the improved depth
estimation network and pose estimation network are jointly trained
using the loss function.

2.1 The depth estimation network
optimization

At present, most unsupervised monocular depth estimation
algorithms cannot effectively deal with weak texture scenes and
miss detailed information of the predicted depth image. In order to
solve this problem, asymmetric convolution and multi-scale receptive
field RFB are used in the depth estimation network to enhance the
recognition of weak texture scenes and strengthen the acquisition of
detailed information. The depth estimation network is improved
accordingly.

2.1.1 Improved ACResNet50 depth estimation
network

Weak texture regions are not distinct and significant features,
which are prone to semantic ambiguity and lead to wrong depth
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estimation, so we deal with this problem in this paper. Our improved
ACResNet50 depth estimation network is shown in Figure 2.

Firstly, in order to effectively mitigate the impact of weak texture
scenes on the accuracy of depth estimation information, the
traditional convolution method is replaced by AC, and each
traditional convolution of ResNet50 network is replaced to
strengthen its feature extraction ability, and the
ACResNet50 network structure is formed. Secondly, in order to
solve the problem of missing details, the RFB structure is
connected to the last structure of ACResNet50. Based on the
convolution of different sizes, the dilated convolution is added and
its expansion rate is adjusted to ensure the network receptive field, so
as to achieve the acquisition of high-resolution features. The fusion of
global feature information and local feature information is
strengthened. Finally, the deconvolution structure is used to restore
the size of the output feature map to the size of the original feature
image, and the prediction function of the entire network depth
information is realized.

2.1.2 Asymmetric convolution
At present, the unsupervised monocular depth estimation network

performs poorly on weak texture scenes. Most unsupervised
monocular depth estimation networks use the ResNet50 network as
the feature extraction backbone network in the encoding process of the
image and extract the feature information of the image by feature
superposition and refinement. Although the residual structure of
ResNet50 can extract the feature information of the image to a
certain extent, it is far from sufficient for the task of unsupervised
monocular depth estimation that requires more accurate depth
information. At the same time, the continuous superposition of the
ResNet50 network and the deepening of the number of network layers
will also lead to many problems, such as too many network

parameters, difficult training, and the degradation of the whole
network.

In order to obtain more feature information of the input image
and alleviate the influence of weak texture scenes on unsupervised
monocular depth estimation tasks, inspired by ACNet research, the
traditional convolution method is improved, and we propose a novel
depth estimation network based on ACNet. The feature extraction of
the input image is carried out from the vertical, horizontal, and overall
directions, which strengthens the feature information extraction
ability of the feature extraction network and alleviates the influence
of weak texture scenes on the depth information.

Figure 3 is the operation process of asymmetric convolution. The
ACNet network in the Figure 3 can be divided into two stages, training
and test reasoning, with Figure 3A indicating the training stage and
Figure 3B indicating the test reasoning stage. Firstly, we set up three
parallel convolution kernels with sizes 1 × 3, 3 × 1, and 3 × 3
respectively, 1 × 3 and 3 × 1 convolution kernels facilitate the
extraction of edge information of weak texture regions and other
regions to identify weak texture regions with other regions, and then
joint 3 × 3 convolution to extract contextual features of weak texture
regions to improve the accuracy of weak texture depth estimation.
Secondly, the input image is processed by these three parallel
convolution kernels respectively, so that the extracted feature
information has the characteristics of horizontal, vertical, and
overall directions, then the three kinds of feature information can
be stacked and output. Finally, the traditional convolutions in the
network are replaced with non-traditional convolutions to form the
improved feature map extraction network on ResNet50.

2.1.3 Multiscale receptive fields
The lack of details in depth maps has always been a difficulty for

unsupervised monocular depth estimation. The reason is that in the

FIGURE 1
Structure diagram of unsupervised monocular depth estimation model: (A) Improved depth estimation network ACResNet50; (B) Improved pose
estimation network SEResNet50.
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theory of deep convolutional neural networks, the perceptual field of
the network gradually increases with the number of layers of the
network, Zhou [14] founds that the network’s ability of detail
acquisition in the receptive field is reduced in deeper networks,
leading to poor network learning. Moreover, in the traditional
convolution process, convolution is used to continuously stack
down sampling to extract abstract information, but continuous
downsampling will lead to the loss of image details and local
information. Zhao [15] points out that the fusion of global and
different scale context information in semantic segmentation is
beneficial to alleviate the loss of detail information and preserve
the spatial structure of the image. Therefore, RFB is adopted to
solve this problem in that the receptive field decreases in the
unsupervised monocular depth estimation model, which leads to
unsatisfactory context information fusion and missing details of the
estimated depth map.

The RFB can achieve the acquisition of high-resolution features
without repeated down-sampling and enhance the ability of
network feature extraction and fusion [12]. At the same time,
different receptive fields are obtained by adjusting different
expansion rates of dilated convolution, so as to enhance the

variability of network receptive field region size. By stacking in
this way, the ability of interfusion between feature information at
different scales of the network is enhanced, and the acquisition of
full and local detail information is strengthened. The multiscale
receptive field RFB structure is shown in Figure 4.

In this paper, a multi-scale receptive field RFB structure is added
after the last convolutional block of the ACResNet50 feature extraction
network. Firstly, in the multi-branch convolution layer, convolution
kernels of 1 × 1, 3 × 3 and 5 × 5 sizes are used to ensure the
performance of the network to deal with scale changes and
improve the multi-scale feature extraction ability of the model.
Secondly, on the dilated convolution, in order to ensure the
consistency of the scale of the multi-branch convolution layer and
the expansion rate of the dilated convolution, by connecting cavity
convolution with expansion rates of 1, 3 and 5, respectively to
convolution of different scales, we enhance the receptive field of
the network and improve the acquisition ability of high-resolution
feature maps and context information. Finally, the image feature
information of different scales is fused by stacking the features to
generate a receptive field spatial array as the input of deconvolution
through 1 × 1 convolution.

FIGURE 2
Depth estimation network model: (A) ACResNet50 structure; (B) Identiy_Block structure; (C) Conv_Block structure; (D) AConv structure; (E) Upproj
structure; (F) RFB structure.
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2.2 Pose estimation network based on
SEResNet50

The pose estimation network is crucial for accurately predicting
depth information. However, in the design process of the pose
estimation network, most unsupervised monocular depth
estimation models directly use the pose information of consecutive
image frames for model prediction, ignoring the redundant error of
pose information, which leads to the reduction of the accuracy of the
model prediction depth information.

In order to reduce the large redundant errors in pose estimation, we
design the SE attention mechanism structure based on ResNet50 in the
pose estimation network, which can focus on the important pose
information of the image frame, suppress the unimportant pose
information of the image frame, and reduce the large error
redundancy. The improved pose estimation network is shown in Figure 5.

2.2.1 SE attention mechanism
For the pose estimation network, its task is to accurately predict

the camera motion trajectory between adjacent frames in the video

FIGURE 3
Asymmetric convolution structure:(A) The ACNet structure in the training stage; (B) The network structure in the test reasoning stage.

FIGURE 4
Multi-scale receptive field RFB structure.
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sequence, so as to obtain the rotation matrix and translation matrix.
Then, the image is reconstructed by combining the internal parameter
matrix of the camera and the depth information predicted by the
depth estimation network. However, in the pose estimation network,
the camera pose motion estimation in the image between two highly
adjacent frames is highly approximate. If the network trains all the
pose information of the video sequence frames and predicts the
camera pose, it will not only increase the amount of information
processed by the network but also lead to an increase in redundancy
error in the pose estimation.

SE structure focuses on exploring the relationship between
different channels in feature information, and this exploration
method has a good performance in balancing the importance of
feature channels and learning global feature information [13]. In
the pose estimation network, the SE structure can be used to pay
more attention to the important pose information in the continuous

image frames of the video sequence, suppress the unimportant pose
information, and effectively enhance the network’s prediction of the
camera pose motion trajectory between image frames, and improve
the ability of pose estimation.

Figure 6 shows the attention mechanism structure of SE channel.
Firstly, given a feature input X, its height, width, number of channels,
and the dimension are H′, W′, C′, and H′ × W′ × C′, respectively.
After a series of transformations such as convolution, a feature U of
size H × W × C is obtained. Secondly, the squeeze operation Fsq(·) is
carried out, so that the feature U is squeezed along the spatial
dimension. Further, each two-dimensional characteristic channel is
turned into a real number, and a feature with the same dimension and
channel number is output, whose size is 1 × 1 × C. Thirdly, the
excitation operation Fex(·,W) is used to generate a weight for each
feature channel, where W represents the correlation between feature
channels. Finally, by doing the scale operation Fscale(·, ·), the weight

FIGURE 5
Improvement of pose estimation network model: (A) SEResNet50 structure; (B) Identiy_Block structure; (C) Conv_Block structure; (D) SE structure.

FIGURE 6
SE channel attention mechanism.
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output by the excitation operation is weighted to the feature U of the
previous layer channel by channel through multiplication, and the
feature X′ with attention mechanism is obtained with size
H × W × C. Through the above operations, we retain important
feature information and strengthen learning ability of global feature
information.

2.2.2 Residual network with attention mechanism
There are multiple block structures in the original

ResNet50 feature extraction network, and each block realizes the
extraction of image features by stacking each other. The original
ResNet50 backbone feature extraction network does not consider
the relationship between different channels in the feature
information. Such a way will lead to the lack of ability to
distinguish the main and secondary channel feature information,
resulting in a weak performance in global feature information
extraction ability.

However, the SE channel attention mechanism makes full use of
the weights of different feature channel information importance to
enhance the information acquisition of important feature channel. In
this paper, the attention mechanism is introduced into the backbone
feature extraction network to strengthen the extraction performance
of global feature information. Its improved residual network with
attention mechanism is shown in Figure 7.

This paper designs the channel attention mechanism SE in each
block structure of the ResNet50 feature extraction network. Firstly, the
feature map of height H, width W, number of channels C and size
H × W × C by ResNet50 is output a feature map of size 1 × 1 × C by
global average pooling. Secondly, the feature map of 1 × 1 × C is input
to the first fully connected layer with ReLU as the activation function
and the output is 1 × 1 × C × α, where the number of neurons isC × α

and the scaling parameter is α , which aims to reduce the channel
reduction calculation. It is input to the second fully connected layer
with sigmoid as the activation function, whose output is 1 × 1 × C and
the number of neurons isC to complete the acquisition of the weight of
the attention mechanism of different channel feature information.
Then, the obtained weights are applied to the H × W × C feature
information of ResNet50 output through the multiplication operation
to obtain the feature channels with weights. Finally, the feature output
of the previous layer and the weighted feature channel are
superimposed to obtain the final feature output. An improved
SEResNet50 residual block with attention mechanism is formed.
This structure can effectively enhance the performance of the
network in extracting feature information of important adjacent

frame image pose changes and reduce the redundancy error of the
pose estimation network.

2.3 Design of the loss function

In the design of the loss function, since the whole unsupervised
monocular depth estimation network consists of two parts: the depth
estimation network and the pose estimation network, which are used
together to predict the depth of a pixel. Therefore, the constraint term
of the loss function is derived from the pixel difference between the
reconstructed image and the input image after information predicted
by the depth estimation network and the pose estimation network. In
the inference of the loss function, let the three adjacent frames of
images at time t be It, It−1, and It+1.We call It the target image and the
other two It−1 and It+1 the source images. Firstly, the depth D

∧
t(pt) of

each pixel pt in the target view It is obtained through the depth
estimation network, and then (It, It−1) and (It, It+1) are fed into the
pose estimation network as a group to obtain the camera motion
T
∧
t→t−1 and T

∧
t→t+1 between neighboring pixels respectively. In this

way, the depth information and pose information of the color image
are obtained.

In the process of image reconstruction, each pixel pt in the target
view It is projected onto the source image Is ∈ (It+1, It−1) at pixel s
according to the predicted depth informationD

∧
t(pt) and camera pose

T
∧
t→t−1, T

∧
t→t+1. Bilinear interpolation is then used to obtain pt which is

the value of the distorted image. The differentiable image warping
process is shown in Figure 8.

For the flush coordinate pt of a pixel in the target frame, then the
projection coordinate of pt corresponding to the ps of the source
frame can be obtained as follows:

ps ~ KT
∧
t→sD

∧
t pt( )K−1pt, (1)

where T
∧
t→s is the camera motion pose from frame t to s,D

∧
t(pt) is the

depth value of pixel pt in frame t, and K is the camera internal
reference matrix.

In this case, let the target image It of the reconstructed frame, the
source image Is as the frame used to reconstruct It, and the
reconstructed image I

∧
s. Let < I1, . . . , IN > be a training image

sequence, where one of the frames is denoted as the target image
It. Is is the source image sequence denoted as Is(1≤ s≤N, s ≠ t). | |
measures the absolute error. Then the loss function L1 is expressed as
follows:

FIGURE 7
SE+ Residual blocks structure.
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L1 � ∑
s
∑

p
It p( ) − Îs p( )∣∣∣∣ ∣∣∣∣. (2)

Since the premise assumptions of invisible change and static scene
need to be satisfied in network construction, if one of the assumptions
is not met, the gradient will be destroyed and the inhibition of training
will occur. In response to these factors, in order to improve the
robustness of the network, the output confidence weight E

∧
S(p) for

each target source pair is given during the cascaded training of the
depth estimation network and the pose estimation network. After
weighting the loss function (2), the loss function L2 is expressed as:

L2 � ∑
s
∑

p
Ês p( ) It p( ) − Îs p( )∣∣∣∣ ∣∣∣∣. (3)

In the original algorithm, the ill-posed region is solved by adding a
smoothing constraint when obtaining the depth map, and the depth of
each pixel is solved by global optimization. However, this method is to
average the reprojection error of multi-source images, which may lead
to problems of pixels which are visible in the target image and invisible
in the source image. If the network predicts the correct depth of a pixel,
then the corresponding color in the blocked source image has a high
probability of mismatch with the target, resulting in a high
photometric error. There are two reasons for this problem. One is
pixels which are on the edge of the image and are out of view due to
motion between frames. The other is the occluded pixels.

In this paper, we use the concept of minimum reprojection error to
deal with the problem of out-of-bounds caused by occluded pixels and
inter-frame motion. At each pixel, the photometric error of all source
images is no longer averaged, but simply the minimum value is used,
which can effectively alleviate the pixels that are visible in the target
image and invisible in the source image in the process of pixel
projection, and solve the occlusion problem caused by pixel
projection. Therefore, the calculation process of the minimum
reprojection loss function Lp is as follows:

Lp � ∑
t′ pe It, It′→t( ), (4)

pe Ia, Ib( ) � α

2
1 − SSIM Ia, Ib( )( ) + 1 − α( ) Ia − Ib‖ ‖1. (5)

Among them, SSIM (Structural Similarity Index Measurement) is
the structural similarity index, Ia and Ib are the adjacent frame images,
t represents the time of each frame image. As known relative pose at
time t′, the source image It′ is the second frame in the stereo pair to It,
and α is set to .85 to make its edge perception smooth.

Finally, the minimum reprojection error constraint is introduced
into the overall loss function to reduce the impact of pixel occlusion on

the model during pixel projection and ensure the accuracy of the
model in predicting depth information. The final loss function of the
model Lfinal is as follows:

Lfinal � ∑
l
Ll
1 + λpL

l
p + λe ∑s

Lreg Ê
l

s( ). (6)

λp and λe are the weight value of minimizes the reprojection error and
the weight value normalized by the target source on the output
confidence. We empirically take the values are .65 and .35,
respectively. Lreg denotes the regularization term [16], and l
represents different image scales, respectively.

3 Experiments

In our experiment, video images of real scenes are utilized as
training data set and test data set, such as urban areas and highways in
KITTI data set. In order to ensure the consistency of the experiment,
the image resolution is uniformly cropped to a size of 640 × 192. The
common methods of data enhancement such as rotation and flip are
also used to expand the data. The SGD (Stochastic Gradient Descent)
algorithm is used to optimize the model parameters. The training
iteration epochs of the whole network is set to 200. The initial learning
rate is set to .001 and dynamic attenuation is adopted. Image
acceleration is CUDA11.2.0/CUDNN8.2.1.

3.1 The ablation experiment

To verify the reliability of the proposed scheme, we validated the
proposed scheme on the KITTI dataset and performed ablation
experiments and compared the proposed method in this paper
with the scheme of Zhou [10], and the experimental scheme and
results are shown in Table 1.

3.2 The depth estimation network

3.2.1 Verification of asymmetric convolution
structure

In order to verify AC, we conduct comparative experiments
between ACResNet50 in this paper and Zhou’s method.

From the quantitative and qualitative analysis of the relevant
evaluation indicators in Table 1 and Figure 9, our method works

FIGURE 8
Differentiable image warping process.
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better than Zhou’s method for weak texture scenes in the ill-posed
regions of the billboard in row 2 and the columnar objects in rows 2 to
3. Only using the asymmetric convolution structure designed to
replace the traditional convolution structure has a certain
improvement in the accuracy of the estimated depth value of the
network. The experimental results show that the improved
asymmetric convolution can effectively enhance the ability of the
network to obtain feature information for the color two-dimensional
image, strengthen the feature extraction of the input image, and make
the unsupervised monocular depth estimation network output depth
images with rich textures and clear edges.

3.2.2 Validation of ACResNet50+ RFB structure
In order to verify the RFB structure, the ACResNet50 + RFB is

compared with Zhou [10].
The relevant quantity and quality evaluation metrics are analyzed

in Table 1 and Figure 10. In this paper, RFB is introduced into the last
module of the ACResNet50 network, so that the model can obtain the
context information of image features at different scales. The obtained
feature information is more continuous and the detail information is
more complete, which ensures the continuity and integrity of the

spatial structure of the output depth image of the network. In
Figure 10, our method is able to retain more detailed information
of vehicle contours, which is significantly better than Zhou’s method.
Experimental results show that the proposed multi-scale receptive
field enhanced RFB structure outperforms Zhou’s algorithm in depth
map detail information and spatial structure presentation. It can
effectively avoid the lack of details in the unsupervised monocular
image depth estimation task, strengthen the control of the model for
detailed information. At the same time, it can further obtain multi-
scale information and rich context information in two-dimensional
color images, and improve the overall prediction accuracy and
generalization performance of the model. The results show that the
method can effectively alleviate the redundancy error problem of
detail information in the ill-posed regions.

3.3 Pose estimation network

In order to verify the actual effect of the pose estimation network
SEResNet50 embedded with the attention mechanism designed in this
paper, the method in this paper is compared with Zhou [10].

TABLE 1 Ablation experimental design protocol and comparison of experimental results.

Category of schemes Error metric Accuracy metric

Zhou [10] ACResNet50 RFB SEResNet 50 Lp Abs rel Rmse Rmse log δ < 1.25 δ < 1.252 δ < 1.253

√ × × × × 0.183 6.709 0.27 0.734 0.902 0.959

√ √ × × × 0.169 6.391 0.262 0.740 0.91 0.963

√ √ √ × × 0.164 6.249 0.258 0.758 0.915 0.965

√ √ √ √ × 0.162 6.211 0.246 0.773 0.918 0.968

√ √ √ √ √ 0.161 6.032 0.235 0.781 0.922 0.970

FIGURE 9
Comparative experimental results of asymmetric convolution module visualization on KITTI dataset: (A) represents the color image input by the model;
(B) represents the depth map result predicted by Zhou et al.; (C) The ACResNet50 prediction of asymmetric convolution to the depth map results.
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The relevant evaluation indicators in Table 1 and Figure 11 are
analyzed quantitatively and qualitatively. In this paper, the attention
mechanism SE structure is designed to reduce the redundant error
caused by using the pose information of consecutive frames to predict
the pose information of the next frame in the pose estimation process. The
attentionmechanism SE can pay attention to the important information in
a single frame and suppress the unimportant information, so as to
effectively reduce the redundant error generation and improve the
overall prediction accuracy of the model. From Figure 11, we can find
that our method works well when targeting the projected occlusion region
of bicycle pedestrians and car outline. The experimental results show that

the attention mechanism SE structure designed in this paper can reduce
the redundant error of camera pose estimation in the pose estimation
network. In terms of the accuracy of predicting the depth value, the three
indicators have a corresponding improvement, where δ < 1.25, it is an
obvious improvement over Zhou [10], and the output depthmap is of high
quality. It shows that the pose estimation network designed in this paper
can effectively estimate themotion pose of the camera accurately, and it is a
good contribution to the whole unsupervised monocular depth estimation
network to predict depth information.

At the same time, in order to further verify the absolute trajectory
error estimated as the pose information, the prediction results are

FIGURE 10
Comparative experimental results ofmulti-scale receptive field RFB visualization on KITTI dataset: (A) The color images input by themodel; (B) The depth
map results predicted by Zhou et al.; (C) The depth map results predicted by ACResNet50+ RFB structure.

FIGURE 11
Comparative experimental results of attention mechanism SE module visualization on KITTI dataset: (A) The color image input by the model; (B) The
depth map results predicted by Zhou et al.; (C) The depth map predicted by SEResNet50 embedded attention mechanism in the pose estimation network.
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tested through the pose estimation test data Seq.9 and Seq.10 provided
by the KITTI dataset official website, as shown in Table 2.

As can be seen from Table 2, after designing the attention
mechanism in the pose estimation network, the error of pose
estimation on the KITTI test set is smaller than that of ORB-
SLAM (short) and Zhou’s method, but larger than that of ORB-
SLAM (full). Therefore, the attention mechanism used in the pose
estimation network can effectively reduce the redundant error caused
by the superposition of consecutive multi-frame image information
and improve the robustness of the model.

3.4 Minimum reprojection error loss function

In order to verify the experimental effect of introducing the
minimum reprojection error loss function. The model introduced
with the minimum reprojection error loss function designed in this
paper is compared with the method of Zhou [10].

The relevant evaluation indicators in Table 1 and Figure 12 are
analyzed quantitatively and qualitatively. In this paper, a constraint
term of minimum reprojection error is added to the loss function,
which is beneficial for the prediction of depth information, and can
effectively improve the occlusion problem in the projection process of
adjacent pixels.

Experimental results show that after using the minimum
reprojection error as a constraint term, each error index is reduced
accordingly. It improves the problem of occlusion during the
projection of adjacent pixels and enhances the prediction accuracy

of depth information of the model. At the same time, the robustness
and generalization performance of the model are improved.

3.5 KITTI contrast experiment

At the same time, in order to verify the effectiveness and
generalization of the proposed method, we make qualitative and
quantitative comparison analysis with the research algorithms in
related fields. In order to verify the effectiveness of the method in
this paper, the comparative experiments are based on the KITTI
dataset, verify the generalization of the method in this paper, the
cityscapes dataset is used, but the error of the model increases slightly
when dealing with data sets other than KITTI.

In Table 3, k is the KITTI dataset, CS is the Cityscapes dataset, and
supervision (Y, N) indicates whether it is an unsupervised and supervised
monocular depth estimation task. The relevant evaluation indicators in
Table 3 and Figure 13 are analyzed quantitatively and qualitatively. The
algorithm designed in this paper is .022, .677, and .035 lower than Zhou in
AbsRel (Absolute Relative error), RMS (Root Mean Square error), and
LogRMS (Log Root Mean Square error), respectively. In the three depths
value accuracy evaluation indicators of δ < 1.25, δ < 1.252, and δ < 1.253,
it is .047, .020, and .013 higher, respectively. The accuracy of predicting
depth information frommonocular color image is also better than that of
the algorithm proposed by Zhou [10].

Themethod designed in this paper has good performance in various
evaluation indicators compared with the previous research work.
Among them, compared with the supervised method of Eigen [18],
Liu [19] and Cao [22], the accuracy of the predicted depth value is
greatly improved. Compared with the unsupervised monocular depth
estimation proposed by Zhou [10], the three indexes in this paper are
increased by .047, .020, .013 respectively, and the error index is reduced
accordingly. Compared with the recent work of Yang [21], AdaDepth
[23], S2R-DepthNet [24], etc. which studied the unsupervised
monocular depth estimation task, the proposed method performs
better in all indicators. At the same time, from the depth images
predicted by each algorithm in Figure 13, the proposed algorithm
has good performance in the texture information, detail information,
and spatial structure of the output depth map.

TABLE 2 Absolute trajectory error for validating positional estimation on KITTI
test set.

Methods Seq.9 Seq.10

ORB-SLAM (full) [17] 0.014 ± 0.008 0.012 ± 0.011

ORB-SLAM (short) [17] 0.064 ± 0.141 0.064 ± 0.130

Zhou [10] 0.021 ± 0.017 0.020 ± 0.015

Our method 0.019 ± 0.015 0.018 ± 0.016

FIGURE 12
Comparative experimental results of the per-pixel minimum reprojection error visualized in the KITTI dataset: (A) The color image input by themodel; (B)
The depthmap result predicted by Zhou et al.; (C) The depth map predicted by the whole network structure after improvement; (D) The depthmap predicted
by the whole model after using the minimum reprojection error loss function.
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The experimental results show that the improved unsupervised
monocular depth estimation algorithm designed in this paper can
effectively alleviate the impact of weak texture scenes on the model,
solve the lack of detail of the input image, reduce the redundant error of
pose information, reduce the occlusion problem in the process of pixel
projection, and ensure the prediction accuracy of the unsupervised
monocular depth estimation model. From the analysis of the above
indicators, the unsupervised monocular depth estimation network has

a certain competitive advantage in depth prediction, and can accurately
estimate the depth information of images or video frames.

4 Conclusion

Currently, supervised monocular image depth estimation tasks
require a large amount of real depth data for training, which greatly

TABLE 3 Comparison of experimental results with other related research algorithms.

Methods Supervised Data Error Accuracy, δ

AbsRel RMS LogRMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen [18] Y K 0.214 6.307 0.292 0.673 0.884 0.957

Liu [19] Y K 0.202 6.471 0.275 0.678 0.895 0.965

Zhou [10] N K 0.183 6.709 0.27 0.734 0.902 0.959

UnDeepVO [20] N K 0.183 6.57 0.268 — — —

Yang [21] N K 0.182 6.501 0.267 0.725 0.906 0.963

Cao [22] Y K 0.180 6.311 — 0.771 0.917 0.966

AdaDepth [23] N K 0.167 5.578 0.237 0.771 0.922 0.971

S2R-DepthNet [24] N K 0.165 5.695 0.236 0.781 0.931 0.972

Geonet [25] N K 0.164 6.09 0.247 0.765 0.919 0.968

Mahjourian [26] N K 0.163 6.22 0.25 0.762 0.916 0.966

LEGO [27] N K 0.162 6.276 0.252 — — —

Our method N K 0.161 6.032 0.235 0.781 0.922 0.972

Our method N CS 0.174 6.322 0.259 0.748 0.911 0.964

Our method N K + CS 0.168 6.282 0.26 0.731 0.908 0.963

FIGURE 13
Visual comparison experimental results with other related research algorithms on the KITTI dataset: the first row is the input two-dimensional color
image; rows 2 to 6 show the depth maps predicted by Eigen, Zhou, Yang, Mahjourian et al. and our method, respectively.
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increase the development cost of the model and the difficulty of
landing the model. The improved unsupervised monocular depth
image estimation task designed in this paper only uses continuous
video sequences to complete the depth prediction of each pixel of a
single image, which greatly reduces the model development cost and
accelerates the model implementation process. It can effectively
improve the influence of weak texture scene on depth prediction,
reduce the lack of details of the model predicted depth image, and
reduce the occlusion problem of the model due to the pixel projection
process. Through the improvement of this paper, the prediction
accuracy of the unsupervised monocular image depth estimation
model on depth information is strengthened, which makes the
depth image predicted by the model richer in texture information,
clearer in detail information, and more continuous in spatial structure,
thus enhancing the structure of the predicted depth image and
improving the resolution of the output image. The robustness and
generalization performance of the unsupervised monocular depth
estimation model are improved.

Although our approach does not require labeling of real depth
images as supervised methods do, the framework lacks explicit
estimation of scene dynamics in 3D scene understanding. In future
work, we would like to explore methods for modeling scene dynamics
through motion segmentation to improve the performance of
unsupervised monocular depth estimation in dynamic scenes.
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