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In the present study, the driven dynamics in a non-Hermitian Aubry–André (AA)

model under the open boundary condition (OBC) are studied. For this model,

non-Hermiticity is introduced by the non-reciprocal hopping, and this model

undergoes a localization–skin effect phase transition depending on the

strength of the quasi-periodic potential. Although the properties of non-

Hermitian systems are very sensitive to the imposed boundary conditions,

we find that the scaling behavior can also be described by the same set of

the exponents under the periodic boundary condition (PBC). When the initial

state is prepared deep in the localized phase and the potential strength is slowly

driven through the critical point, we find that the driven dynamics of the

localization length ξ and the inverse participation ratio (IPR) could be

described by the Kibble–Zurek scaling (KZS). Then, we numerically verify

these predictions for different initial states. Finally, the dynamical emergence

of the skin effect state is found, and the dynamics can also be described by the

Kibble−Zurek scaling with the same set of critical exponents.
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1 Introduction

In recent years, the Anderson localization transition in quasi-periodic systems has

attracted increasing interest [1–4]. The quasi-periodic system lacks a translational

invariance but shows a long-range order, leading to some peculiar properties in

comparison with the disordered system. For instance, the one-dimensional (1D)

quasi-periodic system can show the Anderson localization transition [1]. A typical

quasi-periodic example is the Aubry–André (AA) model, which undergoes a

localization transition with the change of the potential strength [1, 4–7].
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Many unusual characteristic features have been found in the

AA model and generalized AA models [8–10], such as the self-

similar energy spectra and non-trivial topological properties [1],

the remarkable self-dual metal localization transition at a

multifractal critical point [11], and many-body localization by

including the interaction [6, 7, and 12–19]. Moreover, non-

equilibrium dynamics in AA models have attracted increasing

attention [20–25], and exotic properties, therein, have been

discovered, e.g., the periodic driving can not only turn the

localized eigenstates into extended eigenstates and vice versa

[20 and 21] but also bring the system into the topological MBL

phase [22]. For the driven dynamics in the AA model, it was

shown that the driven dynamics from the initial state deep in the

localized phase can be well described by the Kibble–Zurek scaling

(KZS) [25].

On the other hand, the non-Hermitian systems have attracted

enormous studies [26–40]. Due to the release of Hermiticity

constraints, the non-Hermitian system exhibits rich phenomena

without the Hermitian counterparts, e.g., the topological non-

Hermitian skin effect under the open boundary condition (OBC),

i.e., the wave functions in large systems under the OBC accumulate

on the boundary [27–34], exceptional points [41–44], etc. The

interplay of non-Hermiticity and the quasi-periodic system

brings a new perspective for the localization phenomena [45–56].

Non-Hermiticity can affect the localization transition behavior, e.g.,

non-Hermiticity can destroy Anderson localization and lead to

delocalization even in the 1D system, and it introduces a new

scale and breaks down the one-parameter scaling, which is the

central assumption of the conventional scaling theory of localization

[57]. Furthermore, it has been demonstrated that non-Hermiticity

can change the energy spectra of the disorder or the quasi-periodic

system. A significant change of the energy spectra is the emergence

of the imaginary parts, and the real-complex phase transition always

appears accompanied by the localization transition [46, 48, 50, 53,

and 58]. Very recently, the effect of the non-Hermiticity on the

driven dynamics in a non-Hermitian AA model under the periodic

boundary condition (PBC) has been studied [59]. It was found that

the critical exponents for the non-Hermitian AA model under the

PBC are different from those of the Hermitian AA model, and the

driven dynamics of the localization–delocalization transition for

different classes of initial states could be described by the KZS with

the same set of critical exponents.

FIGURE 1
(A) Phase diagram of the non-Hermitian AA model under the OBC. (B) Typical spatial distributions of ‖Ψg〉|2 in the skin effect phase, localized
phase, and critical phase under the OBC. The lattice size is L = 610 and g = 0.5 in (B).

FIGURE 2
Energy gap between the ground and first excited states Δc as
a function of the lattice size L. The power fit yields Δc ∝ε−2.002.
Double-log scales are used. Here, g = 0.5, and the results are
averaged for 100 choices of ϕ.
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Although the driven dynamics of the non-Hermitian AAmodel

under the PBC has been investigated, the driven dynamics of the

non-Hermitian AA model under the OBC is still unknown. Since

the skin effect, the non-Hermitian AA model undergoes a

localization–skin effect transition under the OBC, which

corresponds to a transition of the localization center of the wave

functions from isolated sites to the boundary. Therefore, the

behavior of the localization–skin effect transition under the OBC

is different from that of the localization−delocalization transition

under the PBC. Moreover, the energy spectrum under the OBC is

different from that under the PBC [50]. Considering the effects of

non-Hermiticity, it is interesting to investigate the driven dynamics

of the non-Hermitian AA model under the OBC.

In the present paper, the static scaling behavior of the driven

dynamics of the localization–skin effect transition in the non-

Hermitian AA model under the OBC was studied. The non-

Hermiticity of this model is induced by the non-reciprocal

hopping [50]. Then, the static scaling behavior in the critical

region of the localization–skin effect transition was studied, and

the critical exponents were determined therein. Starting from the

deep localized phase and slowly tuning the potential strength

across the critical point, the driven dynamics in this model under

the OBC were studied. It was shown that the driven dynamics of

the localization–skin effect transition for the initial ground and

excited states can be well described by the KZS with the same set

of exponents. Finally, the dynamical emergence of the skin effect

was observed, and the dynamics can be described by the KZS

with the same set of exponents as well.

The rest of the paper is arranged as follows: the non-

Hermitian AA model and phase diagram under the OBC are

introduced in Section 2. The static scaling properties under the

OBC are studied in Section 3, and the critical exponents are

determined by the numerical study. Then, in Section 4, the driven

dynamics are studied, and the KZS is numerically verified. A

summary is given in Section 5.

2 The non-Hermitian AA model and
phase diagram under the OBC

The Hamiltonian of the AA model is as follows [50]:

H � ∑L
i->j

JLc
+
j cj+1 + JRc

+
j+1cj( ) + λ∑L

j

cos 2π γj + ϕ( )[ ]c†jcj, (1)

FIGURE 3
Finite scaling of ξ and IPR of the ground state in the localized phase. The curves of ξ versus ε before (A1) and after (A2) rescaling, according to Eq.
5 for different L values. The curves of the IPR versus ε before (B1) and after (B2) rescaling, according to Eq. 8 for different L values. Here, g = 0.5, ε > 0,
and the model is in the localized phase region. Double-log scales are used, and the results are averaged for 100 choices of ϕ.
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in which c†j(cj) is the creation (annihilation) operator of the hard-

core boson, JL = Je−g and JR = Jeg are the asymmetry hopping

amplitudes between the nearest neighboring (NN) sites, λmeasures

the amplitude of the quasi-periodic potential, γ � ( 	
5

√ − 1)/2 is an
irrational number, and ϕ ∈ [0, 1) is the phase of the potential. In the

following calculation, the OBC is imposed.

In Figure 1A, the phase diagram of the non-Hermitian AA

model for g > 0 is plotted. It is shown that the model is in the

localized phase when λ > 2eg, while it is in the skin-effect phase when

λ < 2eg. At λ = 2eg, the eigenstates of the system are all critical.

Therefore, by varying λ through the critical point λc = 2eg, the system

undergoes a localization–skin effect phase transition under theOBC.

In different phases, the spatial distributions of the eigenstates

show great different behaviors, which is an important characteristic

feature in distinguishing these phases. Since the behavior of the

spatial distributions of different eigenstates is similar to each other,

the ground state is chosen as an example. As shown in Figure 1B, the

spatial distribution of the ground states |Ψg〉 in different phases is

plotted. In the localized phase, one finds that the wave function is

localized on some isolated sites. However, in the skin effect phase,

the wave function is localized on the boundary due to the non-

Hermitian skin effect. The wave function is localized near the right

side, but different from the skin effect, where the wave function is

not localized on the boundary. Therefore, the localization–skin effect

transition corresponds to a transition of the localization center from

some isolated sites to the boundary.

3 Static critical properties in the
critical region of localization–skin
effect transition

3.1 Static scaling forms in the critical
region

In this section, the static properties in the critical region of

the localization–skin effect transition are studied, and the critical

exponents for the localization–skin effect transition are examined

by studying the static behaviors of the energy gap between the

first excited state and the ground state Δc, localization length ξ,

and inverse participation ratio (IPR). We found that the critical

exponents for the localization–delocalization transition under

the PBC are still applicable in the localization–skin effect

transition.

As in the usual quantum criticality, the energy gap between

the first excited state and the ground state at the critical point is

FIGURE 4
Finite scaling of ξ and IPR of the ground state in the skin effect phase. The curves of ξ versus |ε| before (A1) and after (A2) rescaling, according to
Eq. 5 for different L values. The curves of the IPR versus |ε| before (B1) and after (B2) rescaling, according to Eq. 8 for different L values. Here, g=0.5, ε <
0, and the model is in the skin effect phase region. Double-log scales are used, and the results are averaged for 100 choices of ϕ.
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usually used to characterize the localization–skin effect

transition. According to finite-size scaling, the energy gap Δc

should scale as follows:

Δc ∝L−z. (2)

For the Hermitian AA model, z was determined as z = 2.37

[25], while z = 2 for the non-Hermitian AA model under the

PBC [59].

The localization length ξ is defined as follows [25−59]:

ξ �
														
∑L
n>nc

n − nc( )2[ ]Pn

√√
, (3)

in which Pn is the probability of the wave function at site n, and nc
≡∑nPn is the localization center. Near a critical point, ξ scales

with the distance to the critical point ε as follows:

ξ∝ ε−], (4)

in which ε = λ–λc. Taken into account the finite-size scaling, the

scaling form of ξ is given as follows:

ξ � Lf1 εL1/]( ), (5)

where f1 is the scaling function for the static ξ. For the Hermitian

AA model and non-Hermitian AA model under the PBC, ] is

determined as ] = 1 [25, 59, and 60].

The IPR is defined as follows [61 and 62]:

IPR � ∑L
j�1‖Ψ j( )〉|4∑L
j�1‖Ψ j( )〉|2, (6)

where |Ψ(j)〉 is the eigenvector. Under the OBC, the IPR shows a

local minimum at the critical point, indicating the

localization−skin effect transition [50]. Near the critical point,

the IPR satisfies a scaling relation, shown as follows:

IPR∝ εs. (7)

Taken into account the finite-size scaling, the scaling form of

the IPR is given as follows:

IPR � L−s/]f2 εL1/]( ), (8)

in which f2 is the scaling function for the static IPR. For the non-

Hermitian AA model under the PBC, s is determined as s =

0.1196 [54 and 59].

3.2 Numerical results

By applying a finite-size scaling of Δc, the dynamical

exponent z can be verified. The numerical results for Δc as

a function of L are plotted in Figure 2. By a power-law fitting,

one finds that Δc∝ L−2.002 with the exponent very close to z = 2,

confirming that z = 2 is also applicable under the OBC.

In the localized phase, the Eqs 5− 8 are tested, and the

ground state is taken as an example. As shown in Figure 3

(A1), we calculate the curves of ξ versus ε for different lattice

sizes. After rescaling ξ as ξL−1 and ε as εL1/] with ] = 1, one

finds that the rescaled curves match with each other very well,

as plotted in Figure 3 (A2). In Figure 3 (B1), the curves of the

IPR of the ground state versus ε for different lattice sizes are

plotted. After rescaling the IPR as IPRLs/] and ε as εL1/] with

] = 1 and s = 0.1196, the rescaled curves collapse onto each

other.

Different from the non-Hermitian AA model under the

PBC, ξ and IPR are still well defined under the OBC when λ <
2eg. Therefore, the scaling functions of Eqs 5−8 are also

verified in the skin effect phase. The numerical results are

plotted in Figure 4. Figure 4 (A1) and (B1) show the ε

dependence of ξ and IPR in the skin effect phase,

respectively. After rescaling according to Eqs 5 and 8 with

the same ] and s, we find that the rescaled curves collapse onto

each other, as shown in Figure 4 (A2) and (B2).

FIGURE 5
(A) ξ and (B) IPR at = 0 as a function of R. Here, we use g = 0.5 and L = 987. The results are averaged for 10 choices of ϕ.

Frontiers in Physics frontiersin.org05

Zhai et al. 10.3389/fphy.2022.1098551

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1098551


These results confirm that the same set critical exponent of

the non-Hermitian AAmodel under the PBC is applicable for the

localization–skin effect transition. These exponents, z, ], and s,

are usually enough to determine the critical behavior in the

localization–skin effect critical region.

4 Kibble–Zurek scaling in the
localization–skin effect transition

4.1 General theory of the KZS

Here, we slowly vary ε across the critical point from an initial

state in the localized phase. ε varies as follows:

ε � −Rt, (9)

whereR is the varying rate.We choose the initial time as t0 = −ε0/R.

According to the KZS, when |ε| > R1/]r with r = z+1/], the system
can evolve adiabatically as the state has enough time to adjust to

the change in the Hamiltonian. When |ε| < R1/]r, the system enters

the impulse region and ceases to evolve as a result of the critical

point slowing down.

Around the critical point, the driven dynamics of ξ satisfy the

KZS, which is given as follows:

ξ ε, R( ) � R−1/rg1 εR−1/r]( ), (10)

where g1 is the scaling function for the driven dynamical ξ and

r = z+1/]. The driven dynamics of the IPR of the nth eigenstate

around the critical point satisfy the following:

IPR ε, R( ) � Rs/r]g2 εR−1/r]( ), (11)

where g2 is the scaling function for the driven dynamical IPR.

It should be noted that the scaling functions Eqs 10 and 11 are

suitable to describe the driven dynamics of the

localization–delocalization phase transition under the PBC since

the exponents are the same under the PBC andOBC. The full scaling

form for a quantity, e.g., Eqs 10 and 11 for ξ and IPR, has also been

proposed from different perspectives in classical and quantum phase

transitions [25, 63–69]. In the recent study, such scaling forms have

been generalized to study the non-equilibrium dynamics in the non-

Hermitian systems under the PBC [42, 59, and 70]. In this work, we

perform this full scaling form in the dynamical localization–skin

effect transition in the non-Hermitian AA model under the OBC.

FIGURE 6
Driven dynamics with the initial ground state at ε = 1. (A1) Curves of ξ versus ε and (A2) the rescaled curves according to Eq. 10 for different R
values. (B1) Curves of the IPRn versus ε and (B2) the rescaled curves according to Eq. 11 for different R values. Here, we use ε0 = 1, g= 0.5, and L = 987,
and the results are averaged for 10 choices of ϕ. The arrows in (a1) and (b1) point to the direction of the changing ε.
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4.2 Numerical results for the initial states
deep in the localization phase

First, we verify the scaling function Eqs 10 and 11 with the

initial state deep in the localized phase. We numerically solved

the Schrodinger equation for the model (Eq. 1) under the OBC,

and the finite difference method in the time direction is used. In

the numerical calculation, the time interval is chosen as 10−3.

According to Eqs 10 and 11, at ε = 0, ξ and IPRn become the

following:

ξ ε � 0, R( )∝R−1/r, (12)
IPR ε � 0, R( )∝Rs/r]. (13)

In Figure 5, we take the ground state at ε0 = 1 as the initial

state to test these predictions, where we plot the curves of ξR (ε =

0, R) and IPRn(ε = 0, R) as a function of R. The power-law fitting

yields ξ(ε = 0, R)∝ R−0.3367 and IPR(ε = 0, R)∝ R0.0420, which are

consistent with the predictions in Eqs 12 and 13.

In Figure 6 (A1), the curves of ξ versus ε with the initial

ground state at ε = 1 for different R values are plotted. After

rescaling ξ and ε with R, according to Eq. 10, the rescaled

curves collapse onto each other very well, as plotted in Figure 6

(A2). It confirms the scaling law of Eq. 10. The numerical

results of the IPR versus ε and rescaled curves according to Eq.

11 are plotted in Figure 6 (B1) and (B2). The collapse in

Figure 6 (B2) confirms the scaling function Eq. 11.

In addition to the initial ground state, the scaling functions of

Eqs 10 and 11 are also verified for the excited states. The 609th

excited state at ε = 1 is selected as the initial state. Figure 7 (A1)

and (B1) show the evolution of ξ and IPR, respectively, for the

609th excited state. After the rescaling according to Eqs 10 and 11

with the same set of the critical exponents, we find the rescaled

curves collapse onto each other, as shown in Figure 7 (A2) and

(B2). These results confirm that the rescaling functions of Eqs 10

and 11 are applicable for the excited eigenstates.

4.3 Dynamical emergence of the skin
effect

Since the critical exponents in the skin effect phase are

identical to those in the localized phase, it is expected that the

driven dynamics in the skin effect phase can also be described by

the scaling functions of Eqs 10 and 11. To verify this prediction,

we studied the driven dynamics with even smaller varying rates.

In Figure 8 (A1) and (B1), we calculate the curves of ξ and

IPR versus ε for various R values. Here, we set the lattice size as

FIGURE 7
Driven dynamics with the initial 609th excited state at ε= 1. (A1) Curves of ξ versus ε, and (A2) the rescaled curves according to Eq. 10 for different
R values. (B1) Curves of the IPRn versus ε and (B2) the rescaled curves according to Eq. 11 for different R values. Here, we use ε0 = 1, g = 0.5, and L =
987, and the results are averaged for 10 choices of ϕ. The arrows in (A1) and (B1) point to the direction of the changing ε.
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L = 233; R values vary from 5 × 10−5 to 12 × 10−5, which is small

enough to observe the behavior of the dynamical emergence of

the skin effect. The ground state at ε = 1 is chosen as the initial

state. By rescaling ξ and ε as ξR1/r and εR−1/r], the rescaled curves

collapse onto each other, as shown in Figure 8 (A2), confirming

Eq. 10. As shown in Figure 8 (B1) and (B2), the curves of the IPR

versus ε before and after rescaling according to Eq. 11 are plotted.

We find that the rescaled curves, according to Eq. 11 with the

same set of the critical exponents, collapse into a single curve.

Furthermore, one finds that ξ shows a peak value and IPR shows

a valley around ε = 0. Then, with the further decrease of ε, ξ

decreases and IPR increases again. Such behaviors of ξ and IPR

correspond to the dynamical emergence of the skin effect. These

results confirm that Eqs 10 and 11 are still applicable in the

dynamical emergence of the skin effect.

5 Summary

In summary, we have studied the static scaling behavior and the

driven dynamics of the localization–skin effect transition in a non-

Hermitian AA model under the OBC. By investigating the static

behavior of ξ, IPR, and Δc, respectively, it is shown that the same set

of critical exponents of ], s, and z under the PBC are also applicable

under the OBC. The driven dynamics of the localization–skin effect

transition for different initial states are studied, and we find that the

driven dynamics in both the initial ground and excited states can be

described by the KZS with the same set of critical exponents. Then,

the dynamical emergence of the skin effect is observed with an even

small varying rate R, and it is shown that the dynamical emergence

of the skin effect can also be described by the same scaling functions

with the same set of critical exponents. Our present work generalizes

the KZS to the localization–skin effect transition in non-Hermitian

systems under the OBC.
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