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3D cell cultures recapitulate tissue-specific diversity and better mimic the in

vivo conditions compared to 2D cell cultures. Although confocal fluorescence

microscopy is probably the most commonly used optical imaging technique to

characterize 3D cell cultures, the limited imaging depth greatly hinders its

application. Moreover, due to difficult diffusion of fluorescent probes into thick

3D cultures, the optical imaging techniques that rely on exogeneous

fluorescent probes are not desirable. To address these problems, non-linear

optical (NLO) microscopy uses near infrared light excitation to achieve

significant larger imaging depth and gains molecular selectivity in a label-

free manner. Taking advantages of 3D optical sectioning capability,

submicron resolution, and high speed, label-free multimodal NLO

microscopy has offered great promise for regenerative medicine, tumor

microenvironment research, and drug discovery. This article overviews and

discusses the latest applications of label-freemultimodal NLOmicroscopy as an

emerging platform to facilitate 3D cell culture research.
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1 Introduction

Cell cultures are crucial model systems widely used in life science and drug discovery.

Most of the current cell cultures are still in two-dimensional (2D) monolayers, which have

many limitations due to the lack of tissue architecture and complexity in vivo. Three-

dimensional (3D) cell cultures, with the capability of reproducing the key features of

biological tissues, including deposition of extracellular matrix (ECM), increased cell-cell

and cell-ECM interactions, heterogeneity in oxygen and nutrients perfusion [1, 2], have

proven to better mimic the in vivo conditions compared to 2D cell cultures. 3D cell

cultures mainly include spheroids and organoids. Spheroids are micro-sized cellular

aggregates of homotypic or heterotypic cells, as well as the ECMwhich provides structural

support for cells in the extracellular space composed of collagen, elastin, laminin,

fibronectin, and other components [3]. Organoids are mini-clusters of cells derived

from pluripotent stem cells or adult stem cells, in which cells self-organize and

differentiate into organ-specific functional cell types, and have a similar functionality
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as the original tissue [4, 5]. Owing to these advantages, the 3D cell

cultures are becoming more popular in disease modeling [6],

regenerative medicine [7], and cancer research [8]. For example,

organoids have been widely utilized to engineer tissues in vitro,

including bone [9], adipose tissue [10, 11], brain [12, 13], retina

[14], and so on. A number of studies have reported that cancer

cells cultured in 3D spheroids are much more resistant to

chemotherapeutic drugs than the cells in 2D culture and can

reproduce drug responses observed in tumors in vivo, such as

prostate cancer [15], pancreatic cancer [16, 17], breast cancer

[18–20], and ovarian cancer [21–23].

Along with the development of 3D cell cultures, the optical

imaging techniques, primarily confocal fluorescence microscopy,

have been applied to characterize cell phenotypes, size,

morphology, as well as extracellular matrix organization of 3D

cell cultures [3, 24]. However, due to poor penetration of visible

light, the imaging depth of confocal fluorescence microscopy is

limited to ~100 μm, which greatly hinders its application in the

imaging of large 3D cell cultures. Moreover, for 3D culture study,

the optical imaging techniques that rely on exogeneous

fluorescent probes have several drawbacks, such as i)

unreliable labeling due to difficult diffusion of fluorescent

probes into thick 3D cultures; ii) possible strong background

due to mislabeling of ECM; iii) perturbation to functions of small

biomolecules due to commonly bulky fluorescent probes; iv)

photobleaching of certain fluorescent probes.

To address the problem of penetration depth, non-linear

optical (NLO) microscopy, also known as multiphoton

microscopy, uses near infrared (NIR) light excitation to

achieve significant larger imaging depth (up to ~1 mm), with

intrinsic 3D optical sectioning capability, submicron spatial

resolution, and high imaging speed. More importantly, NLO

microscopy gains molecular selectivity in a label-free manner,

which overcomes the limitations induced by exogeneous

fluorescent probes. With advantages of 3D-sectioning

capability, large penetration depth, high spatial resolution, and

high imaging speed, label-free multimodal NLO microscopy is

desirable for 3D cell culture studies. In this review, we present an

overview of the fundamental of label-free multimodal NLO

imaging techniques and their recent applications in 3D cell

cultures and discuss how label-free multimodal NLO

microscopy may improve the understanding of tissue

architecture and function in both physiology and pathology.

2 Brief introduction of label-free
multimodal NLO imaging techniques

The primary label-free NLO imaging modalities used in the

3D culture study include two-photon excitation fluorescence

(2 PF), three-photon excitation fluorescence (3 PF), second

harmonic generation (SHG), third harmonic generation

(THG), coherent anti-Stokes Raman scattering (CARS), and

stimulated Raman scattering (SRS). The fundamentals of each

modality have been summarized in multiple previous review

articles [25–27].

As shown in Figure 1A, 2 PF or 3 PF relies on the

simultaneous absorption of two or three photons, and then

emits a fluorescence photon with higher energy. Compared to

standard fluorescence microscopy, 2 PF and 3 PF microscopes

allow for low phototoxicity via NIR excitation and deeper

penetration by using longer excitation wavelength. Moreover,

3 PF can achieve bigger penetration depth than 2 PF owing to

longer excitation wavelength. Specially, these two modalities

allow the visualization of endogenous auto-fluorescent

molecules, such as nicotinamide adenine dinucleotide

(phosphate) [H] [NAD(P)H] and flavin adenine dinucleotide

(FAD), two major reduction/oxidation (redox) cofactors.

Glycolysis decreases FAD levels and increases NADH levels,

while oxidative phosphorylation (OxPHOS) increases FAD

levels and decreases NADH levels. By quantifying the ratio of

[FAD/(NADH + FAD)], known as the optical redox ratio

(ORR), the OxPHOS levels can be assessed accordingly.

Additionally, 2 PF modality is often coupled with fluorescence

lifetime microscopy (FLIM) to quantitatively distinguish the free

and protein-bound NADH based on different fluorescence

lifetimes [28]. High ratio of free NADH to protein-bound

NADH represents high rate of glycolysis, which enables

differentiation of cancer cells from normal cells [29].

SHG is a second-order NLO process in which two photons of

frequency ω are converted into one photon of frequency 2 ω with

twice the energy of the excitation photons. In SHG, contrast

arises from non-centrosymmetric structures. Therefore, SHG

microscopy can be employed to visualize ordered structures

such as collagen fibers and myosin filaments with high

contrast in a label-free manner [16]. THG is a third-order

NLO process in which three photons are converted into one

photon with triple the energy of the excitation photons. THG

signal occurs where the refractive index changes and enables

label-free imaging of intracellular water/lipid interfaces, such as

cell membranes and lipid droplets.

CARS and SRS use two excitation fields, pump (ωp) and Stokes

(ωs), to coherently excite the selected molecular vibration and

produce chemical contrast when the beating frequency (ωp − ωs)

is in resonant with a vibration frequency (Ω) of chemical bond. In

CARS, the coherent interaction with the sample generates a signal

at the anti-Stokes frequency ωas � 2 ωp − ωs. In SRS, the intensity

of the Stokes beam increases (Stimulated Raman Gain, SRG) and

the intensity of the pump beam decreases (Stimulated Raman Loss,

SRL). Unlike CARS, SRS is free of non-resonant background and

so has higher chemical sensitivity. Both CARS and SRS

microscopes enable label-free visualization and compositional

analysis of specific biomolecules, such as lipids, nucleic acids,

and proteins, inside single live cells.

Notably, these multiple modalities can be integrated on the

same platform, known as multimodal NLO microscopy, to
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enable more comprehensive imaging and analysis of complex

tissue microenvironment. The integrated platform, such as 2 PF/

3 PF/SHG/THG [30, 31], 2 PF/3 PF/SHG/THG/CARS [32],

2 PF/SHG/SRS [33], and 2 PF/SHG/CARS/SRS [34], have been

previously demonstrated (Figure 1B). Owing to the capability of

spatial and temporal co-registration between modalities,

multimodal NLO microscopy has become an emerging

imaging platform for 3D cell culture research (Figure 1C). In

the following sections, we focus on the intriguing applications of

label-free multimodal NLO imaging in 3D culture study,

including regenerative medicine, tumor microenvironment,

and drug discovery.

3 Applications of NLO imaging for the
study of 3D cell culture

3.1 Regenerative medicine

In tissue regeneration, cell-ECM interaction and cellular

metabolism play vital roles in determining tissue structure and

function. Thus, quantitative analysis of cell-ECM interactions,

mainly collagen fiber organization, and cellular metabolic

activity, such as redox state, is helpful to promote our

understanding of tissue engineering and regeneration.

To study the role of collagen matrix in cartilage

regeneration, label-free NLO imaging is used to monitor the

collagen remodeling during chondrogenesis. Islam et al. [35]

applied SHG imaging to visualize the collage matrix structure

within tissue-engineered cartilage and native cartilage. The

results revealed significantly different collagen organization

between spheroids with chondrogenic growth factors,

spheroids without growth factors, and native cartilage.

Specifically, spheroids with growth factors displayed more

collagen deposition than spheroids without growth factors,

but lower than native cartilage. Another study by Nguyen

et al. [36] assessed the role of nanofibrillated cellulose with

alginate hydrogel in cartilage regeneration using SHG coupled

with 2 PF. SHG imaging revealed the collagen architecture

within 3D-printed cartilage tissue, while 2 PF detected the

living cells. The alginate hydrogel has been shown to

support induced pluripotent stem cells (iPSCs)

differentiation into cartilaginous tissue and improve collagen

type II formation, providing potential application as a scaffold

for cartilage regeneration. Similarly, Lee et al. [37] utilized the

multimodal multiphoton autofluorescence and SHG imaging to

monitor the mesenchymal stem cells (MSCs) differentiation

and collagen type II production within engineered cartilage

that was encapsulated in poly-glycolic acid-based scaffolds. In

addition to the assessment of collagen matrix within cartilage,

SHG has also been integrated with CARS to provide more

comprehensive information, such as cell morphology and lipid

metabolism. By using this integrated platform, Mortati et al.

[38] simultaneously obtained collagen fiber images and cell

FIGURE 1
Illustration of multimodal label-free NLO imaging of cell cultures (A) Energy diagrams of NLO modalities. (B) Schematic of multimodal NLO
microscope. M, mirror; F, filter; Obj, objective; Con, condenser; DM, dichroicmirror; PMT, photomultiplier tube; PD, photodiode. (C) 2D cell cultures
and 3D cell cultures with heterogenous cell populations.
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morphology signatures during human bone marrow-derived

MSCs differentiation inside the fibrin hydrogel scaffold. Parodi

et al. [39] also quantified the collagen deposition, nuclear

morphology, as well as lipid droplets content during MSCs

adipogenic and chondrogenic differentiation inside the

Nichoid scaffold. Increased lipid droplets accumulation as

well as less collagen content were observed within Nichoid

scaffold, indicating that the Nichoid scaffold promoted

adipogenesis while inhibiting chondrogenesis.

Label-free NLO microscopes are particularly well-suited to

visualize the vascular structures, providing a valuable tool to

characterize the vascularization in 3D engineered tissues.

Kaushik et al. [40] used autofluorescence multiphoton

microscopy to characterize 3D self-assembled vascular

network morphology. The results showed that vascular

networks cultured under dynamic flow conditions displayed

lower network anisotropy and more interconnectivity

compared to that under static conditions, suggesting that

flow bioreactor techniques could improve the development

of in vitro vascularized models. To study the role of collagen

matrix in regulating angiogenesis, SHG was applied to monitor

collagen matrix remodeling during endothelial sprout

formation [41]. The results showed that collagen signal of

the spheroids was weak at the beginning of incubation into

collagen matrix, and subsequently increased along with

endothelial sprout formation. However, degradation of

collagen matrix was observed after 7 days. Furthermore,

polarized SHG has the capability of providing additional

information of collagen orientation, thereby improving our

understanding of collagen remodeling in engineered tissues

with collagen scaffolds [42].

Label-free NLO imaging has also been used to track

adipogenesis by characterizing the lipid vesicles size, volume,

concentration as well as spatial distribution signatures in 3D

cultures. Using 2 PF imaging, Quinn et al. [43] monitored the

dynamic changes of redox ratio [FAD/(NADH + FAD)] during
adipogenic differentiation. A significant decrease of redox ratio

was observed along with the accumulation of lipid droplets

FIGURE 2
Applications of label-freeNLO imaging in 3D cell cultures. (A) FLIM coupledwith THG images of cellular redox ratios and lipid content (magenta)
in hMSCs embedded in 3D silk scaffolds, exposed to the adipogenic media for 2, 5 and 9 weeks, respectively. Redox scale color bar is shown on the
right. Endogenous silk fluorescence is shown in grayscale. Scale bars, 35 μm (with permission) [44]. (B) SHG images of collagen fibers from normal,
high risk, benign, and high grade of ovarian tissues within fabricated scaffolds (with permission) [51]. (C) Volumetric SRS images and
representative 2D images (at z = 22 μm, 120 μm, and 200 μm) of 3D tumor spheroids. Lipid droplets channel is shown in green, and d31-palmitic acid
channel is shown in cyan. Scale bars, 50 μm (with permission) [55]. (D) Representative redox ratio images of glioblastoma cells within hyaluronic acid
(HA), HA supplemented with porcine brain-derived fatal ECM (FECM-HA), and HA supplemented with porcine brain-derived adult ECM (FECM-HA)
hydrogels scaffolded constructs. Image heatmap reflects varying redox ratio intensities in the outer edge gel or within the scaffold of the construct.
Scale bars, 50 µm (with permission) [59].
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during human adipose derived mesenchymal stem cells (hASCs)

differentiation. Besides, co-cultures of hASCs with endothelial

cells could promote cell proliferation and migration farther

compared to hASCs mono-cultures. In a similar study, Chang

et al. [44] combined 2 PF with THG imaging to assess the

dynamic correlation between redox state and lipid synthesis in

3D engineered adipose tissue. In this study, 2 PF imaging

revealed the changes of redox ratio, whereas THG imaging

showed the formation of lipid droplets. These studies indicate

that the cellular redox state was negative correlated with

lipogenesis during adipogenic differentiation (Figure 2A).

Besides, label-free NLO imaging allows in situ real-time non-

invasive study of retinal engineering by measuring the cellular

metabolism and retinol production. Xue et al. [45] applied two-

photon FLIM coupling with hyperspectral techniques to quantify

f ree/bound (f /b) NADH ratio at different stages of retinal

differentiation in retinal organoids. The results showed that

metabolic activities changed from glycolysis (high f /b NADH

ratio) to oxidative phosphorylation (low f/b NADH ratio) at first

2 months, and gradually went back to glycolysis over time. The

mature retina maintained glycolytic status along with retinol

accumulation. Further, Samimi et al. [46] developed a novel FLIM

technique to visualize the visual cycle function in the photoreceptors

in human induced pluripotent stem cell (hiPSC)-derived retinal

organoids, based on different fluorescence lifetimes between all-

trans retinaldehyde and all-trans retinol. This imaging platform

was also used to measure the light stimulus response upon all-

trans retinol treatment, providing powerful tools for quality control of

engineered retina tissues.

With the advantage of high penetration depth, THG has been

applied for the visualization of whole cerebral organoids. In a study

by Yildirim et al. [47], larger volume, larger surface area and lower

ventricular thickness in mutant organoids compared to normal

organoids were directly visualized. By further monitoring dynamic

neuronal migration of cerebral organoids, shorter migration

distance and slower migration speed were observed in mutant

organoids. This study provides valuable insights for understanding

the early human brain development.

In addition, label-free NLOmicroscopy has also been used to

assess tissue polarity in 3D cell cultures. To quantitatively

measure apical and basal polarity status in 3D breast

organoids, CARS integrated with confocal Raman

spectroscopy was applied to quantify the degree of lipid

ordering in apical membranes and basal membranes [48].

Higher degree of lipid ordering was observed in apical

membranes compared to basal membranes in polarized breast

acini. This method demonstrates a highly sensitive tool to

monitor apical and basal polarity status through label-free

quantification of lipid ordering and offers a great potential for

screening of risk factors that may induce loss of tissue polarity,

the very early stage of cancer development.

These studies together demonstrate that multimodal label-

free NLO imaging techniques have provided non-invasive and

quantitative tools for regenerative medicine research and given

deeper insight into quality control of tissue engineering.

3.2 Tumor microenvironment

The tumor microenvironment (TME), composed of

heterogeneous cell populations (e.g., fibroblasts, endothelial

cells, and immune cells) as well as the extracellular matrix

(e.g., collagen, elastin, and fibronectin), plays an important

role in tumor development [49].

To study macrophage heterogeneity within the TME, two-

photon FLIM imaging was used to assess the redox state in both

mono-culture and 3D co-culture [50]. Increased redox ratio was

observed in 3D cultures compared to monocultures. More

importantly, there were remarkable metabolic changes in pro-

tumor macrophages compared to anti-tumor macrophages in 3D

tumor co-cultures.

To investigate the tumor-stroma interactions in vitro,

Alkmin et al. [51] constructed 3D collagen-based ovarian

cancer models representing four types of ovarian tissues,

including normal stroma, high-risk tissue, benign tumors and

high-grade tumors. As shown in Figure 2B, the SHG imaging

results showed well-ordered and crimping morphology of

collagen fiber within the high-grade tumors, contributing to

fast migration and high motility. In another study, Li et al.

[52] used hyperspectral SRS imaging to characterize ovarian

cancer stem cells (CSCs) within the TME that played an

important role in the ovarian cancer progression. Higher lipid

unsaturation was discovered in CSC-enriched spheroids

compared to mono-cultured cancer cells, implying a novel

CSC-specific targeted treatment strategy for ovarian cancer.

To dissect cellular metabolic activity in TME, Hou et al. [53]

integrated 2 PF, SHG and CARS microscopy to study cellular

metabolism and collagen synthesis in 3D breast tumor spheroids.

The results showed significantly different glucose and lipid

metabolic signatures in cancer cells, such as increased de novo

lipid synthesis, beta-oxidation and collagen synthesis. Going

beyond label-free imaging, the development of Raman tags as

a unique strategy offers metabolic dynamics of specific

biomolecules [54]. Raman tags are small in size and maintain

the native properties of molecules with minimal perturbation,

which are free from bulky fluorophores-associated issues. Using

SRS imaging coupled with deuterated d31-palmitic acid (d-PA),

Wei et al. [55] reported heterogeneous distribution of lipid

metabolites in 3D breast cancer spheroids. It is worth

mentioning that newly synthesized lipids were preferentially

observed in the invasion front of the spheroids (Figure 2C).

Collectively, label-free multimodal NLO imaging has

provided a new avenue to study the heterogeneous TME,

enabling the characterization of cell type, cell morphology,

cellular metabolism, ECM deposition, as well as cell-stroma

interactions and so on.
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3.3 Drug discovery

It is well known that heterogeneous drug responses are

associated with heterogeneous cellular metabolism [56].

Therefore, metabolic imaging methods are potentially useful

for drug discovery.

Two-photon FLIM imaging was applied to assess heterogeneous

drug responses in pancreatic cancer and breast cancer patient-derived

organoids by measuring the NAD(P)H, FAD and redox ratio [57].

This study revealed cellularmetabolic heterogeneity in both pancreatic

and breast cancer organoids. Moreover, cancer organoids displayed

different morphologies, including hollow and solid. Solid cancer

organoids exhibited greater metabolic heterogeneity compared to

hollow organoids, due to different nutrition and pH penetration in

solid organoids. The imaging platformwas also used to track dynamic

drug responses and distinguish drug-resistant cell populations in

cancer organoids, providing a powerful tool for drug screening.

More recently, two-photon FLIM imaging was applied to assess

heterogeneous drug responses in gastroenteropancreatic

neuroendocrine tumor (GEP-NET) patient-derived cancer

organoids (PDCOs) [58]. This study opens a new avenue to drug

discovery for GEP-NET, which could not be achieved by traditional

measurements due to very low proliferation rate of GEP-NET. In a

similar study, Sood et al. [59] used 2 PF imaging to investigate

heterogeneous metabolism and drug responses of 3D

bioengineered brain cancer cell cultures within ECM-enriched

hyaluronic acid (HA) or collagen type I (CLG1) hydrogels. As

shown in Figure 2D, increased redox ratio was observed in 3D cell

cultures under CLG1 condition compared to that under HA

condition. Besides, infiltrative cell populations on the outer edge

gel displayed higher redox ratio than within scaffold region. Upon

temozolomide (TMZ) treatment, cell populations at the outer edge

displayed significantly higher redox ratio in comparison to inside

scaffold, indicating that cell populations at the outer edge gel were

more drug-responsive to TMZ treatment. This study for the first time

observed the lipid droplet accumulation in primary 3D glioblastoma

in vitro.

By combining 2 PF with CARSmicroscopy, Wright et al. [60]

explored the mechanism by which CUB-domain containing

protein 1 (CDCP1) promoted metastasis of triple-negative

breast cancer (TNBC). 2 PF imaging was used to quantify the

cellular redox ratio, while CARS imaging was used for lipid

droplets detection. The results showed that CDCP1 could

regulate lipid metabolism by reducing lipid droplet

accumulation and stimulating fatty acid oxidation in 3D

cultures, which offers a potential therapeutic target for TNBC

metastasis. In a latest study, Becker et al. [61] coupled Raman

microspectroscopy with FLIM platform for metabolic

monitoring of drug treatment efficacy in bladder cancer

organoids. Raman microspectroscopy was used to evaluate the

impact of drugs on subcellular structures such as nuclei and

mitochondria based on shifts and intensity changes of specific

molecular vibrations. FLIM was used to quantify the effects of

different drugs on cell metabolism based on autofluorescence

fromNADH and FAD. Neural network-based data analyses were

performed to retrieve biomarkers for drug-specific

responsiveness, which could promote drug screening and

personalized treatment.

These metabolic imaging methods not only allow cell metabolic

measurements of drug responses within the 3D microenvironment,

but also enable distinguishing drug-resistant and drug-sensitive cell

populations, which are superior to conventional viability assays that

only gauge average cellular response.

4 Summary and Outlook

3D cell cultures recapitulate tissue-specific physiological or

pathological diversity. Label-free multimodal NLO microscopy has

shown the potential to significantly improve our understanding of the

complexity of living multicellular systems and offered great

applications for regenerative medicine (e.g., stem cell

differentiation, collagen organization, and vascularization), TME

heterogeneity (e.g., cell subtyping and tumor-stroma interaction),

cell behaviors in 3D cultures (e.g., proliferation, invasion, and

migration), cell metabolism in 3D cultures (e.g., redox status, lipid

metabolism, and protein metabolism), and drug responses in 3D

cultures (e.g., drug-resistant and drug-sensitive subpopulations). It is

expected that future studies will explore broader applications of label-

free NLO imaging in 3D cultures, not only in biological research but

also in clinical translations for disease detection. For example,

multicolor SRS microscopy could provide stain-free histology-like

information with contrast originating from lipid and protein for

accurate tumor diagnosis [62–65].

In addition, we believe technical advancements would further

promote these research fields. Firstly, regarding improvement of

imaging depth, several optical clearing methods have been

developed to make specimens optically transparent and are

therefore promising to image thick specimens. For fluorescent

imaging, organic solvent-based protocols especially 3DISCO,

SeeDB and CUBIC have performed successful applications of

tissue clearing [66, 67]. As an improved technique, FDISCO

enables visualization of 3D neuronal and vascular structures with

the superior fluorescence preserving capability [66, 67]. For SRS

imaging, 8 M urea has been discovered to be capable of increasing

imaging depth by 5~10 folds within spheroids [55]. Secondly,

regarding acceleration of imaging speed, light sheet technique has

been demonstrated to increase fluorescence imaging speed by

~1,000 times and permits longitudinal imaging of living

organisms [68]; Volumetric SRS imaging has been successfully

developed to perform fast 3D imaging of living systems [69, 70].

Thirdly, regarding enhancement of molecular specificity and

sensitivity, small-sized Raman tags (e.g., deuterium, alkyne, and

diyne), which show strong Raman peaks well separated from

endogenous cellular signals without perturbing biological

activities of small molecules, have been developed and utilized to
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monitor cellular uptake, distribution, and metabolism of small

molecules [54, 71, 72].

In summary, label-free multimodal NLO imaging techniques

have become a vital tool for the study of 3D cell cultures. Looking

into the future, the advanced NLO imaging techniques would

further improve our understanding of the 3D microenvironment

and promote a wider range of life science and medical research.
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