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In this paper proposes a sensitivity analysis method based on a Polynomial

Chaos Expansion (PCE) surrogate model for flexoelectric materials. The non-

uniform rational B-splines (NURBS) basis functions to discretize the fourth-

order partial differential equation for flexoelectricity and obtains a deterministic

solution (electric potential). The mathematical expressions of surrogate model

for the flexoelectric materials are established by considering uncertain

parameters such as independent Young’s modulus, concentrated load and

flexoelectric constants. The sensitivity expression is found by derivation the

mathematical expression for the surrogate model. Moreover the finite

difference method (FDM) are conducted in numerical examples to

demonstrate the validity and correctness of the proposed algorithm.
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1 Introduction

Flexoelectricity is a new electromechanical energy conversion mechanism that can be

an alternative to piezoelectricity [1]. The flexoelectricity is relatively weak in bulk

crystalline materials, resulting in little attention. However, with the advancement of

nanotechnology, huge strain gradients can be obtained at small-length scales, leading to a

new understanding of the flexoelectricity as a size-dependent phenomenon [2]. As

compared to piezoelectricity, flexoelectricity theoretically be present in all dielectrics,

including those with centrosymmetric crystal structures, and is therefore a more versatile

electromechanical coupling mechanism [3]. The traditional Lagrangian interpolation

function of Finite Element Method (FEM) can only provide C0 continuity requirements.

The C0 continuity of the FEM cannot satisfy the C1 continuity requirement of the fourth-

order partial differential equation for flexoelectricity. This requires other numerical

methods to achieve the C1 continuity requirement. Isogeometric analysis (IGA) is one
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of the most popular numerical methods. It satisfies the continuity

of C1 by enhancing the order of NURBS basis function [4]. IGA

initially developed to unify computer-aided design (CAD) and

computer-aided engineering (CAE), but the remarkable

characteristics of IGA basis functions such as NURBS has

been applied to many applications including mechanics of

fracture [5], electromagnetics [6], acoustics [7–10], and

optimizations [11–14].

The input parameters of simulation models are often

characterized by high uncertainty, and the model parameters

are difficult and inaccurate to estimate [15]. This can largely lead

us to make erroneous judgments about the issues of concern. The

uncertainty quantification of input parameters is an efficient way

to address uncertainty, and it examines the uncertainty in the

model from the input parameters. Uncertainty analysis methods

including Monte Carlo simulation (MCs) [16–18], the random

spectral approach [19, 20] and the perturbation technique [21,

22] are frequently used to take into account the impact of

uncertainty on the system response. However, with improving

accuracy requirements, modeling of target simulation has

become extremely complex, and its implementation is costly

and time-consuming. The commonly used MCs approach is

costly and challenging to implement for uncertainty

quantification when many samples and model observations

are required [23]. The surrogate modeling approach uses the

relationship between inputs and outputs in a basic mathematical

model to establish a newmethod for replacing complex analytical

or computational models. The development of surrogate

modeling techniques appropriate for solving practical

engineering problems provides the required model

observations and can reduce the computational cost of

uncertainty quantification.

The Polynomial Chaos Expansion (PCE) becomes a

prominent alternative modeling method in the field of

uncertainty quantification (UQ) with low training cost when

modeling extremely complex systems. The main implementation

process of PCE is to use several polynomials to expand the

response of random variables. The model response is expressed

as a polynomial function of the input by determining the PCE

coefficients of the polynomial components. These polynomial

functions are orthogonal to the probability density functions of

the input variables, which makes the calculation easier. The non-

intrusive method does not require information about the control

equations and is more suitable than the intrusive method for

most problems when solving for the PCE coefficients. The non-

intrusive methods include projection methods [24] and

regression methods [25, 26] in which regression methods are

more popular because of their efficiency in dealing with

multivariate problems [27]. The sensitivity analysis (SA)

quantitatively measures which the uncertainty of different

input parameters contributes to the output uncertainty [28].

The sensitivity index is usually used to indicate the influence

of each individual input parameter on the output [29]. Some

complex problems in practical engineering do not have a definite

input-output mathematical expression. It makes it difficult for

engineers to perform sensitivity analysis on complex problems.

The technique of surrogate modeling, such as PCE, can easily

quantify the influence of the input parameters on the output by

building mathematical expressions for the mechanical properties

of complex problems depending on the inputs and outputs.

This paper lays out a procedure for solving the sensitivity

problems of flexoelectric materials. This approach consists of two

novel points:

1 The IGA-FEM and PCE are employed to establish a

surrogate model for the flexoelectric materials.

2 The sensitivity expressions of the surrogate model are

established by considering three kinds of different material

parameters, respectively.

The remaining sections of the essay are structured as follows.

The foundations of PCE in uncertainty quantification are

presented in Section 2. Three introduces the principles of the

isogeometric Finite Element Method for the statics of

flexoelectric materials. Section 4 validates the IGA-FEM, PCE

surrogate models and the sensitivity values of PCE surrogate

models of the flexoelectric structure using numerical examples,

followed by conclusions in Section 5.

2 Basic formula of polynomial chaos
expansion

The basic idea of PCE is to replace the system model with an

orthogonal polynomial defined by random variables, and then

obtain a surrogate model expression by solving for the PCE

coefficients. For the system model with n-dimensional

independent random variables, the output function of the

truncated PCE model with total expand order p can be

expressed as

f r( ) � ∑N−1

α

θαΨα r( ), (1)

where the total number N of polynomial terms of order p is

computed by N = (n+p)!/(n!p!). θα are polynomial coefficients

that are unknown. Ψα are multivariate orthogonal polynomials

defined by the tensor product of univariate orthogonal

polynomials as

Ψα r( ) � ∏n
i�1

ψα i ri( ), (2)

where ψαi(ri) is a univariate polynomial with respect to the

random variable ri. The inner product of any two functions

defined by Ψs(r) and Ψt(r), and the probability density function

P(r) of r is:
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〈Ψs r( ),Ψt r( )〉 � ∫Ψs r( )Ψt r( )P r( )dr � δst, (3)

where 〈 · 〉 is the expectation operator. δst is the Kronecker

symbol, which is equal to one when s = t and otherwise zero.

In general, the probability density functions for different

distributions correspond to different orthogonal polynomials,

e.g., Legendre polynomials correspond to uniform

distributions and Gaussian distributions correspond to

Hermite polynomials. Table 1 lists the common univariate

orthogonal polynomials and their corresponding probability

distributions. There are various approaches to calculating the

polynomial chaos expansion coefficient θα. The collocation

method and the least-squares minimization problem are

commonly employed to obtain the PCE coefficients. The

orthogonal matrix and the PCE coefficient vector can be

obtained according to Eq. 1 as [30].

Ψ �

Ψ0 r1( ) . . . ΨN−1 r1( )
· ·
· ·
· ·

Ψ0 rZ( ) . . . ΨN−1 rZ( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and θ �

θ0
·
·
·

θN−1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (4)

where Z is the number of random variables sample points. The

PCE coefficient vector can be expressed as

θ � ΨTΨ( )−1ΨTU, (5)

whereU � {f(r)}Zz�1{ }T. In this paper, an orthogonal polynomial

with random variables satisfying a Gaussian distribution is used

as an example. The recurrence relation for the Hermite

orthogonal polynomials corresponding to the Gaussian

distribution is

Hα r( ) � 1

−1( )αe−r2
2

dα

drα
e−

r2
2[ ] � α! ∑α/2[ ]

k�0
−1( )k 1

k!2k α − 2k( )!r
α−2k,

(6)

where [α2] is an integer and less than or equal to α
2 r denotes the

random variable. The three-term recurrence equation for the

Hermite orthogonal polynomial is expressed as

Hα+1 r( ) � rHα r( ) − αHα−1 r( ). (7)

The first six polynomials of Hα(r) are

Hα r( ) � 1 α � 0,
Hα r( ) � r α � 1,
Hα r( ) � r2 − 1 α � 2,
Hα r( ) � r3 − 3r α � 3,
Hα r( ) � r4 − 6r2 + 3 α � 4,
Hα r( ) � r5 − 10r3 + 15r α � 5.

(8)

3 IGA discretization of the control
equations for flexoelectricity

In this section, we summarize the controlling equations for

dielectric solids considering the flexoelectric effect. More

information see [31–33] and references included therein. The

weak form of the flexoelectric control equation is∫
Ω
CijklδSijSkl − ekijEkδSij − μlijkElδSij,k − κijδEiEj − eiklδEiSkl(
−μijklδEiSjk,l)dΩ − ∫

Γt
�tiδuidΓt + ∫

ΓD
ωδφdΓD � 0, (9)

where ui denotes displacement; φ denotes the electric potential;

Cijkl represents the fourth-order elasticity tensor; the mechanical

strain is denoted by Sij, eijk is the third-order piezoelectric tensor,

the electric field is defined as Ei = −φi; the fourth-order total

flexoelectric tensor is denoted by μijkl; κij is dielectric tensor of

second order; ti denotes the mechanical traction; ω is surface

charge density. The physical domain is denoted by Ω, with
boundaries Γt and ΓD corresponding to mechanical traction

and electric displacements, respectively. In order to obtain the

TABLE 1 The probability distributions of different random variables and corresponding orthogonal polynomials [4].

Distribution type of random variable Orthogonal polynomials Interval

Gamma Laguerre (0,+∞)

Weibull

Normal Hermit (−∞,+∞)

Uniform Legendre [a, b]

Beta Jacobi [a, b]

Poisson Charlier {0, 1, 2, . . ., }

Negative binomial Meixner-Chaos {0, 1, 2, . . ., }

Binomial Krawtchouk {0, 1, 2, . . ., n}

Hypergeometric Hahn-Chaos {0, 1, 2, . . ., n}
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FEM form of the governing Eq. 9, the B-spline basis function

Ni,p(ξ) obtained by recursively defining the Cox-de-Boor

formula is

Ni,0 ξ( ) � 1 if ξ i ≤ ξ < ξ i+1
0 otherwise

{ , (10)

and for p = 1, 2, 3,

Ni,p ξ( ) � ξ − ξ i
ξ i+p − ξi

Ni,p−1 ξ( ) + ξ i+p+1 − ξ

ξ i+p+1 − ξ i+1
Ni+1,p−1 ξ( ). (11)

Figure 1 illustrates the results of visualizing the B-spline basis

functions for both directional knot vectors

with Ξ1 � [ 0 0 0 0.5 1 1 1 ] and

Ξ2 � [ 0 0 0 0.5 1 1 1 ]. The Ni,p and Ni,q are 2
nd order

basis functions. The richness of B-spline basis function can be

intuitively seen in Figure 1. The richness of the basis functions

provides the groundwork for solving the fourth-order partial

differential equation for flexoelectricity. Using Eqs. 10, 11 to

discretize Eq. 9, the linear algebraic system of equations for the

flexoelectricity control equation is obtained as

Auu Auφ

Aφu Aφφ
[ ] u

Φ[ ] � fu
fφ

[ ], (12)

where the matrix corresponding to the displacements is

Auu � ∑
e

∫
Ωe

Bu( )TC Bu( )dΩe, (13)

and

Bu �

zN1

zx

zN2

zx
/

zNncp

zx
0 0 0 /

0 0 / 0
zN1

zy

zN2

zy
/

zNncp

zy

zN1

zy

zN2

zy
/

zNncp

zy

zN1

zx

zN2

zx
/

zNncp

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

C � Y

1 + ]( ) 1 − 2]( )( ) 1 − ] ] 0

] 1 − ] 0

0 0
1
2
− ]( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (15)

where ] is Poisson’s ratio and Y is the Young’s modulus. The

matrix of displacement and electric field coupling are

Auφ � ∑
e

∫
Ωe

Bu( )TeT Bφ( ) + Hu( )TμT Bφ( )[ ]dΩe,

Aφu � ∑
e

∫
Ωe

Bφ( )Te Bu( ) + Bφ( )Tμ Hu( )[ ]dΩe.
(16)

FIGURE 1
The specific B-spline basis functions.
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The electric field and Hessian matrices are

Bφ �
zN1

zx
/

zNncp

zx

zN1

zy
/

zNncp

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Hu �

z2N1

zx2

z2N2

zx2 /
z2Nncp

zx2 0 0 / 0

0 0 / 0
z2N1

zyzx

z2N2

zyzx
/

z2Nncp

zyzx

z2N1

zyzx

z2N2

zyzx
/

z2Nncp

zyzx

z2N1

zx2

z2N2

zx2 /
z2Nncp

zx2

z2N1

zxzy

z2N2

zxzy
/

z2Nncp

zxzy
0 0 / 0

0 0 / 0
z2N1

zy2

z2N2

zy2 /
z2Nncp

zy2

z2N1

zy2

z2N2

zy2 /
z2Nncp

zy2

z2N1

zxzy

z2N2

zxzy
/

z2Nncp

zxzy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)
The piezoelectric constants and flexoelectric constants

matrices are

e � 0 0 e115
e311 e333 0

[ ],
μ � μ11 μ12 0 0 0 μ44

0 0 μ44 μ12 μ11 0
[ ]. (18)

The matrix corresponding to the electric field is

Aφφ � −∑
e

∫
Ωe

Bφ( )Tκ Bφ( )dΩe, (19)

where the permittivity constant matrix is

κ � κ11 0
0 κ22

[ ]. (20)

The force and electrical load vectors are

fu � ∑
e

∫
Γte
Nu

TtΓdΓte,

fφ � −∑
e

∫
ΓDe

Nφ
TωdΓDe,

(21)

The subscript e inΩe, Γte and ΓDe represents the eth finite element

in Eqs. 13, 16, 19, 21.

4 Numercial examples

In this section, we verify the accuracy of the IGA-FEM for

solving the fourth-order partial differential equation using a

benchmark example of a cantilever beam. After that, some

random variable sample points are selected to obtain the

output of IGA-FEM, which is used to build a polynomial

chaos expansion surrogate model. Finally, the sensitivity

results of the surrogate model for the mechanical properties of

flexoelectric materials are verified by several numerical examples.

For the cantilever beam model, we postulate that the model

satisfies plane strain linear elastic isotropy.

4.1 Model verification

The cantilever beam model with open-circuit electrical

boundary conditions and the top free edge subjected to a

concentrated load of 200 μN is depicted in Figure 2. The most

commonly used BaTiO3 material was selected for the cantilever

beam model, as summarized in Table 2. The mesh and control

point information is demonstrated in Figure 3. The boundary

condition of the cantilever beam potential is specified on the right

side as 0 V. The FEM uses the traditional Lagrangian basis

function, which requires a lot of meshing to achieve higher

accuracy, but the processing efficiency is lower. However,

FIGURE 2
Cantilever beam model with open circuit electric boundary
conditions.

TABLE 2 Material parameters for cantilever beam.

Name BaTiO3

Beam aspect ratio L/h 30

Poisson ratio ν 0.35

Young’s modulus Y 120 Gpa

Piezoelectric constant e311 −4.3 C/m2

Flexoelectric constant ν12 1.2 μC/m

Dielectric constants

κ11 9.9 nC/(Vm)

κ33 11.2 nC/(Vm)

Electric susceptibility χ33 1,408

Concentrated load F 200 μN
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IGA-FEM uses NURBS basis functions to reduce the

preprocessing time by enhancing the order, which improves

the computational efficiency. This is the main motivation for

using IGA-FEM in this work.

The general definition of the electromechanical coupling

coefficient Keff is

Keff �
#####
Welec

Wmech

√
�

##############∫
Ω
Ei

TκijEdΩ∫
Ω
Sij

TCijklSijdΩ

√√√√
, (22)

For the one-dimensional cantilever beam problem, there are only

stresses T11 and electric fields E2 [31]. The electromechanical

coupling coefficient of the cantilever beam problem is [34].

Keff � χ33
1 + χ33

###################
κ33
Y

e311
2 + 12

μ12
h

( )2( )√
, (23)

For comparison purposes, we introduce a normalized expression

for the electromechanical coupling coefficient as

�K � Keff

Kpiezo
, (24)

and

Kpiezo � χ33
1 + χ33

#######
κ33
Y
e311

2

√
. (25)

The one-dimensional model can be obtained by setting the

Poisson’s ratio, the piezoelectric constant e333, flexoelectric

constant μ11 in the two-dimensional model to zero. The non-

piezoelectric material is obtained by setting e311 = 0. The

normalized electromechanical coupling coefficients obtained

by IGA-FEM and analytical solutions are presented in Tables

3, 4. From the Tables 3, 4, it can be seen that the normalized

electromechanical coupling coefficients obtained by IGA-FEM

are very close to the analytical solution, and the relative errors are

within a small range. The increase in standardized thickness will

decrease the mechanical properties (electric potential) of the

flexoelectric material.

4.2 PCE surrogate model verification

In this section, the output of the IGA-FEM of the cantilever

beammodel is used to build the PCE surrogate model. The Young’s

modulus, concentrated load and two flexoelectric constants as the

random input variables are adopted, respectively. Table 5 lists the

mean vlues, coefficients of variation, and ranges of sample points for

the different random input variables. In this paper, we have used

500 sample points as input parameters for the random variables of

the PCE. The Latin Hypercube Sampling (LHS) random number

generation module in Matlab is utilized to obtain sample points of

FIGURE 3
FEM discretization showing the control points as green dots.

TABLE 3 The normalized electromechanical coupling coefficient �K of non-piezoelectric materials with changing normalized thickness h9.

Non-piezoelectric materials

Normalized thickness h′ IGA-FEM Analytical solution Relative error (%)

1 3.4642 3.4641 0.003

2 1.7323 1.7321 0.012

3 1.1549 1.1547 0.017

4 0.8662 0.866 0.023

5 0.6929 0.6928 0.014

6 0.5774 0.5774 0.000
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random variables. Owing to the potential distribution at the fixed

edge is the most obvious, point A is selected as the reference point

when establishing the surrogate model.

Figure 4 presents the comparison results of PCE and IGA-

FEM for piezoelectric and non-piezoelectric materials with

Young’s modulus as random variable. As can be seen from

Figure 4, the electric potential decreases as the Young’s

modulus increases. The PCE calculation results are basically

consistent with the IGA-FEM calculation results, which

verifies the effectiveness of the algorithm.

Figure 5 depicts the electric potential obtained by PCE and IGA-

FEM for piezoelectric and non-piezoelectric materials with

concentrated load as random variables. As can be seen from

Figure 5, the electric potential of point A increases with increasing

TABLE 4 The normalized electromechanical coupling coefficient �K of piezoelectric materials with changing normalized thickness h9.

Piezoelectric materials

Normalized thickness h′ IGA-FEM Analytical solution Relative error (%)

1 3.5565 3.6056 1.36

2 1.9793 2.0000 1.04

3 1.5156 1.5275 0.78

4 1.3152 1.3229 0.58

5 1.2112 1.2166 0.44

6 1.1508 1.1547 0.34

TABLE 5 Definitions and the statistical characteristics of the random input variables.

Variables Mean values E Coefficient of variation γ The limits of variables: [lower, upper]

Young’s modulus Y 120 GPa 0.1 [84,156]

Concentrated load F 200 μN 0.12 [128,272]

Flexoelectric constant μ11 / μ12 1.2 μC/m 0.14 [0.7,1.7]

FIGURE 4
The electric potential at point A of cantilever beamwhere the
Young’s modulus Y is a random variable.

FIGURE 5
The electric potential at point A of cantilever beamwhere the
concentrated load F is a random variable.
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concentrated load. The electric potential of a piezoelectric material

subjected to the same concentrated force F is less than that of a non-

piezoelectric material.

The results of PCE and IGA-FEM for piezoelectric and non-

piezoelectric materials are shown in Figure 6, where the random

variables are the flexoelectric constants μ11 and μ12. It can be seen

from Figure 6 that the electric potential presents reverse changes

as the two different flexoelectric constants are changed.

4.3 Sensitivity analysis

In this section, we perform a sensitivity analysis of the

surrogate model for the mechanical properties of flexoelectric

materials obtained in Section 4.2. The sensitivity expression of

the surrogate model for the mechanical properties of

flexoelectric materials without considering piezoelectric

effect are

dΦ Y( )
dY

� −2.42 × 10−15 + 2.48 × 10−26Y − 7.35 × 10−38Y2,

dΦ F( )
dF

� 0.36697,

dΦ μ11( )
dμ11

� −39.0240,
dΦ μ12( )
dμ12

� 78.4851.

(26)
The sensitivity expression of the surrogate model for the

mechanical properties of flexoelectric materials considering

piezoelectric effect are

d�Φ Y( )
dY

� −2.24 × 10−15 + 2.34 × 10−26Y − 6.99 × 10−38Y2,

d�Φ F( )
dF

� 0.31776,

d�Φ μ11( )
dμ11

� −36.2533,
d�Φ μ12( )
dμ12

� 81.6950.

(27)
The sensitivity values obtained from the PCE surrogate

model are compared with the global finite difference method

(FDM) defined by

dΦ r( )
dr

� Φ r + Δr( ) − Φ r( )
Δr . (28)

To investigate the accuracy of DSM and FDM, one gives the

relative error of DSM and FDM for different random variable r.

The relative error of the sensitivity results obtained by FDM and

PCE is

ϵerr � ΦPCE − ΦFDM| |
ΦFDM| | . (29)

Owing to the first sensitivity expressions in Eqs. 27, 28 are a

quadratic function of Young’s modulus. Therefore, we need to

calculate the sensitivity value of the surrogate model through the

mean value of Young’s modulus. The mean value of Young’s

modulus is lists in Table 5. The rest of the sensitivity values are

directly selected from the derivative results. Tables 6, 7 present a

comparison of the sensitivity values of PCE and FDM for non-

piezoelectric and piezoelectric materials. From Tables 6, 7, it can

be seen that the sensitivity values obtained by PCE and FDM are

basically the same, and the relative errors are very small. In terms

of the value of sensitivity, the flexoelectric constant μ12 has a

greater effect on the electric potential of the flexoelectric material

and the material is more sensitive to the flexoelectric

constant μ12.

FIGURE 6
The electric potential at point A of the cantilever beam for
different random variables. (A) The electric potential at point A of
the cantilever beam when the random variable is μ11. (B) The
electric potential at point A of the cantilever beam when the
random variable is μ12.
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5 Conclusion

In this paper, a sensitivity analysis method of surrogate

model based on isogeometric stochastic Finite Element

Method is proposed for flexoelectric materials. The

NURBS basis functions with high-order continuity are

used to discretize the fourth-order partial differential

equation for flexoelectricity. The Polynomial Chaos

Expansion (PCE) is utilized to develop a surrogate model

for the mechanical properties of flexoelectric materials. The

sensitivity values of the surrogate model are obtained by

considering three kinds of different parameters,

respectively. Numerical examples illustrate the

flexoelectric material is more sensitive to the flexoelectric

constant μ12. Additionally, the current technology will also

be used to three-dimensional piezoelectric and flexoelectric

problems.
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TABLE 6 Comparison of PCE and FDM of sensitivity results for non-piezoelectric materials.

Non-piezoelectric

Random variables FDM PCE Relative error

Young’s modulus Y −5.04 × 10–16 −5.01 × 10–16 0.49%

Concentrated load F 0.36697 0.36697 -

Flexoelectric constant μ11 −38.6675 −39.0240 0.9%

Flexoelectric constant μ12 79.0227 78.4851 0.7%

TABLE 7 Comparison of PCE and FDM of sensitivity results for non-piezoelectric materials.

Piezoelectric

Random variables FDM PCE Relative error

Young’s modulus Y −4.48 × 10–16 −4.46 × 10–16 0.49%

Concentrated load F 0.31176 0.31176 -

Flexoelectric constant μ11 −35.7991 −36.2533 1.3%

Flexoelectric constant μ12 82.3133 81.6950 0.8%
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