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In this research, we study the bosonic fractional quantum Hall (FQH) states in a
system of ultracold bosons in a two-dimensional optical lattice in the presence of a
synthetic magnetic field, described by the bosonic Harper–Hofstadter Hamiltonian.
We use the cluster Gutzwiller mean-field and exact diagonalization techniques in
our work. We obtain incompressible states as ground states at various filling factors
similar to those of the FQH states. We focus in particular on the ]= 1/2 FQH state, and
it is characterized by the two-point correlation function and the many-body Chern
number. We further investigate the effect of dipolar interaction on the ] = 1/2 FQH
state. We find that the dipolar interaction stabilizes the FQH state against the
competing superfluid state.
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1 Introduction

Ultracold atoms in optical lattices are the subject of intense research as these systems are
excellent proxies to study phenomena of quantum many-body physics. The strongly correlated
regime is of particular interest as parameter domains were earlier inaccessible in condensed
matter systems. For bosonic atoms, the physics of the system is described by the Bose–Hubbard
model (BHM) [1, 2]. The interplay between the hopping strengths of the bosons onto
neighboring lattice sites and the on-site repulsive interaction leads to the Mott insulator
(MI) and superfluid (SF) phase in various parameter domains [3, 4]. Such systems allow
unprecedented control over the system parameters for easy tunability in the experiments.
Optical lattices are crystals of light and are generated by superimposing counter-propagating
laser beams. The lattice parameters, like the depth of the potential wells, can be controlled by
changing the intensity of the laser beams, and the lattice periodicity can be varied by choosing
different wavelength lasers. Additionally, different lattice geometries like square, triangular,
honeycomb, and kagome are synthesized for various choices of the angles between the lasers,
and the lattice dimensionality can be increased by employing more sets of lasers in other
orthogonal directions. Furthermore, these systems are clean and free of any defects. However, if
needed, the defects can be introduced in a controlled manner, thus allowing a systematic study
of the associated effects. This has allowed the study of various novel quantum phases and the
experimental observation of quantum phase transitions with good control on the system
parameters [5, 6]. They have been used extensively to study the quantum phases which have
eluded experiments. Examples include the much-studied supersolid phase with dipolar bosons
[7–9] and in various lattice geometries [10, 11]. The supersolid phase has been experimentally
observed recently for the system of dipolar gases [12, 13] and with cavity-mediated interactions
[14]. Other studies include the fermionic and bosonic mixtures and the physics of phase
separation [15–17], collective excitations [18, 19], the effect of the synthetic magnetic field on
the supersolid phase and the Bose glass phase in a disordered system [20, 21], Kibble–Zurek
mechanism, and non-equilibrium dynamics [22–24].
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Atoms being charged neutral, no Lorentz force is generated when
an external magnetic field is applied. However, there is a host of
phenomena in condensed matter physics associated with external
magnetic fields. A prime example is the physics of quantum Hall
states. This is now resolved with the recent experimental realization of
synthetic gauge fields using lasers [25–27]. Thus, the system of neutral
bosons in optical lattices is an ideal setup to study the physics of
quantum Hall effect. This is due to the possibility of realizing high flux
density per plaquette of the lattice, which is otherwise difficult in
condensed matter systems [28]. This has opened the door to
understand the strongly correlated physics of topological states like
the integer quantum Hall and fractional quantum Hall states,
proposals for their realization [29], and various theoretical studies
on FQH states [30–33]. Recently, FQH states have been realized
experimentally using ultracold atoms in optical lattices [34].

The integer quantum Hall effect (IQHE) is observed in
electronic systems under the influence of strong magnetic fields
at very low temperatures, where the resistivity of the system does
not assume continuous values but is quantized in integer multiples
of e2/h [35]. As a function of the magnetic field, the resistivity has
plateaus corresponding to the integer values. Later, the discovery of
the fractional quantum Hall effect (FQHE) in 1982 observed the
resistivity quantized as the fractional multiple of e2/h [36]. It is
understood to be arising from the electronic correlations, which
play no role in the IQHE [37]. The FQH states are characterized by
the fractional values of the filling factor ], which quantifies the
number of the flux quanta attached per electron. Earliest identified
FQH states had ] = 1/3 and 2/3. Subsequently, several states were
identified with ] = 1/5, 2/5, 3/7, 4/9, . . ., 4/3, 5/3, 7/5, 5/2, . . . [38].
The Jain sequence predicts FQH states for ] � p

p+1, where p = 1, ± 2,
± 3, . . . [39] and the Read–Rezayi sequence appears at fillings ] = p/
2, where p = 1, 2, 3, . . . [40, 41]. Various studies predicting the FQH
states in the lattice systems have led to immense interest in such
systems. These are described by the tight-binding model for the
electronic motion in the magnetic field originally studied by Harper
and Hofstadter [42, 43].

In this work, we numerically study the FQH states exhibited by the
ultracold bosons in a square optical lattice with a synthetic magnetic
field described by the bosonic Harper–Hofstadter Hamiltonian. We
use the cluster Gutzwiller mean-field (CGMF) and the exact
diagonalization (ED) methods to probe the FQH states near the
vacuum state. We have also studied the FQH states in the bosonic
Harper–Hofstadter Hamiltonian extended by incorporating dipolar
interactions. We focus, in particular, on the ] = 1/2 FQH state. This
study adds to the previous literature on FQHE with dipolar
interactions in the identification of the ground state among
competing FQH and superfluid states obtained using the CGMF
method. The superfluid state, obtained from the exact
diagonalization method, has number density that is an integer
multiple of the inverse of the system size and hence may not
represent the ground state for the system in the thermodynamic
limit. Thus, with ED, the metastability of the state is not
determined. However, in order to identify the topological order of
the state, we ultimately use exact diagonalization for a given number
density. The FQH states are identified by studying their characteristic
decaying trend of the two-point correlation function. These states are
topological in nature and have fractional values of topological charge.
The identification of the topological nature for these states is carried
out by calculating the many-body Chern number (MBCN) [44].

2 Theory

Consider a system of bosonic atoms loaded in a 2D square optical
lattice in the presence of a synthetic magnetic field. The system is
described by the bosonic Harper–Hofstadter Hamiltonian, which is
similar to the BHM except that the hopping term acquires a lattice-
site-dependent Peierls phase. In the Landau gauge, the Hamiltonian is
given by

ĤBHM � ∑
p,q

− Jei2παqb̂
†

p+1,qb̂p,q + Jb̂
†

p,q+1b̂p,q +H.c.( ) + U

2
n̂p,q n̂p,q − 1( ) − μn̂p,q[ ],

(1)

where p (q) is the lattice site index along the x (y) directions, b̂p,q (b̂†p,q)
is the annihilation (creation) operator at the lattice site (p, q), n̂p,q is the
number operator, J is the hopping strength,U is the on-site interaction
strength, μ is the chemical potential, and α is the flux quanta per
plaquette or unit cell of the lattice. Thus,Φ = 2πα is the phase acquired
by an atom while traversing around a plaquette of the lattice.

The ground state is obtained by diagonalizing the Hamiltonian
using the CGMF method with the appropriate cluster size. In the
CGMF method, the lattice is tiled with clusters, and neighboring
clusters are coupled through the mean field of the lattice sites at the
boundary of clusters. Thus, the hopping term in the Hamiltonian in
Eq. 1 is evaluated exactly for the intra-cluster hopping, while it is
modified using mean-field prescription for the inter-cluster hopping
[45]. In this approximation, the bosonic creation and annihilation
operators of the inter-cluster hopping terms are written in terms of a
mean-field plus a fluctuation. The bosonic operator corresponding to
lattice sites surrounding the edges of a cluster is replaced by

b̂p,q � ϕp,q + δb̂p,q, (2)

where ϕp,q � 〈b̂p,q〉, and the expectation value is taken with respect to
the ground state wavefunction. A similar expression is obtained for the
creation operator b̂

†

p,q. This approximation simplifies the Hamiltonian
of the system to a direct sum of the cluster Hamiltonians. The
Hamiltonian of the cluster is given by

ĤC � − ∑′
p,q∈C

Jei2παqb̂
†

p+1,qb̂p,q + Jb̂
†

p,q+1b̂p,q +H.c.( )
+ ∑

p,q∈C

U

2
n̂p,q n̂p,q − 1( ) − μn̂p,q( )

− ∑
p,q∈δC

Jei2παqϕp+1,q* b̂p,q + Jϕp,q+1* b̂p,q +H.c.( ), (3)

where the first summation is restricted over lattice sites (p, q) such that
their neighboring lattice sites (p+1, q) or (p, q+1) also lie within the
cluster C. The last summation is over lattice sites (p, q) that lie at the
boundary of the cluster C. Using the Gutzwiller ansatz, the ground
state wavefunction of the system is defined as the tensor product of
cluster wavefunctions expressed in terms of the coupled basis as
follows:

|ΨGW〉 � ∏
C

|ψc〉 � ∏
C

∑
n1 ,n2...,nKL

C C
n1 ,n2..,nKL

|n1, n2 . . . , nKL〉C, (4)

where the cluster is chosen to be of dimension K × L. Then, for aM × N
system, the number of clusters required to tile the system is M × N/(K ×
L). To obtain the ground state numerically, we start with an initial guess
for the mean field ϕ, and the corresponding Hamiltonian matrix is
calculated. The ground state wavefunction of each cluster is obtained
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by diagonalization of the cluster Hamiltonian. New values of ϕ are
calculated for the lattice sites at the edge of the cluster, and these are
used to update the cluster Hamiltonian as an improvement over the initial
guess. This process is repeated for all the clusters and continued till self-
consistency is achieved. For the present computations, we consider self-
consistency is reached when themean field converges upto an accuracy of
~ 10−9. It is to be noted that in the limit of tiling the lattice by a single
cluster, that is, there is no mean-field, the CGMF method is equivalent to
the exact diagonalization method. More details about the numerical
procedures used in this research can be found in [46, 47].

For specific values of the filling factor ] = ρ/α, where ρ is the
number density, FQH states may be favored as the ground state. The
quantum Hall states are identified by the plateaus in the plot of
bosonic density ρ as a function of μ, which can also be referred to as the
compressibility plot. Thus, the plateaus are the indicators of
incompressible ground states and the signature of quantum Hall
states. Among the states, those with the integer (fractional) value of
] can be the integer (fractional) quantum Hall states. The
compressibility plot is obtained by the CGMF method with the
appropriate cluster size. For the present work, we consider α = 1/4
and choose the Landau gauge. It should be mentioned that we choose
experimentally achievable high values of α [26], as the lattice structure
becomes more prominent at high flux strengths compared to the
continuum limit at low values of α. For various choices of the flux
strength α, FQHE has been studied extensively and has been reported
in various works [31, 46–49]. For this choice of the magnetic field and
the gauge employed, the magnetic unit cell consists of four lattice sites
along the y direction. So the cluster size along the y direction should be
in multiples of four lattice sites in order to respect the magnetic
translational symmetry. To further verify that the plateaus represent
quantum Hall states, we use the exact diagonalization method to
compute properties of the quantum Hall states. In this method, all the
terms of Hamiltonian are calculated exactly for a system with a fixed
number of particles, that is, we work in the canonical ensemble. The
quantum Hall states have a characteristic property related to the
decaying behavior of the two-point correlation function defined by
〈b̂†(x′, y′)b̂(x, y)〉, where the expectation is calculated with respect to
the ground state wavefunction. It has a power-law decay at the edge,
while in bulk, it initially decays as an exponential, followed by a non-
monotonic trend, and finally with a power-law tail [50].

〈b̂† x, y( )b̂ 0, y( )〉∝
1/xα, y ~ 0,
e−x/ξ , y ~ M/2, x<M,
1/ x + 2y( )α, y ~ M/2, x ~ M.

⎧⎪⎨⎪⎩ (5)

This arises because the quantum Hall state is gapped in bulk but has a
gapless edge at the boundary of the system.

To identify the topological order of the state, we calculate the
MBCN using the method of [51]. On a torus geometry, the generalized
boundary conditions are given by the single-particle translation along
the lattice resulting in the original wavefunction but upto a phase or
twist angles at the boundary. Depending on the direction along which
the twist angle is applied, it could either represent magnetic flux along
the axis of the torus or through the center of the torus. The ground
state is a function of the twist angles, and the knowledge of the ground-
state manifold across the grid of twist angles (θx, θy) is necessary to
calculate MBCN. At the boundaries of the lattice, twist angles θx (θy)
are applied in the hopping amplitude along x (y) directions, and then
exact hopping is allowed at the boundary using periodic boundary
conditions (pbc). The geometry of the system is thus that of a torus.

With the implementation of the twist angles, the Hamiltonian is
given by

Ĥ � ∑
p,q

[ − Jei2παqe−i2πδxLθx b̂
†

p+1,qb̂p,q + Je−i2πδyLθy b̂
†

p,q+1b̂p,q +H.c.( )
+U
2
n̂p,q n̂p,q − 1( ) − μn̂p,q], (6)

where δxL is the Kronecker delta function. The ground-state manifold
of the ] = 1/2 quantum Hall state is doubly degenerated on the torus
geometry, so we calculate two states from the degenerated ground-
state manifoldΨ0(θx, θy) andΨ1(θx, θy) at various values of twist angles
in the range [0,1] and calculate the ground-state manifold projector at
(θx, θy):

P θx, θy( ) � Ψ0 θx, θy( )∣∣∣∣∣ 〉〈Ψ0 θx, θy( )∣∣∣∣∣ + Ψ1 θx, θy( )∣∣∣∣∣ 〉〈Ψ1 θx, θy( )∣∣∣∣∣.
(7)

To fix the gauge for the ground-state manifold, we choose two
reference multiplets from the ground-state manifold at two
different values of the twist angles Φj(θ1x, θ1y) and Φk′(θ2x, θ2y),
where j, k can take values 1 or 2. This serves to define two
different gauge references with associated scalar fields ΛΦ =
det 〈Φj|P(θx, θy)|Φk〉 and ΛΦ′ � det〈Φj′|P(θx, θy)|Φk′〉, respectively.
The gauge fields corresponding to Φ and Φ′ are not defined on the
entire grid spanned by (θx, θy) but form two complementary regions,
where one of the fields is well defined but not the other. The MBCN
can then be calculated by counting the number of branch vortices in
the argument field Ω defined by

Ω � arg det〈Φj′|P θx, θy( )|Φk〉( ), (8)

in either of the two complementary regions (identified by the regions
where either ΛΦ or ΛΦ′ field is vanished). While counting the number
of branch vortices, the vortices and anti-vortices should be summed
with appropriate signs according to the vorticity [31, 48].

3 Results

3.1 FQH with Harper–Hofstadter Hamiltonian

In the phase diagram, considered in the μ/U−J/U plane, of the
system defined by the Hamiltonian in Eq. 1, the quantum Hall states
emerge as the incompressible states in the superfluid domain close to
the Mott lobes. We scan for the FQH states outside the ρ = 0 vacuum
state and obtain the compressibility plot (ρ vs. μ/U at fixed J/U) of the
Hamiltonian given in Eq. 1. We employ the CGMF method with
periodic boundary conditions (pbc) along x and y directions for a 12 ×
12 lattice tiled with clusters of size 4 × 4 for α = 1/4. This choice of
cluster size respects the magnetic translational symmetry. We allow
the single-site occupancies to be at most unit filling, since at low values
of J/U and near the ρ = 0 state, the probability of double occupancies at
a site is negligible. For the ground state of the system, the average
bosonic density ρ as a function of μ at fixed J/U = 0.01 is shown in
Figure 1. We choose a small value of J to investigate the FQH states
near the ρ = 0 vacuum state. At low density and near the ρ = 0 state, the
probability of multiple occupancies per site is negligible, and hence the
bosons can be treated as hard-core bosons. For such cases, if the
strength J is tuned slightly, the compressibility plot is independent of J
when plotted against μ/J. However, for large J = 0.1U, hard-core boson
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treatment breaks down, and multiple occupancies per site should be
allowed. We have carried out computations by considering the
maximum single-site occupancy as 2 for densities close to ρ = 1/8,
and note that the superfluid state is the ground state.

In the figure, we see the compressible SF states (blue color) are
associated with continuously varying number density against the
chemical potential. However, in some regimes of μ/U, the density ρ

does not change with the change in μ/U. These are incompressible
states and form the plateaus (green color) in the compressibility plot.
In these regimes, the incompressible states are the ground states, and
the SF states are the competing metastable states. It is to be contrasted
with the case of α = 1/3 and 1/5, where the SF state is the ground state
and quantumHall states are metastable [46, 49]. These incompressible
states appear with ρ = 1/16, 1/8, 3/16, . . . corresponding to the filling
factors ] = 1/4, 1/2, 3/4, . . .. These states residing on the plateaus in the
compressibility plot can be quantum Hall states. The density and SF-
order parameter distribution for the incompressible state at
μ = −0.020U with ρ = 1/8 corresponding to ] = 1/2 with the 4 × 4
cluster for a 12 × 12 lattice is shown in Figure 2. In this figure, we see
maximum bosonic density at the center of the 4 × 4 cluster, and it
decreases with the radial distance from the center. It is to be noted that
this incompressible ground state is nearly degenerate with the
compressible SF state. This incompressible state has the energy per
particle −0.00456 U, while the competing SF state is metastable with a
higher number density and with the energy per particle −0.00446 U,
and the gap between the two is 0.0001 U ~ J/100. To investigate the
finite size effects, we study the ρ = 1/8 plateau with system sizes as 8 × 8
and 16 × 16 for a range of μ values around this plateau. We note that
this plateau is intact and robust against finite size effects.

To identify the incompressible states as FQH,we check the trend in the
decay of the two-point correlation function for a larger system size using
exact diagonalization. For a system of 4, 5, and 6 bosons on 8 × 4, 10 × 4,
and 12 × 4 lattices, respectively, and with open boundary conditions, the
plot of 〈b̂†(x′, y′)b̂(x,y)〉 for the state corresponding to the filling factor

] = 1/2 is shown in Figure 3. The data on the two-point correlation
function on a 12 × 4 lattice are used from [47]. In the row y = 0, which lies
at the edge, we observe a power-law decay with exponents −0.99 ± 0.18 for
1 ≲ x ≲ 5 and −5.4 ± 1.1 for 5 ≲ x ≲ 7, while in the bulk y = 1 row, we find
an exponential decay, 〈b̂†(x′, y′)b̂(x,y)〉∝ e−x/ξ with a correlation
length ξ = 0.93 ± 0.04 till x ≲ 4, followed by a non-monotonic trend.
Finally, a power-law decay with an exponent −2.1 ± 0.34 for 9 ≲ x ≲ 11 is
observed. The results obtained from a larger 12 × 4 lattice show that the
trend in the two-point correlation function has a non-monotonic behavior
after the initial decay. However, it is a decaying function near the end of the
two rows. These trends of the two-point correlation function for the edge
and bulk rows signal this state as a quantumHall state. The FQH states also
have characteristic ground-state degeneracy, and the ] = p/q FQH state
with p and q as co-primes has qg-fold degeneracy on a Riemann surface of
genus g [52]. For the ] = 1/2 state, we find that using the exact
diagonalization method for a system of two bosons on a 4 × 4 lattice,
the ground-statemanifold shows two-fold degeneracy which is expected as
for the torus geometry in the 2D g = 1. The topological order is identified
by calculating theMBCN, and we find it to be equal to 1. In the plot of the
argument field as a function of the twist angles as shown in Figure 4, we see
a vortex in the region whereΛΦ vanishes, and we see an anti-vortex in the
complementary region where ΛΦ′ vanishes. Thus, we obtain unit vorticity
in either of the regions resulting in the MBCN equal to 1. We have also
investigated the MBCN for the ] = 1/2 state on a larger 8 × 4 lattice and
observed it to be 1.

3.2 FQH with dipolar interactions

The quantum Hall states, as mentioned previously, are separated
from excited states with an energy gap. The larger the gap, more robust
the state is against perturbations. It is predicted that the dipolar
interactions can increase the energy gap, and the results from exact
diagonalization have shown that the energy gap increases with the
dipolar interactions [31]. Here, using the CGMF method, we have
shown that the incompressible states exist as the ground states with the

FIGURE 1
Compressibility plot: Ground state ρ as a function of μ/U at
J = 0.01 U and α = 1/4. Green color dots represent the incompressible
states, and the superfluid states are identified with blue color dots. The
dashed gray line is a guide to the eye, separating the superfluid and
incompressible state regimes. This plot is obtained using the CGMF
methodwith the 4 × 4 cluster for a 12 × 12 lattice with pbc along both the
directions.

FIGURE 2
Density distribution for the ]=1/2 incompressible state atμ/U=−0.02
obtained by CGMF with the 4 × 4 cluster for a 12 × 12 lattice with pbc.
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FIGURE 3
Two-point correlation function for the ρ = 1/8 state using open boundary conditions in the (A) log-linear scale and (B) log-log scale. Different shades of
colors red and blue correspond to the row in the bulk (y = 1) and at the edge (y = 0). Dotted, dashed, and solid lines correspond to system sizes 8 × 4, 10 × 4,
and 12 × 4, respectively.

FIGURE 4
Plot of (A) reference gauge fields ΛΦ, ΛΦ′, and (B) argument field Ω as a function of the twist angles. In the region, where ΛΦ′ ≠ 0 and ΛΦ = 0, we see a
vortex in the Ω field with a phase accumulation of 2π around it. Similarly, in the complementary region, we see an anti-vortex in the Ω field. Thus, there is only
single-branch vortex in each region, which signifies that the many-body Chern number is equal to 1.

FIGURE 5
Compressibility plot: ρ as a function of μ/U for α = 1/4 with dipolar interaction strengths (A) V = 2J = 0.02 U and (B) V = 5J = 0.05 U. Green color dots
represent the incompressible states, and the superfluid states are identified with blue color dots. The dashed gray line is a guide to the eye, separating the
superfluid and incompressible state regimes. This plot is obtained using the CGMF method with the 4 × 4 cluster for a 12 × 12 lattice with pbc along both the
directions.
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addition of the dipolar interactions. Furthermore, we characterize the
topological order to identify these incompressible states as the FQH
states. To observe the effects of dipolar interactions on the occurrence
of FQH states as the ground states, we incorporate the nearest-
neighbor (NN) interactions with strength V, and the Hamiltonian
of the system is given by the extended BHM. The interaction term in
the Hamiltonian in Eq. 1 gets modified with the term corresponding to
the nearest neighbor interactions and is given by

ĤeBHM � ĤBHM +∑
p,q

Vn̂p,qn̂p′,q′, (9)

where (p′, q′) ∈ {p ± 1, q ± 1}.
Similar to the previous calculations, we obtain the

compressibility plot by using the CGMF method with the 4 × 4
clusters. For the case of dipolar interaction of strength V = 2 J =
0.02 U, the compressibility plot is shown in Figure 5A. We observe
the existence of incompressible states for densities ρ = 1/16, 1/8,

and 3/16. The plateaus corresponding to the incompressible states
now shift to higher μ/U than the case of V = 0. This is due to the
influence of repulsive dipolar interactions. For a given value of μ,
the system now energetically favors states with lower density to
reduce the repulsive interaction energy. At μ/U = −0.015, the
energy per particle for the incompressible state is −0.0084 U
and −0.0079 U for the competing SF state with the energy gap
0.0005 U ~ J/20. For larger V = 5 J = 0.05 U, the compressibility plot
is shown in Figure 5B. We observe incompressible plateaus at ρ = 1/
16 and 1/8. As expected, on increasing the strength of the dipolar
interaction V, the plateaus corresponding to incompressible states
shift to higher μ/U values. Itis also observed that the ρ = 1/8
incompressible state now exists in a larger parameter domain in the
ground-state phase diagram. Near μ/U = −0.01, we find an
incompressible state with ρ = 1/8 and the energy per particle is
−0.0121 U, while the competing SF state has an energy per particle
of −0.0111 U, and the energy gap is 0.001 U ~ J/10. We find that the

FIGURE 6
Two-point correlation function for the ρ = 1/8 state using open boundary conditions for V = 2 J = 0.02 U in the (A) log-linear scale and (B) log-log scale.
Different shades of red and blue colors correspond to the row in the bulk (y= 1) and at the edge (y=0). Dashed and solid lines correspond to system sizes 8 × 4
and 10 × 4, respectively.

FIGURE 7
Plot of (A) reference gauge fields ΛΦ, ΛΦ′, and (B) argument field Ω as a function of the twist angles for the case of a dipolar interaction with strength
V = 2 J = 0.02 U. In the region, where ΛΦ′ ≠ 0 and ΛΦ = 0, we see a vortex in the Ω field with a phase accumulation of 2π around it. Similarly, in the
complementary region, we see an anti-vortex in theΩ field. Thus, there is only single-branch vortex in each region, which signifies that the many-body Chern
number is equal to 1.
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energy gap separating the incompressible state and the metastable
state increases with the strength of dipolar interactions. Thus, the
dipolar interactions stabilize the incompressible states. For the
present work, the truncation of dipolar interactions to NN is
sufficient as it qualitatively captures the effects of long-range
interactions. For the case of dilute density considered here, we
have examined the effect of the inclusion of the next-nearest
neighbor interaction on the ρ = 1/8 plateau and observed that it
is robust.

To identify the ρ = 1/8 incompressible state as the ] = 1/2 FQH state,
we check the behavior of the two-point correlation function
〈b̂†(x′, y′)b̂(x,y)〉. With the exact diagonalization method and open
boundary conditions for the ρ = 1/8 state on 8 × 4 and 10 × 4 lattices, the
〈b̂†(x′, y′)b̂(x,y)〉 for V/U = 0.02 is shown in Figure 6. We find that in
the bulk row, it decays exponentially 〈b̂†(x′, y′)b̂(x,y)〉∝ e−x/ξ for x≲ 3
with a correlation length ξ = 0.83 ± 0.02, and then it shows a non-
monotonic trend. However, at the edges, 〈b̂†(x′, y′)b̂(x,y)〉 has a
power-law decay signaling that the state is a quantum Hall state. With
power-law fitting, we obtain the power exponent as −1.2 ± 0.3 for 1 ≲ x ≲
5. We have also checked the topological nature by calculating the MBCN
for the ] = 1/2 state on 4 × 4 and 8 × 4 lattices and find that the MBCN is
equal to 1. The argument field for V/U = 0.02 and on a 4 × 4 lattice is
shown in Figure 7, where a single-branch vortex in either of the
complementary regions signifies the MBCN being equal to 1. We thus
find that the BHMwith dipolar atoms supports the FQH states as ground
states and is more robust.

In this manuscript, we have confined our study to the case of
closed systems. However, the effect of dissipation arising from the
coupling with the environment on the robustness of topologically
ordered phases becomes significant from an experimental perspective
toward realizing these phases. Taking into account the two-body loss,
studies, assuming the Markovian dynamics, find that the topological
order of the phase survives; however, the state has a finite lifetime [53,
54]. The state preparation of FQH states with dissipative pumping of
particles from higher to lower bands has been studied in [55]. The
effect of non-Markovian environments has been studied for atom-
cavity systems [56–59]. However, this effect needs to be explored for
the topologically ordered phases.

4 Discussion

We have studied the FQH states of the bosonic
Harper–Hofstadter Hamiltonian, which can be experimentally
realized with ultracold atoms in optical lattices. We find FQH
states as the ground state of the system for various parameter
regimes. To calculate the ground state, we have used the CGMF
method, which describes the quantum correlations well, and we find
that incompressible states occur as the ground states for different
regions in the parameter space. The filling factors of these states are
similar to those of the FQH states. To verify that the states are indeed
FQH states, we identify the topological order of the ] = 1/2 state by

calculating the MBCN. With the introduction of dipolar interactions
truncated to the nearest neighbor, we show that the extended
Hamiltonian also supports the FQH states as the ground state.
Thus, FQH states are robust against the dipolar interactions; in
fact, we find that the dipolar interactions stabilize these states against
the SF state. We have verified the robustness of the ] = 1/2 FQH state
against the finite size effects and its stability against the tail of the
dipolar interaction. This suggests the possibility of experimentally
observing the ] = 1/2 FQH state with dipolar condensates in the
optical lattice. Recent experimental realization of FQH states for
ultracold gas of 87Rb atoms in the optical lattice [34] is a first step and
can set a platform to further investigate the FQHE with dipolar
condensates in the near future.
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