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Acousto-optic devices represented by acousto-optic tunable filters (AOTFs),

have the advantages of wide wavelength range from the ultraviolet to the long-

wave infrared and fast wavelength switching speed. Nowadays, acousto-optic

spectral systems have become very important scientific instruments in

laboratory. There are many factors to be considered when we choose

different solutions for acousto-optic spectral systems, but there is no

comprehensive analysis and summary of them. This paper explains the

working principle of the acousto-optic devices and summarizes the most

common optical schemes for acousto-optic spectral systems. We also

analyzed their characteristics of application conditions. In addition, specific

applications of acousto-optic spectral systems in some common fields are

presented.
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1 Introduction

The study of acousto-optic interactions began in the 1920s and was limited to

isotropic media such as water and glass [1, 2]. When ultrasonic waves pass through the

medium, the refractive index of the medium changes periodically by themodulation of the

strain. The acousto-optic medium is equivalent to a dislocation grating, and diffraction

occurs when light passes through it. With the emergence of lasers and high-performance

acousto-optic crystals, the study of acousto-optic devices has broadened from isotropic to

anisotropic media and from normal to anomalous interactions [3–5]. As the research of

acousto-optic theory continues to progress, the principles of isotropic and anisotropic

acousto-optic interactions need to be unified. We can consider the acousto-optic effect as

a parametric interaction process, which is described by the relationship between the non-

linear polarization vector and the strain [6–8].

The first AOTF was proposed by Harris and Wallace utilizing the collinear acousto-

optic interaction [9]. In 1974, I. C. Chang proposed the idea of a non-collinear acousto-

optic tunable filter design, which laid a solid foundation for the development of acousto-

optic devices [10]. When an excitation RF signal of a certain frequency is applied to the

transducer, the piezoelectric crystal transducer converts it into an ultrasonic signal of the

corresponding frequency and couples it into the birefringent crystal. The refractive index

of the crystal then changes periodically, which is equivalent to the formation of a bit-phase

grating in the crystal, and the grating constant is the wavelength of ultrasonic waves
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[11–14]. The acousto-optic interaction wave vector diagram,

which takes place in AOTF, is shown in Figure 1A. The

incident light wave vector ki, diffracted light wave vector kd,

and the acoustic wave vector ka are strictly matched to the

momentum triangle closure condition:

kd
�→ � ka

→
± ki
→

(1)
ki � 2πni

λ
, kd � 2πnd

λ
, ka � 2πf a

νa
(2)

Where ni is the refractive index of the crystal to the incident light,
and nd is the refractive index of the crystal to the diffracted light.

The incident angle θi and diffraction angle θd are shown in

Figure 1A. λ is the optical wavelength in vacuum, f a is the

acoustic frequency, and υa is the speed of the ultrasonic wave.

In the case of collinear acousto-optic interaction, the incident

light wave vector, the diffracted light wave vector and the

ultrasonic wave vector are in the same direction. The

momentum matching triangle at this point is simplified to a

straight line. The geometric relationship between the vectors can

be turned into an algebraic sum. Bringing Eq. 2 into Eq. 1, the

tuning equation of the common-linear acousto-optic tunable

filter can be obtained as

λf a � ± va nd − ni( ) (3)

In the non-collinear case, the diffracted light and the incident

light propagate in different intrinsic modes in the crystal, and the

incident light wave vector and the diffracted light wave vector are

not parallel. The incident light wave vector, the ultrasonic wave

vector and the diffracted light wave vector are in a vector triangle

relationship (i.e., momentum matching condition). Usually, in

the design of AOTF, the tangents of the incident and diffracted

light wavevectors are parallel to each other at the corresponding

wavevector surface in order to have a large incident angle

aperture. In this case, the design parameters are related as follows

ni � cos 2θi
n2
o

+ sin 2θi
n2
e

[ ]
−1 ∕ 2

(4)

nd � no (5)

no and ne are the refractive indices of ordinary ray and

extraordinary ray which are perpendicular to the optical axis,

FIGURE 1
(A) Non-collinear acousto-optic interaction wave vector diagram in TeO2, (B) collimating scheme, (C) confocal scheme, (D) tandem scheme,
(E) double-pass single-crystal AOTF based spectral scheme, (F) double-path scheme (Obj, object; L, lens; P, polarizer; R, retroreflector; BS, beam
splitter; CCD, charge-coupled device).
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and they are a function of the wavelength of light. According to

the tangential parallelism condition, the relationship between the

diffracted light polar angle and the incident light polar angle is

tan θd � no/ne( )2 (6)

The tuning relationship between optical wavelength and

ultrasonic frequency can be expressed by

f a �
va
λ

n2
i + n2

d − 2nind cos θi − θd( )( ) 1
2 (7)

Combining Eqs 1–3, we can simplify Eq. 4 to

f a �
va
λ

ni − nd( ) sin 2 2θi + sin4θi( ) 1
2 (8)

Exceptionally, when θi � 90°, the equation reduces to the

tuning relationship for the common-linear interaction.

Therefore, the collinear interaction can be viewed as a special

case of non-collinear interaction. The non-collinear AOTF keeps

the tangents of the incident light and the diffracted light on the

wave vector trajectory parallel to each other, so that when there is

a small change for the incident angle, the momentum matching

condition still holds.

There are many applications based on acousto-optic action,

such as acousto-optic modulators, deflectors, frequency shifters,

and tunable filters. The AOTFs are becoming a widely used tool

for these applications. Spectral imagers based on AOTF have a

wide range of applications in science and engineering [15–17].

Although there have been many reports on the generation and

application of AOTF acousto-optic spectral instruments, there is

no comprehensive summary of the characteristics of different

schemes. In this paper, we summarize in detail the commonly

used optical schemes for AOTF-based acousto-optic spectral

systems and compare them with examples, and finally present

specific applications in major representative fields.

2 Acousto-optic spectral system
schemes

AOTFs have a variety of applications, and researchers have

used a variety of different optical solutions for purposes [18, 19].

Different schemes differ in image quality, the number of coupling

components, size, and alignment complexity [20–22]. To

properly select the optical system for an AOTF-based spectral

system, many factors must be considered [23–25]. Although

various acousto-optic filtering schemes have been tested and

discussed in various articles, a summary of them is not available

so far. In this section, the four most common optical schemes

based on the AOTF module as shown in Figure 1 are presented:

collimating scheme, confocal scheme, tandem scheme, and

double-path scheme. We will compare and analyze their main

features with some examples. Although these schemes are

derived from both collimation and confocal schemes, this

division makes them easier to be summarized as well as to be

understood.

2.1 Collimating scheme

For conventional acousto-optic spectral systems, the

collimating scheme is the most common and structurally

simple scheme, and the optical path diagram is shown in

Figure 1B. The adopted scheme is to filter the light directly

using a single AOTF, which is also the basis of other schemes [26,

27]. The light entering the optical system from the object under

test is collimated by L0, the mutually parallel light is filtered by

the AOTF, and then be focused on the CCD by the focusing lens

L1. Non-uniformity of the central wavelength of the filtered light

across the field of view can lead to specific image spectral

distortions [28].

The conventional acousto-optic spectral system can satisfy

the needs of many tasks. But, the optimization of this system is

necessary, and the integration of the optimized AOTF units into

other schemes can multiply the efficiency. In 2021, proposed a

method for optimizing the size of piezoelectric transducers of

quasi-collinear AOTF [29]. In this scheme, they used an AOTF

with a large interaction length. From the experimental results, it

is shown that the variation of the transducer size can minimize

the RF power consumption of the AOTF. Comparing the

optimized transducer dimensions with those commonly used

ones in quasi-collinear AOTF, the optimized AOTF energy

efficiency can be improved about twice.

2.2 Confocal scheme

Confocal optics can compensate for almost any degree of

AOTF diffraction aberration. Unlike wedge compensation, this

optical system does not require dispersion and can be used with

any type of AOTF [30–32]. The confocal optics scheme is shown

in Figure 1C. The use of telecentric confocal optics can eliminate

errors caused by inaccurate focus. In addition, the system has the

advantage of uniform image field with the same resolution and

diffraction efficiency over the scene [33, 34]. However, the focal

length of the lens in the system must be shot enough to prevent

diffraction from limiting resolution.

In 2019, combined AOTF with a rigid borescope, a flexible

fiberscope, and a video endoscope, and designed an acousto-optic

spectral imaging endoscopic analysis system for observing

cancerous tissue [35]. This scheme uses a confocal optical

design that can provide high-quality spectral images. This

solution can be very effective in solving different specific tasks

in biomedical and industrial fields. The main aberration in the

confocal scheme is from the presence of longitudinal color focus

shift and lateral chromatic image drift. However, this color

difference can be almost completely compensated by adjusting
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the tilt of the output side of the acousto-optic unit to the input

side. While, in the collimating scheme, the main aberration is the

transverse chromatic aberration, which can be eliminated by

choosing a different tilt angle [36, 37].

Collimating and confocal optical schemes both have their

own advantages and disadvantages, the confocal scheme is not

the optimization of the collimated scheme. In 2021, a super-

angular aperture scheme was proposed by [38]. They used both

schemes to quantify the change in radiation flux caused by the

super-angular aperture scheme and the response of the AOTF

element at tilted incidence. They analyzed the system response of

the collimated and confocal optical schemes and verified the

simulation results. The collimated optical path was found to be

more suitable for the super-angular aperture scheme by

comparing the two optical schemes. This is because its

spectral bandwidth is better than that of the confocal optical

scheme, and the central wavelength shift can be corrected by

calibration.

2.3 Tandem scheme

The most common and straightforward application of the

double filter structure is to connect two AOTFs in series. In

2018, Lei Shi et al. designed a series of double filtering schemes

[39]. They compared the spectral widths at different

frequencies by analyzing the experimental data. It was

finally found that the double-filter structure reduced the

spectral width by an average of 37% and improved the

spectral resolution by an average of 57% compared to the

single filter. By analyzing and comparing the theoretical

calculations and experimental measurements of the

properties of single and double filter structures, we can find

that the spectral width of the double filter structure is smaller

than that of the single filter structure for equal central

wavelengths. This situation illustrates the superiority of the

double-filter technique in improving the spectral width and in

increasing the spectral resolution [40].

In 2019, Vitoid E. Pozhar et al. designed a system architecture

to address the problem of creating hyperspectral optoelectronic

systems for unmanned aerial vehicles [41]. The developed

hyperspectrometer uses a dual compact AO monochromator

as a spectral element. It consists of two identical AO cells,

deployed by 180°, which provides compensation for most

spatial spectral aberrations. The device’s small size, low power

consumption, and ability to obtain both spectral and color

images with high spectral (~5 nm) and spatial

(600–500 elements) resolution over a sufficiently wide

wavelength range (450–850) nm make it possible to use it

effectively on unmanned aerial vehicles. In fact, back in 2005,

Pozhar and other researchers proposed a double-AOTF spectral

imaging system for microscopic analysis in the visible and near-

infrared range, and it was shown that double AOTF

monochromator ensures improved image quality than single

imaging AOTF [42].

Tandem AOTF is only one way to realize double filtering, in

addition, there are different ways such as the single-crystal

double filtering technique. The optical scheme design diagram

is shown in Figure 1D. Double filtering is realized using a single

crystal, but structurally it is similar to double filtering using two

AOTFs. It is simpler and more economical to realize double

filtering using a single crystal. Therefore, the scheme of the series

connection is less used in practical applications, and nowadays,

the single crystal double filtering technique is more often used.

In 2019, Xiaofa Zhang et al. designed a single-crystal double

filtering hyperspectral microscopic imaging system [43]. By

analyzing the experimental results of diffracted light

spectrograms of single-crystal double-filtering scheme, we can

find that the comparison yielded a double-filter structure with an

average 32% reduction in spectral width compared to single-

filtering at a fixed ultrasound frequency of 120 MHz. In the

visible range, the spectral resolution can be improved by 37.08%–

59.95%. In addition, in 2021, Vladislav Batshev et al. similarly

devised a method to improve the spectral resolution of a single

AOTF by using a single-crystal for secondary filtering [44]. The

structure is similar to Figure 1E. From the results, the

transmission spectral width at the 0.5 level (FWHM) is about

1.3 times smaller than that of the classical single-pass scheme.

Among the three schemes mentioned above, the series

double-filtering system designed by Shi Lei et al. works best

from the results. But unfortunately, the specific series filtering

method does not appear in the article. The double-filtering

technique can effectively improve the spectral resolution of

the acousto-optic filters. In addition, the primary filtered

signal after the AOTF is accompanied by an obvious side flap

phenomenon, which comes from the acousto-optic interaction

[45–48]. There is no way to eliminate the side flaps by using the

primary filtering technique. After double-pass filtering, the side

flaps are suppressed very significantly, which can improve the

spectral purity of the diffracted light [49].

2.4 Double-path scheme

For double-path acousto-optic spectroscopy systems or

multi-path analysis systems, they are often used in special

scenarios to meet specific requirements [50, 51].

Khoptyar et al. published two articles back and forth in

2012 and 2013 on the use of double-path optical schemes to

fabricate novel photon time-of-flight spectrometers for the

analysis of turbid media [52, 53]. The wide spectral range of

the instrument helps to characterize the structure of the sample

and to obtain excellent accuracy in the measurement of

absorption and scattering coefficients. Photon time-of-flight

spectrometers are used for the evaluation of pharmaceutical

chemical composition analysis with proven results. Therefore,
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TABLE 1 Comparison of acousto-optic spectral analysis system schemes.

Type Advantages Disadvantages Spectral
range/nm

Angular
aperture/°

Spectral
band/nm

Ref

Collimating scheme 1. The structure is simple
and easy to build

1. Non-uniformity of the central
wavelength of the filtered light across the field of view
can lead to specific image spectral distortions

700–1,150 0.04 0.3@633 [27]

2. It is stable and can be used
as a component in various systems

2. The scheme has transverse chromatic aberration

Confocal scheme 1. The structure is simple
and easy to build

1. The presence of longitudinal color focus shift and
lateral chromatic image drift produce aberration

450–750 — 4.5@632 [33]

2. Compensate for almost any degree of AOTF diffraction aberration

Tandem scheme 1. It can reduce the spectrum width and improve the spectral resolution 1. Diffraction efficiency will
be reduced

400–1,000 2.83 2.9@632.5 [37]

2. The scheme can effectively lower the side flaps 400–1,000 3 3.44@651.62 [39]

450–850 4 3@600 [40]

Double-path scheme 1. The structure can obtain more complete and richer
spectral information

1. Specific solutions in different applications
need to be designed

450–850 — ~3@625 [50]

2. The design of the structures in different practical applications will be flexible
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double-path optical systems and triple-path spectral systems tend

to demand high precision as well as wide spectrum.

In 2019, Ramy Abdlaty and Qiyin Fang both designed an

AOTF-based hyperspectral imaging system [54]. Object

illumination is provided from both sides to provide uniformly

distributed illumination and to avoid shadowing problems. The

light reflected from the object is captured by the zoom lens and

beam shaping optics. Polarization beam splitter (PBS) splits the

collimated beam into two orthogonally polarized beams of

transmitted and reflected light. The polarization of the PBS

reflected beam is rotated using a half-wave plate to match the

PBS transmitted beam. The two PBS beams have the same

polarization matched to the AOTF crystal, and this

polarization matching allows them to come to the maximum

diffraction efficiency.

In 2020, Alexander Machikhin et al. proposed a new concept

of spectral stereo imaging [55]. The stereo imaging optical system

is shown in Figure 1F. This stereo imaging system is based on

simultaneous wide-aperture acousto-optic diffraction of two

beams through a conventional AOTF. Experimental results

have shown that the quality of the spectral images is quite

high, which is necessary for the stereo reconstruction process.

In 2021, A. A. Naumov proposed an optical stereo system [56],

and this system is very similar to the structure of Figure 1E. The

characteristics of such optical systems depend to a large extent on

three parameters: the focal length of the incident lens, the focal

length of the matrix sensor lens, and the diameter of the incident

optical pupil of the acousto-optic filter. The variability of these

parameters allows the optical system to be adapted to different

tasks [57].

The photon time-of-flight spectrometer utilizes an AOTF

module with only partial overlap of the two spectral bands, and

the results of the two spectral bands are stitched together to

obtain broad-spectrum information. In contrast, in the

hyperspectral imaging system, the information of both line

polarized beams is processed and retained to obtain the

complete spectrum. The two cases of stereo imaging have the

same principle, both of which collect the spectral information

observed in different orientations and then reorganize them.

From the previous analysis, it can be known that both double-

path acousto-optic spectral analysis systems aim to obtain more

complete spectral information, only the way and results are

different. The double-path scheme allows for a wider spectral

range than other optical schemes as well as a more complete

spectral information from different angles of the same object. At

the same time, the flexible placement of the device may also bring

more possibilities for spectral system detection. The double

pathway acousto-optic spectroscopy system has been used in

practical devices for stereoscopic imaging, drug characterization,

and multi-directional evaluation after continuous

experimentation and is still being improved.

Each scheme have different features and resolutions, the

comparison is shown in Table 1.

3 Applications

Acousto-optic devices are used more frequently in

representative fields such as medical and healthcare,

aerospace, and food safety. Due to the small mass, small

size, absence of removable elements, and compact

construction of the AOTF, acousto-optic filters are ideally

suited for use with devices used to view hard-to-reach

objects, such as rigid lenses and flexible fiberoptic

endoscopes [58–61]. The application of acousto-endoscopic

imaging spectroscopy will significantly reduce the cost of

laboratory testing and increase the information density of

research [62–64]. In addition, the development of space

instruments based on AOTFs has enhanced the detection

capabilities of various space probes. In 2019, He et al.

summarized the acousto-optic spectrometers used by China

in recent years for lunar exploration [65]. The study include the

infrared imaging spectrometer on Chang’e 3 and Chang’e

4 lunar rovers, and the lunar mineral spectrometry analyzer

on the Chang’e 5 and Chang’e 6 lunar landers. Acousto-optic

devices are becoming widely used in planetary observation,

laser observation, surface positioning, and remote sensing

[66–69].

Acousto-optic hyperspectral imaging detection technology

has also been applied to the detection of microorganisms. In

2018, Y. Seo et al. used acousto-optic spectral image processing

techniques for extracting information related to morphological

characteristics of 15 different foodborne bacterial species and

serotypes [70]. This study achieved a cost-effective classification

of foodborne bacteria. In addition, acousto-optic spectroscopy

detection systems are also used to test meat, grains and even

liquid foods [71–77]. For example, in 2021, I. Baek et al. proposed

a short-wave infrared hyperspectral imaging system for the

detection of total volatile basic nitrogen content in fresh pork.

This system can be used for rapid non-destructive assessment of

pork freshness and can be an effective alternative to traditional

methods for assessing pork freshness [78].

In addition, acousto-optic spectroscopy systems are also

widely used in agriculture, forestry, pharmaceutical analysis,

and environmental monitoring [79]. Hong Liu et al. designed

a drone-based hyperspectral imaging remote sensing system in

2021 [80], which can be used for activities such as water surface

remote sensing, imaging, and spectral analysis. In agriculture, a

commercial AOTF-based near-infrared spectrometer is already

available for the non-destructive detection of agricultural

products such as dried apples and olive fruit [81]. Acousto-

optic spectroscopy systems are becoming more and more

relevant to our lives.

With the development of various new technologies, the

miniaturization and intelligence of spectrometers equipped

with acousto-optic spectral analysis systems are becoming

more obvious. Like the applications of acousto-optic

spectral analysis instruments in various fields described
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above, acousto-optic devices are now used in a large

number of fields. The application of acousto-optic spectral

systems is likely to be associated with the development of new

materials and new energy sources in the future. Not only for

the test of new materials, but also for improving the

performance of acousto-optic spectral systems in

combination with new materials. The acousto-optic spectral

analysis systems are expected to get more long-term

development.

4 Conclusion

This article focuses on review of the basic construction of

four different optical schemes based on AOTF. Due to the

simplicity of the acousto-optic spectral systems, these four

optical schemes can be easily embedded in different

application scenarios. We summarize the advantages and

disadvantages of the different schemes by analyzing the

characteristics of the four optical schemes. At the same time,

we compare the different schemes with each other and provide

theoretical references for the application in different scenarios.

Acousto-optic spectral systems have great potential for

development in various fields, but in order to adapt to

different application scenarios, the requirements for each

parameter of the acousto-optic device become higher. The

relevant summary and the analysis of characteristics described

are expected to provide references for further applications of

acousto-optic spectral technology.
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