
Dynamic analysis and optimal
control of worm propagation
model with saturated incidence
rate

Ruiling Wang1, Yakui Xue1* and Kailin Xue2

1School of Mathematics, North University of China, Taiyuan, China, 2Department of Mathematics,
University of South Australia, Adelaide, Australia

In order to prevent the propagation of computer worms effectively, based on

the latent character of worms, the exposed compartments of computer and

USB device are introduced respectively, and a series of computer worm

propagation models with saturation incidence rate are proposed. The

qualitative behavior of the proposed model is studied. Firstly, the threshold

R0 of the model is derived by using the next-generation matrix method, which

completely characterized the stability of disease free equilibrium and endemic

equilibrium. If R0 < 1, the disease free equilibrium is asymptotically stable,

implying that the worm dies out eventually and its attack remains under

control; if R0 > 1, the asymptotic stability of endemic equilibrium under

certain conditions is proved, which means that the worm is always persistent

and uncontrollable under such conditions. Secondly, the theoretical results are

verified by numerical study, in which the relative importance of each parameter

in worm prevalence is evaluated by sensitivity analysis. Finally, so as to minimize

the number of computer and USB device carrying computer worms in short

span of time, the worm propagation model is extended to incorporate three

control strategies. The Pontryagin’s maximum principle is used to characterize

the controls’ optimal levels. According to the control effect diagram, the

combined strategy is effective in minimizing the transmission dynamics of

worm virus in computer and USB devices populations respectively.
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1 Introduction

As a storage medium, USB device is favored by many office workers because of its

large storage capacity and portability. It is often used to copy data between different

computers. In fact, the transmission of data via USB device may be accompanied by the

spread of worms [1]. Computer worm is a common computer virus, which has the

characteristics of wide spread and serious harm [2]. On 13 January 2021, the news of

incaseformat worm flooded wechat circle of friends, and infection cases were found in

many provinces, cities, and industries, with a trend of large-scale outbreak. After
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execution, the worm will automatically copy to the windows

directory of the system disk and create a registry to start itself [3].

Once the user restarts the computer, this will cause the worm

host to execute from the windows directory, and then the worm

process will traverse all disks except the system disk and delete

the files, causing irreparable losses to the user. Therefore, it has

become an urgent problem in the field of network security to

study the propagation rule of computer worm and effectively

control its propagation.

A computer worm is a group of programmed code that can

reproduce itself and affect the normal use of the computer [4]. A

biological virus is a unique tiny living organism, which can make

use of the nutrients of the host cell to copy its own essential

constituent material DNA or RNA and proteins [5–7]. Computer

worms and biological viruses are two concepts from different

fields, but some of their properties have striking similarities [8].

Mainly in the following four aspects: firstly, computer worms and

biological viruses are infectious. Computer worms can spread

from an infected computer to an uninfected computer through

network or other remavable devices. Biological viruses can also

be transmitted by direct or indirect contact between living

organisms. Then, computer worms and biological viruses are

latent and generally not easy to find. Computer worms can

integrate their own program fragments into the system

programs, so that their most important code can be saved

from the anti-virus software. Biological viruses can also

integrate their genetic material into the host’s DNA or RNA,

thereby escaping attack by the host’s immune system. In

addition, computer worms and biological viruses will mutate

in the process of spreading, making their species more and more

diverse. Finally, both computer worms and biological viruses are

destructive. Computer worms can damage the computer system

and interfere with the normal operation of the computer.

Biological viruses may damage the cells or organs of the host

organism, which may pose a threat to the organism’s life. Because

of the high similarity between computer worms and biological

viruses, we used the method of studying the transmission of

infectious diseases to explore the dynamic behavior of computer

worms.

In epidemiology, dynamic model has been an important

method in analysing the spread and control of infectious diseases

qualitatively and quantitatively [9–11]. In 1991, Kephart and

White first introduced the dynamic model of infectious disease

into the study of the propagation of computer virus. Since then,

the dynamic model has also become a vital tool for the study of

various computer viruses [12–16]. The research on computer

worms have experienced a rapid growth, and a large number of

models have been established, mathematically analyzed, which

provides some useful and valid references for the characteristics

of computer worms transmission [17]. In 2011, Song et al. [18]

studied removable device as an independent carrier for the first

time. They hypothesized that computer worms spread via both

web-based scanning and removable devices, established SIR

model of computer population and SI model of removable

devices population, studied their dynamic behavior, and gave

corresponding control strategy. In 2012, Zhu et al. [19] proposed

a new dynamic model to describe the spread of computer virus by

using the same method as in Ref. [18]. In addition, by qualitative

analysis, it is concluded that controlling R0 below one is an

effective means to extinguish virus, which provides a good start

point for understanding the transmission of computer virus

through such interactions. In 2015, Ma et al. [20] proposed

SIBV model of fixed nodes and SI model of mobile nodes

considering the influence of benign worms and mobile devices

in the network environment, discussed the influences of

removable devices on the interaction dynamics between

malicious worms and benign worms. Through numerical

analysis and simulation, it is proved that the anti-worm

technology can effectively suppress the spread of malicious

worms. In 2018, Zhu et al. [21] introduced two control

strategies of disconnecting computers from removable devices

and reorganizing computers on the basis of Ref. [19], and studied

the optimal control of virus transmission between computers and

removable devices. Different from previous studies, this paper

does not use a fixed cost weight index in the objective function,

but uses a state-based cost weight index. In 2020, Kim et al. [1]

proposed and analyzed a scheme to control virus transmission

through vaccination, that is, installing effective anti-virus

software. The results showed that the higher the vaccination

rate, the lower the number of infected computers.

Inspired by the models above, we establish a new worm

transmission model. We adopt the saturation incidence rate [22,

23], which can present the inhibition effect of susceptible devices

and the crowding effect of infectious devices and can also ensure

the boundness of contact rate by choosing suitable parameters

[24]. In addition, considering the latent character of computer

worms, the exposed compartments of computer and USB are

introduced [25–28]. The rest of the article is organized as follows:

in Section 2, qualitative analysis of the dynamical system is

carried out, and sufficient conditions for the existence of

equilibria and asymptotic stability are given; numerical

findings and discussion are conducted in Section 3; in Section

4, optimal control strategy is proposed; and conclusion is

presented in Section 5.

2 Dynamical model

The main purpose of this paper is to explore the dynamic

behavior of computer worms transmission in the process of using

USB devices to transmit data, so as to formulate effective

strategies to control the spread of worms. This model is an

improved version of Kim et al. [1]. In this model, the computer

acts as the host and the USB device acts as a vector. Among them,

the total computer population is divided into the following four

subclasses, which are Sc(t), Ec(t), Ic(t), and Rc(t), representing the
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numbers of susceptible computers, exposed computers,

infectious computers and recovered computers at time t. And

similarly for USB devices population, which is classified into

three vector population subclasses, namely Su(t), Eu(t), and Iu(t),

represent the numbers of susceptible USB devices, exposed USB

devices and infectious USB devices at time t, respectively. In

addition, the following model assumptions are presented:

(H1) All newly launched computers and removable USB

devices are susceptible.

(H2) At time t, the infectious force of infected USB devices to

susceptible computers is given by (1−σ])β1ScIu
1+ α1Iu , while the

infectibility of infected computers to susceptible USB devices

is (1−σ])β1SuIc
1+ α2Ic .

(H3) Infected computers will gain temporary immunity after

recovery due to anti-virus software installed, but after a period of

time will join again susceptible class because of the variability of

computer worms.

(H4) Computer dysfunction is not only related to natural

death, but also to worm invasion.

The improved model as follow:

dSc
dt

� Λ1 − 1 − σ]( )β1ScIu
1 + α1Iu

− σ] + μ1( )Sc + τRc,

dEc

dt
� 1 − σ]( )β1ScIu

1 + α1Iu
− η + ϵ + μ1( )Ec,

dIc
dt

� ηEc − γ + μ1 + θ( )Ic,
dRc

dt
� σ]Sc + ϵEc + γIc − τ + μ1( )Rc,

dSu
dt

� Λ2 − β2SuIc
1 + α2Ic

− μ2Su + ϕEu + pIu,

dEu

dt
� β2SuIc
1 + α2Ic

− ξ + ϕ + μ2( )Eu,

dIu
dt

� ξEu − p + μ2( )Iu.

(1)

For the computer population in system (Eq. 1), Λ1 is the

recruitment rate of computer population; σ is the efficiency

coefficient of the anti-virus software; ] is installation coverage

rate coefficient of anti-virus software; β1 is infection rate coefficient

of susceptible computers by infectiousUSB devices; α1 is the degree

coefficient of protection measures taken for susceptible computers

in case of worms outbreak; μ1 is the natural elimination rate

coefficient of computer population; θ is the elimination rate

coefficient of computer population caused by worm invasion; τ,

η, ϵ, γ are the transition rate coefficients among states in the

computer population.

As for the USB population in system (Eq. 1), Λ2 is the

recruitment rate of USB population; β2 is infection rate

coefficient of susceptible USB devices by infectious computers; α2
is the degree coefficient of protection measures taken for susceptible

USB devices in case of worms outbreak; μ2 is the natural elimination

rate coefficient of USB population; ϕ, p, ξ are the transition rate

coefficients among states in the USB population.

Suppose Nc and Nu are the total number of computer

population and USB population at time t, respectively,

satisfying Nc = Sc + Ec + Ic + Rc and Nu = Su + Eu + Iu. Add

the equations in system (Eq. 1) to get dNc
dt � Λ1 − μ1Nc −

θIc ≤Λ1 − μ1Nc and
dNu
dt � Λ2 − μ2Nu. The operable region for

system (Eq. 1) is given below:

Δ � Sc, Ec, Ic, Rc, Su, Eu, Iu( ) ∈ R7
+|0≤Nc ≤

Λ1

μ1
, 0≤Nu ≤

Λ2

μ2
{ }.

(2)
In this section, we firstly prove the existence of disease free

equilibrium and endemic equilibrium of system (Eq. 1), and

obtain the basic reproduction number R0 through calculation

which determines the propagation dynamics of system (Eq. 1).

Secondly, we provide the local and global stability of disease free

equilibrium and endemic equilibrium under certain conditions,

which establishes the theoretical foundation for the control

strategies of worm attack.

2.1 Existence of basic reproduction
number and equilibria

Our aim is to study the characteristics of disease free

equilibrium and endemic equilibrium. Let the right-hand side

of system (Eq. 1) equals zero, and the disease free equilibrium can

be obtained:

P0 � S0c , E
0
c , I

0
c , R

0
c , S

0
u, E

0
u, I

0
u( )

� Λ1 τ + μ1( )
μ1 σ] + τ + μ1( ), 0, 0, Λ1σ]

μ1 σ] + τ + μ1( ), Λ2

μ2
, 0, 0( ). (3)

Next, we calculate the basic reproduction number R0, which

is essentially the number of secondary infectious cases produced

in a susceptible class by a single infectious node in its overall

infectious duration. This is a decisive threshold in

epidemiological systems that can be used to predict whether

computers will be continuously attacked by worms [29].

According to the next-generation matrix method in literature

[30], we have the following:

F �
0 0 0 1 − σ]( )β1S0c
0 0 0 0
0 β2S

0
u 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
V �

η + ϵ + μ1 0 0 0
−η γ + μ1 + θ 0 0
0 0 ξ + ϕ + μ2 0
0 0 −ξ p + μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
Thus, we obtain the basic reproduction number:
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R0 �
������������������������������������

1 − σ]( )β1β2ηξS0cS0u
η + ϵ + μ1( ) γ + μ1 + θ( ) ξ + ϕ + μ2( ) p + μ2( )√

�
�����������������������������

1 − σ]( )β1β2ηξ τ + μ1( )Λ1Λ2

η + ϵ + μ1( ) γ + μ1 + θ( ) ξ + ϕ + μ2( )
p + μ2( ) σ] + τ + μ1( )μ1μ2

√√
.

(4)

Theorem 1 When R0 > 1, system (Eq. 1) has a unique

endemic equilibrium.

Proof: Make the right side of system (Eq. 1) equal to zero, and

substitute the endemic equilibrium P* �
(Sc*, Ec*, Ic*, Rc*, Su* , Eu* , Iu*) into the equation:

Ep
c �

γ + μ1 + θ

η
Ipc , R

p
c �

σ]Spc + ϵEp
c + γIpc

τ + μ1
, Eu* � p + μ2

ξ
Iu*,

Spc �
Λ1 τ + μ1( ) + τ ϵEp

c + γIpc( )
μ1 σ] + τ + μ1( ) + 1−σ]( )β1Iu* τ+μ1( )

1+α1Iu*
, Su* � Λ2 + pIu*

μ2 + ξ+μ2
ξ+ϕ+μ2 ·

β2I
p
c

1+α2Ipc
,

Iu* � ξβ2Λ2I
p
c

ξ + ϕ + μ2( ) p + μ2( ) 1 + α2I
p
c( )μ2 + μ2β2 p + ξ + μ2( )Ipc .

We get the expression G(Ic*) � aIc* + b for Ic*, where

a � α2μ2 ξ + ϕ + μ2( ) p + μ2( ) + μ2β2 p + ξ + μ2( )
+ ξβ2Λ2α1μ1 η + ϵ + μ1( ) γ + μ1 + θ( ) σ] + τ + μ1( )
+ ξβ2Λ2ηβ1 μ1γ 1 − σ]( ) + μ1 + θ( ) 1 − σ]( ) τ + μ1( )( )
+ ξβ2Λ2β1μ1 γ + μ1 + θ( ) 1 − σ]( ) τ + μ1 + ϵ( )> 0,

b � μ1μ2 η + ϵ + μ1( ) γ + μ1 + θ( ) σ] + τ + μ1( ) ξ + ϕ + μ2( )
× p + μ2( ) 1 − R2

0( ).
When R0 > 1, b < 0, so Ic* � −b

a> 0 and G(Ic*) � 0, that is, when

R0 > 1, there is a unique positive equilibrium P*.

2.2 Stability of disease free equilibrium

In this subsection, we analyze the asymptotical stability of

disease free equilibrium P0.

Theorem 2 The disease free equilibrium P0 of system (Eq. 1)

is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.

Proof: The Jacobian matrix of system (Eq. 1) at P0 is

J 0| | �

a11 0 0 τ 0 0 − 1 − σ]( )β1S0c
0 a22 0 0 0 0 1 − σ]( )β1S0c
0 η a33 0 0 0 0
σ] ϵ γ a44 0 0 0
0 0 −β2S0u 0 −μ2 ϕ p
0 0 β2S

0
u 0 0 a66 0

0 0 0 0 0 ξ a77

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where a11 � −(σ] + μ1), a22 � −(η + ϵ + μ1), a33 � −(γ + μ1 +
θ), a44 � −(τ + μ1), a66 � −(ξ + ϕ + μ2), a77 � −(p + μ2).
Obviously, one of the eigenvalues of J|0| is λ1 = −μ2. In order to

obtain the rest eigenvalues, the following simplified matrix is

considered:

J 0| |
1 �

a11 0 0 τ 0 − 1 − σ]( )β1S0c
0 a22 0 0 0 1 − σ]( )β1S0c
0 η a33 0 0 0
σ] ϵ γ a44 0 0
0 0 β2S

0
u 0 a66 0

0 0 0 0 ξ a77

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

By elementary row operations, we get

J 0| |
2 �

a11 0 0 τ 0 − 1 − σ]( )β1S0c
0 a22 0 0 0 1 − σ]( )β1S0c
0 0 b33 0 0 1 − σ]( )ηβ1S0c
0 0 0 b44 0 b46
0 0 0 0 b55 1 − σ]( )ηβ1β2S0cS0u
0 0 0 0 0 b66

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

where

b33 � − η + ϵ + μ1( ) γ + μ1 + θ( ),
b44 � −μ1 τ + σ] + μ1( ) η + ϵ + μ1( )2 γ + μ1 + θ( ),
b55 � − η + ϵ + μ1( ) γ + μ1 + θ( ) ξ + ϕ + μ2( ),
b66 � 1 − σ]( )ξηβ1β2S0cS0u

η + ϵ + μ1( ) γ + μ1 + θ( ) ξ + ϕ + μ2( ) − p + μ2( ),
b46� 1−σ]( )ηβ1S0cγ σ]+μ1( ) η+ϵ+μ1( )

+ ϵμ1−σ] η+μ1( )( ) 1−σ]( )β1S0c η+ϵ+μ1( ) γ+μ1+θ( ).
When (1−σ])ξηβ1β2S0c S0u

(η+ϵ+μ1)(γ+μ1+θ)(ξ+ϕ+μ2)< (p + μ2), that is, when R0 < 1,

the eigenvalues of J|0|2 are all negative, and therefore the
eigenvalues of J|0| are all negative. It shows that when R0 < 1,
the disease free equilibrium P0 of system (Eq. 1) is locally
asymptotically stable in Δ, whereas P0 is unstable in Δ if
R0 > 1.

Theorem 3 The disease free equilibrium P0 of system (Eq.

1) is globally asymptotically stable in region Δ if R0 < 1 and is

unstable if R0 > 1.

Proof: The Castillo-Chavez method in Refs. [31] is used to

prove it. First, let χ1 = (Sc, Rc, Su), χ2 = (Ec, Ic, Eu, Iu) and define

P0 � (χ01, 0), where

χ01 �
Λ1 τ + μ1( )

μ1 σ] + τ + μ1( ), Λ1σ]
μ1 σ] + τ + μ1( ), Λ2

μ2
( ). (8)

We decompose system (Eq. 1) into two subsystems,

dχ1
dt

� G χ1, χ2( ),
dχ2
dt

� H χ1, χ2( ), (9)
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where

G χ1, χ2( ) �
Λ1 − 1 − σ]( )β1ScIu

1 + α1Iu
− σ] + μ1( )Sc + τRc

σ]Sc + Ec + γIc − τ + μ1( )Rc

Λ2 − β2SuIc
1 + α2Ic

− μ2Su + ϕEu + pIu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

H χ1, χ2( ) �
1 − σ]( )β1ScIu
1 + α1Iu

− η + +μ1( )Ec

ηEc − γ + μ1 + θ( )Ic
β2SuIc
1 + α2Ic

− ξ + ϕ + μ2( )Eu

ξEu − p + μ2( )Iu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because Sc � S0c , Rc � R0
c , Su � S0u, and G(χ1, 0) � 0, we have

G χ1, 0( ) � Λ1 − σ] + μ1( )S0c + τR0
c

σ]S0c − τ + μ1( )R0
c

Λ2 − μ2S
0
u

⎛⎜⎜⎝ ⎞⎟⎟⎠ � 0. (10)

According to (Eq. 10), when t→∞, χ1 → χ01. Therefore, χ1 � χ01
is globally asymptotically stable.

Moreover, it is obvious that

H χ1, χ2( ) � Bχ2 − �H χ1, χ2( )
�

a22 0 0 1 − σ]( )β1S0c
η a33 0 0
0 β2S

0
u a66 0

0 0 ξ a77

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ec

Ic
Eu

Iu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

1 − σ]( )β1S0cIu −
1 − σ]( )β1ScIu
1 + α1Iu

0

β2S
0
uIc −

β2SuIc
1 + α2Ic
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(11)

The population limits of computer and USB device are

S0c , S
0
u, that is, Sc ≤ S0c , Su ≤ S0u, so (1 − σ])β1S0c Iu ≥(1−σ])β1ScIu

1+α1Iu , β2S
0
uIc ≥

β2SuIc
1+α2Ic, which means �H(χ1, χ2)≥ 0. Also

from (Eq. 11), B is an M-matrix. Thus condition 1 and 2 are

satisfied in section 4.1 of Refs. [32]. Therefore, Theorem 3 is proved.

2.3 Stability of endemic equilibrium

In this subsection, we analyze the asymptotical stability of

endemic equilibrium P*.

Theorem 4 The endemic equilibrium P* of system Eq. 1 is

locally asymptotically stable if max ϵ, γ{ }< σ] and 1<R0 <
(1+α1Iu* )(1+α2Ic*)

��������
(τ+μ1)Λ1Λ2

√������������
(σ]+τ+μ1)μ1μ2Sc*Su*

√ .

Proof: The Jacobian matrix of system (Eq. 1) at P* is given by

J|*| �

c11 0 0 τ 0 0 − 1 − σ]( )β1S+c
1 + α1I

p
u( )2

1 − σ]( )β1Ipu
1 + α1I

p
u

a22 0 0 0 0
1 − σ]( )β1Spc
1 + α1I

p
u( )2

0 η a33 0 0 0 0

σ] ϵ γ a44 0 0 0

0 0 − β2S
p
u

1 + α2I
p
c( )2 0 c55 ϕ p

0 0
β2S

p
u

1 + α2I
p
c( )2 0

β2I
p
c

1 + α2I
p
c

a66 0

0 0 0 0 0 ξ a77

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where c11 � −(σ] + μ1) − (1−σ])β1Iu*
1+α1Iu* , c55 � −μ2 − β2Ic*

1+α2Ic*.
After simplification we get

J *| |
1 �

c11 0 0 τ 0 0 − 1 − σ]( )β1Spc
1 + α1I

p
u( )2

0 d22 0
1 − σ]( )β1Ipuτ
1 + α1I

p
u

0 0
1 − σ]( )β1Spc σ] + μ1( )

1 + α1I
p
u( )2

0 0 d33
1 − σ]( )β1Ipuητ
1 + α1I

p
u

0 0
1 − σ]( )β1Spcη σ] + μ1( )

1 + α1I
p
u( )2

0 0 0 d44 0 0 d47

0 0 0 0 −μ2 − ξ + μ2( ) p

0 0 0 0 0 d66 d67

0 0 0 0 0 0 d77

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

FIGURE 1
Time series plot of system (1) with Λ1 = 0.75, Λ2 = 0.1, σ = 0.6, ] = 0.1, β1 = 0.035, β2 = 0.035, α1 = 0.8, α2 = 0.3, μ1 = 0.1, μ2 = 0.1, τ = 0.1, η = 0.45,
ϵ= 0.25, ϕ = 0.05, p = 0.003, ξ = 0.005, θ = 0.001, γ = 0.05. (A) the tendency of the worm propagation in a short period, (B) the tendency of the worm
propagation in a later period.
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where

d22 � −a22c11, d33 � a22a33c11,

d44 � μ1 τ + σ] + μ1( )a222a33c211 + μ1 1 − σ]( )β1Ipu
1 + α1I

p
u

a222a33c
2
11

+ η μ1 + θ( ) − μ1a33( ) τ 1 − σ]( )β1Ipu
1 + α1I

p
u

a22c
2
11,

d47 � σ]ηθ + ϵ − σ]( )μ1a33 − ημ1 γ − σ]( )( ) 1 − σ]( )β1Spc
1 + α1I

p
u( )2 a22c

2
11,

d66 � − β2I
p
c

1 + α2I
p
c

ξ + μ2( ) + μ2a66( )a22a33c11d44,

d67 � β2I
p
cp

1 + α2I
p
c

a22a33c11d44 + μ1μ2η τ + σ] + μ1( )
×

1 − σ]( )β1Spc
1 + α1I

p
u( )2 β2S

p
u

1 + α2I
p
c( )2a11a222a33c211

+ μ21μ2ητa33 + μ1μ2ητϵa33 + μ1μ2ηa11a22a33(
−μ1μ2η2τ μ1 + θ( ) − μ1μ2η

2τγ)
· 1 − σ]( )β1Ipu

1 + α1I
p
u

β2S
p
u

1 + α2I
p
c( )2 1 − σ]( )β1Spc

1 + α1I
p
u( )2 a22c

2
11,

d77 � −μ2 p + ξ + μ2( ) β2I
p
c

1 + α2I
p
c

a22a33c11d44

+ 1 − σ]( )β1Ipu
1 + α1I

p
u

μ2a22a33a66a77d44

+ξμ2ητ σ]ηθ + ϵ − σ]( )μ1a33( )
1 − σ]( )β1Ipu
1 + α1I

p
u

β2S
p
u

1 + α2I
p
c( )2 1 − σ]( )β1Spc

1 + α1I
p
u( )2 a22c

2
11

+ξμ2ητ −ημ1 γ − σ]( )( ) 1 − σ]( )β1Ipu
1 + α1I

p
u

β2S
p
u

1 + α2I
p
c( )2

1 − σ]( )β1Spc
1 + α1I

p
u( )2 a22c

2
11 +

a11a44d44

R2
0

1 − σ]( )β1β2ηξΛ1Λ2

μ1 σ] + τ + μ1( )
1 − σ] + τ + μ1( )μ1μ2Spc SpuR2

0

τ + μ1( )Λ1Λ2 1 + α1I
p
u( )2 1 + α2I

p
c( )2( ).

+ a11a44d44

R2
0

1 − σ]( )β1β2ηξΛ1Λ2

μ1 σ] + τ + μ1( )
1 − σ] + τ + μ1( )μ1μ2Spc SpuR2

0

τ + μ1( )Λ1Λ2 1 + α1I
p
u( )2 1 + α2I

p
c( )2( ).

It is obvious that a22, a33, a66, c11, c55 < 0, and then, d22,

d33, d44, d66 < 0 can be obtained according to the above

expressions. Besides, when max ϵ, γ{ }< σ] and

1<R0 <
(1+α1Ipu)(1+α2Ipc )

��������
(τ+μ1)Λ1Λ2

√������������
(σ]+τ+μ1)μ1μ2Spc Spu

√ , we get d77 < 0. Just as we

have shown that the real parts of all eigenvalues of J|p| are
negative, so the endemic equilibrium J|p| is locally

asymptotically stable under condition max ϵ, γ{ }< σ] and

1<R0<
(1+α1Ipu)(1+α2Ipc )

��������
(τ+μ1)Λ1Λ2

√������������
(σ]+τ+μ1)μ1μ2Spc Spu

√ .

Next, the geometrical approach in Refs. [33] is used to

determine the condition that system (Eq. 1) achieves global

asymptotic stability at the endemic equilibrium.

Theorem 5 If max ϕSpc
Ep
c
− β2I

p
c

1+α2Ipc ,
β2I

p
c

1+α2Ipc ·
Ep
c

Spc
{ }< (1−σ])β1Ipu

1+α1Ipu < β2I
p
c

1+α2Ipc ·
Spu
Ep
u

and R0 > 1, then system (Eq. 1) is globally asymptotically stable at

endemic equilibrium Pp and unstable otherwise.

Proof: We prove the global stability of endemic equilibrium Pp

under the above conditions by using geometrical approach [32, 34,

35], which is the generalization of Lyapunov theory in essence, by

using the third additive compound matrix. Consider the subsystems

of system (Eq. 1)

dSc
dt

� Λ1 − 1 − σ]( )β1ScIu
1 + α1Iu

− σ] + μ1( )Sc + τRc,

dEc

dt
� 1 − σ]( )β1ScIu

1 + α1Iu
− η + ϵ + μ1( )Ec,

dSu
dt

� Λ2 − β2SuIc
1 + α2Ic

− μ2Su + ϕEu + pIu,

dEu

dt
� β2SuIc
1 + α2Ic

− ξ + ϕ + μ2( )Eu.

(14)

Let J be the Jacobian matrix of system (Eq. 14) given by

J �

− σ] + μ1( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

0 0 0

1 − σ]( )β1Ipu
1 + α1I

p
u

− η + ϵ + μ1( ) 0 0

0 0 −μ2 −
β2I

p
c

1 + α2I
p
c

ϕ

0 0
β2I

p
c

1 + α2I
p
c

− ξ + ϕ + μ2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

Based on [35], the third additive compound matrix of J is

denoted by

J 3| | �

A11 ϕ 0 0

β2I
p
c

1 + α2I
p
c

A22 0 0

0 0 A33 0

0 0
1 − σ]( )β1Ipu
1 + α1I

p
u

A44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)

where

A11 � − σ] + 2μ1 + μ2 + η + ϵ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

,

A22 � − σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

,

A33 � − σ] + μ1 + 2μ2 + ξ + ϕ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

,

A44 � − μ1 + 2μ2 + η + ϵ + ξ + ϕ( ) − β2I
p
c

1 + α2I
p
c

.

Now let us choose a function P(χ) � P(Sc, Ec, Su, Eu) so that
P(χ) � diag Sc, Ec, Su, Eu{ }, and accordingly, P−1(χ) �
diag 1

Sc
, 1
Ec
, 1
Su
, 1
Eu

{ }. The time derivative of P(χ) yields that

Pf(χ) � diag _Sc, _Ec, _Su, _Eu{ }.
Therefore,

PfP
−1 � diag

_Sc
Sc
,
_Ec

Ec
,
_Su
Su
,
_Eu

Eu
{ }, (17)
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and

PJ 3| |P−1 �

A11
ϕSpc
Ep
c

0 0

β2I
p
c

1 + α2I
p
c

· E
p
c

Spc
A22 0 0

0 0 A33 0

0 0
1 − σ]( )β1Ipu
1 + α1I

p
u

· E
p
u

Spu
A44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

So that B � PfP−1 + PJ|3|P−1,

B �
B11 B12 0 0
B21 B22 0 0
0 0 B33 0
0 0 B43 B44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (19)

where

B11 �
_Sc
Sc

− σ] + 2μ1 + μ2 + η + ϵ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

,

B12 � ϕSpc
Ep
c

,

B22 �
_Ec

Ec
− σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( ) − 1 − σ]( )β1Ipu

1 + α1I
p
u

,

B21 � β2I
p
c

1 + α2I
p
c

· E
p
c

Spc
,

B33 �
_Su
Su

− σ] + μ1 + 2μ2 + ξ + ϕ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

,

B44 �
_Eu

Eu
− μ1 + 2μ2 + η + ϵ + ξ + ϕ( ) − β2I

p
c

1 + α2I
p
c

,

B43 � 1 − σ]( )β1Ipu
1 + α1I

p
u

· E
p
u

Spu
.

Consequently, if (1−σ])β1Ipu
1+α1Ipu + β2I

p
c

1+α2Ipc >
ϕSpc
Ep
c
, then

h1 t( ) � B11 +∑4
j�2

B1j

∣∣∣∣ ∣∣∣∣,
h1 t( ) �

_Sc
Sc

− σ] + 2μ1 + μ2 + η + ϵ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

+ ϕSpc
Ep
c

� _Sc
Sc

− σ] + 2μ1 + μ2 + η + ϵ( )
− 1 − σ]( )β1Ipu

1 + α1I
p
u

+ β2I
p
c

1 + α2I
p
c

− ϕSpc
Ep
c

( )
≤
_Sc
Sc

− σ] + 2μ1 + μ2 + η + ϵ( ).
and if (1−σ])β1Ipu

1+α1Ipu > β2I
p
c

1+α2Ipc ·
Ep
c

Spc
, then

h2 t( ) � B22 +∑4
j�1
j≠2

B2j

∣∣∣∣ ∣∣∣∣,
h2 t( ) � _Ec

Ec
− σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( )

− 1 − σ]( )β1Ipu
1 + α1I

p
u

+ β2I
p
c

1 + α2I
p
c

· E
p
c

Spc

� _Ec

Ec
− σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( )

− 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

· E
p
c

Spc
( )

≤
_Ec

Ec
− σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( ).

Similarly,

h3 t( ) � B33 +∑4
j�1
j≠3

B3j

∣∣∣∣ ∣∣∣∣,
h3 t( ) �

_Su
Su

− σ] + μ1 + 2μ2 + ξ + ϕ( ) − 1 − σ]( )β1Ipu
1 + α1I

p
u

− β2I
p
c

1 + α2I
p
c

,

≤
_Su
Su

− σ] + μ1 + 2μ2 + ξ + ϕ( ).
and if β2I

p
c

1+α2Ipc >
(1−σ])β1Ipu
1+α1Ipu · Ep

u
Spu
, then

h4 t( ) � B44 +∑3
j�1

B4j

∣∣∣∣ ∣∣∣∣,
h4 t( ) � _Eu

Eu
− μ1 + 2μ2 + η + ϵ + ξ + ϕ( ) − β2I

p
c

1 + α2I
p
c

+ 1 − σ]( )β1Ipu
1 + α1I

p
u

· E
p
u

Spu

� _Eu

Eu
− μ1 + 2μ2 + η + ϵ + ξ + ϕ( )

− β2I
p
c

1 + α2I
p
c

− 1 − σ]( )β1Ipu
1 + α1I

p
u

· E
p
u

Spu
( )

≤
_Eu

Eu
− μ1 + 2μ2 + η + ϵ + ξ + ϕ( ).

If (h1, h2, h3, h4) ∈ R4 and we define the Lozinski

measure μ(B) as μ(B) � hi, i � 1, 2, 3, 4 then integration

of μ(B) by taking limits as t → ∞ the following equations

follow:

lim
t→∞

sup
1
t
∫t

0
h1 t( )dt ≤

1
t
log

Sc t( )
Sc 0( ) − σ] + 2μ1 + μ2 + η + ϵ( )

< − σ] + 2μ1 + μ2 + η + ϵ( ),
lim
t→∞ sup

1
t
∫t

0
h2 t( )dt ≤

1
t
log

Ec t( )
Ec 0( ) − σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( )

< − σ] + 2μ1 + μ2 + η + ϵ + ξ + ϕ( ),
lim
t→∞ sup

1
t
∫t

0
h3 t( )dt ≤

1
t
log

Su t( )
Su 0( ) − σ] + μ1 + 2μ2 + ξ + ϕ( )

< − σ] + μ1 + 2μ2 + ξ + ϕ( ),
lim
t→∞ sup

1
t
∫t

0
h4 t( )dt ≤

1
t
log

Eu t( )
Eu 0( ) − μ1 + 2μ2 + η + ϵ + ξ + ϕ( )

< − μ1 + 2μ2 + η + ϵ + ξ + ϕ( ).
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Thus, combining the above four inequalities, we get the

following inequality:

�q � lim
t→∞

sup
1
t
∫t

0
μ B( )dt< 0.

This shows that the subsystem of system (Eq. 1) containing four

non-linear differential equations is globally asymptotically stable

around the equilibrium (Spc , Ep
c , S

p
u,E

p
u). The solutions to the rest

of the equations of system (Eq. 1) are Ic → Ipc , Rc → Rp
c , Iu → Ipu

when t → ∞. Therefore, the endemic equilibrium Pp is globally

asymptotically stable.

3 Numerical simulation

In this section, we refer to the data of Refs. [36–38] to analyze

the performance and dynamic behavior of the studied model

through numerical simulation, and demonstrate the feasibility of

the theoretical results obtained.

3.1 Stability of equilibria

The stability of disease free equilibrium and endemic equilibrium

of system (Eq. 1) is verified by numerical simulation. Figure 1 and

Figure 2 show the stability simulation diagram of disease free

equilibrium and endemic equilibrium. Initially the number of

susceptible computers, exposed computers, infected computers,

recovery computers, susceptible USB devices, exposed USB devices

and infected USB devices are Sc(0) = 50,000, Ec (0) = 20,000, Ic(0) =

10,000,Rc (0) = 10,000, Su(0) = 5,000,Eu (0) = 3,000, and Iu(0) = 1,000,

separately.We take the parametersΛ1 = 0.75,Λ2 = 0.1, σ= 0.6, ] = 0.1,
β1 = 0.035, β2 = 0.035, α1 = 0.8, α2 = 0.3, μ1 = 0.1, μ2 = 0.1, τ = 0.1, η =

0.45, ϵ = 0.25, ϕ = 0.05, p = 0.003, ξ = 0.005, θ = 0.001, γ = 0.05, at

which time, R0 ≈ 0.0039 < 1. It can be seen from Figure 1 that the

number of exposed computers Ec, infected computers Ic, exposedUSB

devicesEu and infectedUSB devices Iu gradually approach zero, which

shows the correctness of Theorem 2 and Theorem 3. When β1 =

0.053, μ1 = 0.01, ξ = 0.05, and other parameters remain unchanged,R0
≈ 1.0670 > 1. Compared with Figure 1, the number of exposed

computers Ec, infected computers Ic, exposed USB devices Eu and

infected USB devices Iu in Figure 2 are not zero and reach a stable

value, which is also consistent with Theorems 4 and 5.

3.2 Performance comparison of the
SEIRSEI model with the SIRSI model

To evaluate the performance of the SEIRSEI model, numerical

methods are used to compare it with the SIRSI model [1]. We

simulate SEIRSEI and SIRSI models by Matlab. Both models share

the same parameters as in Section 3.1. Figure 3 shows the number of

infected computers and infected USB devices for both models. The

results show that, comparedwith SIRSImodel, the propagation speed

of worms and the number of infected computers and USB devices in

SEIRSEI model are significantly decreased. This implies that the

SEIRSEI model takes much smaller time to combat the worm than

the SIRSI model. Obviously, the results shown in Figure 3 verify that

the proposed model is more effective in controlling computer worms

attack than the previous model.

3.3 Sensitivity analysis

Sensitivity analysis is used to determine which parameters

have a significant effect on decreasing the spread of disease.

Forward sensitivity analysis is considered an important

component of epidemic modeling, although it is tedious to

calculate for complex biological models. The ecologist and

epidemiologist paid a lot of attention to the sensitivity study of R0.

Definition. The normalized forward sensitivity index of R0

that depends differentiability on a parameter ω is defined as

Sω � ω

R0

zR0

zω
(20)

The following three methods are normally used to calculate the

sensitivity indices, (i) by direct differentiation, (ii) by a Latin hypercube

sampling method, (iii) by linearizing system (Eq. 1), and then solving

the obtain set of linear algebraic equations. We will apply the direct

differentiation method as it gives analytical expressions for the indices.

The indices not only shows us the influence of various aspects

associated with the spreading of infectious disease but also gives us

important information regarding the comparative change between R0
and different parameters. Consequently, it helps in developing the

control strategies.

Table 1 demonstrates that the parameters Λ1, Λ2, β1, β2, τ,

η and ξ have a positive influence on the reproduction number

R0, which describe that the growth or decay of these

parameters say by 10% will increase or decrease the

reproduction number by 10%, 10%, 10%, 10%, 1.1%, 4.3%

and 9.6% respectively. But on the other hand, the index for

parameters σ, ], μ1, μ2, ϵ, ϕ, p, θ and γ illustrates that increasing
their values by 10% will decrease the values of reproduction

number R0 by 2.9%, 2.9%, 16.7%, 26.1%, 3.1%, 3.2%, 0.29%,

0.06%, and 3.3% respectively. α1 and α2 have no impact on the

reproduction number R0. Figures 4A–H are plotted to

demonstrate the variations in the basic reproductive

number R0 with respect to the different model parameters.

4 Optimal control strategy
formulation

In order to explore how to effectively control the propagation

of computer worms, system (Eq. 1) is improved in this section.
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Three control variables ui(t)(i � 1, 2, 3) are introduced into

system (Eq. 1), which denote the effectiveness of the

corresponding control strategy to inhibit worm propagation.

u1(t)(0≤ u1(t)≤ 1) represents the effectiveness of improving

the installation coverage rate of anti-virus software,

u2(t)(0≤ u2(t)≤ 1) and u3(t)(0≤ u3(t)≤ 1) represent the

effectiveness of disinfecting computers and USB devices,

respectively. Establish the optimal control system:

dSc
dt

� Λ1 − 1 − u1( )β1ScIu
1 + α1Iu

− u1 + μ1( )Sc + τRc,

dEc

dt
� 1 − u1( )β1ScIu

1 + α1Iu
− η + u2 + μ1( )Ec,

dIc
dt

� ηEc − u2 + μ1 + θ( )Ic,
dRc

dt
� u1Sc + u2Ec + u2Ic − τ + μ1( )Rc,

dSu
dt

� Λ2 − β2SuIc
1 + α2Ic

− μ2Su + u3Eu + u3Iu,

dEu

dt
� β2SuIc
1 + α2Ic

− ξ + u3 + μ2( )Eu,

dIu
dt

� ξEu − u3 + μ2( )Iu.

(21)

Defining the objective function

J u1, u2, u3( ) � ∫T

0
A1Ec + A2Ic + A3Eu + A4Iu(

+ 1
2

B1u
2
1 + B2u

2
2 + B3u

2
3( ))dt, (22)

where A1, A2, A3 and A4 are positive weight constants of Ec, Ic, Eu
and Iu respectively, and T is the final time to implement the

control strategies.

The control set is defined as

U � (u1(t), u2(t), u3(t)) | ui(t)(i � 1, 2, 3){ }, which is a

Lebesgue measurable control quantity satisfying ui(t) ∈ [0, 1]
and t ∈ [0, T]. The purpose of this paper is to find the optimal

control (up1 , up2 , up3) so that

J up
1 t( ), up

2 t( ), up
3 t( )( ) � min J u1 t( ), u2 t( ), u3 t( )( ) u1 t( ), u2 t( ),|{

u3 t( ) ∈ U}.

Based on the boundedness of the right end of system (Eq. 21)

and the convexity of the integrand of (Eq. 22), the existence of the

optimal control (up1 , up2 , up3) can be obtained [39, 40].

To find the optimal solution of the optimal control problem

(Eqs 21, 22), the Hamilton function is defined as follows

H � A1Ec + A2Ic + A3Eu + A4Iu + 1
2

B1u
2
1 + B2u

2
2 + B3u

2
3( )

+ λSc
dSc
dt

+ λEc

dEc

dt
+ λIc

dIc
dt

+ λRc

dRc

dt
+ λSu

dSu
dt

+ λEu

dEu

dt
+ λIu

dIu
dt

,
(23)

where λSc, λEc, λIc, λRc, λSu, λEu, λIu are the adjoint variables.

According to Pontryagin’s maximum principle [41], the

following theorem is obtained.

Theorem 6 Let up1(t), up2(t), up3(t) be optimal controls and

Spc , E
p
c , I

p
c , R

p
c , S

p
u, E

p
u, I

p
u be optimal state solutions of the

optimal control problem (Eqs 21, 22), and then there exists

adjoint variables λSc, λEc, λIc, λRc, λSu, λEu, λIu, satisfying,

dλi
dt

� −zH
zi

, (24)

where i = Sc, Ec, Ic, Rc, Su, Eu, Iu. In addition, the corresponding

optimal control variables up1(t), up2(t), up3(t) are

up
1 � max 0, min

β1ScIu
1 + α1Iu

λEc − λSc( ) − Sc λRc − λSc( )
B1

, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

up
2 � max 0, min

−Ec λRc − λEc( ) − Ic λRc − λIc( )
B2

, 1{ }{ },
up
3 � max 0, min

Eu λEu − λSu( ) − Iu λIu − λSu( )
B3

, 1{ }{ }.
(25)

Proof: To prove the theorem, the differential of (Eq. 23),

namely the Hamiltonian function H, with respect to the state

FIGURE 2
Time series plot of system (1) with Λ1 = 0.75,Λ2 = 0.1, σ= 0.6, ] = 0.1, β1 = 0.053, β2 = 0.035, α1 = 0.8, α2 = 0.3, μ1 = 0.01, μ2 = 0.1, τ= 0.1, η= 0.45,
ϵ = 0.25, ϕ = 0.05, p = 0.003, ξ = 0.05, θ = 0.001, γ = 0.05. (A) the tendency of the worm propagation in a short period, (B) the tendency of the worm
propagation in a later period.
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variables Sc, Ec, Ic, Rc, Su, Eu, Iu are obtained, and the

corresponding adjoint system is as follows:

dλSc
dt

� −zH
zSc

�− 1−u1( )β1Iu
1+α1Iu λEc −λSc( )−u1 λRc −λSc( )+μ1λSc ,

dλEc

dt
� −zH

zEc
�−A1−η λIc −λEc( )−u2 λRc −λEc( )+μ1λEc,

dλIc
dt

� −zH
zIc

�−A2− β2Su
1+α2Ic( )2 λEu −λSu( )−u2 λRc −λIc( )+ μ1+θ( )λIc ,

dλRc

dt
� −zH

zRc
� τ λRc −λSc( )+μ1λRc,

dλSu
dt

� −zH
zSu

�− β2Ic
1+α2Ic

λEu −λSu( )+μ2λSu,
dλEu

dt
� − zH

zEu
�−A3+u3 λEu −λSu( )−ξ λIu −λEu( )+μ2λEu,

dλIu
dt

� −zH
zIu

�−A4− 1−u1( )β1Sc
1+α1Iu( )2 λEc −λSc( )+u3 λIu −λEu( )+μ2λIu ,

(26)

and with transversality conditions λSc(T) � 0, λEc(T) � 0,

λIc(T) � 0, λRc(T) � 0, λSu(T) � 0, λEu(T) � 0, λIu(T) � 0.

Also, the optimal controls up1 , u
p
2 and up3 satisfy zH

zupi
� 0, i = 1,

2, 3. Therefore, the optimal controls are characterized by

up
1 � max 0, min

β1ScIu
1 + α1Iu

λEc − λSc( ) − Sc λRc − λSc( )
B1

, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

up
2 � max 0, min

−Ec λRc − λEc( ) − Ic λRc − λIc( )
B2

, 1{ }{ },
up
3 � max 0, min

Eu λEu − λSu( ) − Iu λIu − λSu( )
B3

, 1{ }{ }.
For sufficiently small final time T, the uniqueness of the

optimal control of the system has been achieved owing to the

boundedness of the state variables and adjoint variables together

with the Lipschitz property of systems (Eq. 21) and (Eq. 26).

In order to show the rationality and effectiveness of the

control strategy mentioned in Section 4, numerical simulation

is carried out. Figure 5 shows a substantial decrease in the

population of exposed computers, infected computers,

FIGURE 3
Performance comparison of the SEIRSEI model with the SIRSI model. (A) graph of infectious number of computers, (B) graph of infectious
number of USB devices.

TABLE 1 Sensitivity indices of the basic reproduction number R0 against mentioned parameters.

Parameter S.Index Value Parameter S.Index Value

Λ1 SΛ1 1 Λ2 SΛ2 1

σ Sσ −0.2946 ] S] −0.2946

β1 Sβ1 1 β2 Sβ2 1

α1 Sα1 0 α2 Sα2 0

μ1 Sμ1 −1.6719 μ2 Sμ2 −2.6160

τ Sτ 0.1154 η Sη 0.4375

ϵ Sϵ −0.3125 ϕ Sϕ −0.3226

p Sp −0.0291 ξ Sξ 0.9677

θ Sθ −0.0066 γ Sγ −0.3311
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exposed USB devices and infected USB devices respectively

relative to the case of no control, when the combined strategy is

implemented, including the installation coverage rate of anti-virus

software and the disinfection of computer and USB device.

Parameter Λ1 = 0.75, Λ2 = 0.1, σ = 0.6, ] = 0.1, β1 = 0.035,

β2 = 0.035, α1 = 0.8, α2 = 0.3, μ1 = 0.1, μ2 = 0.1, τ = 0.1, η = 0.45, ϵ =

0.25, ϕ = 0.05, p = 0.003, ξ = 0.005, θ = 0.001, γ = 0.05.We draw the

conclusion that the spread of worm virus can be effectively

controlled by strengthening users’ computer security education,

improving their understanding of anti-virus software,

and calling on users to disinfect computers and USB devices

regularly.

FIGURE 4
Sensitivity analysis of different parameters. (A) R0 versus sensitive parameters p and ϕ, (B) R0 versus sensitive parameters γ and ϵ, (C) R0 versus
sensitive parameters σ and η, (D) R0 versus sensitive parameters ] and η, (E) R0 versus sensitive parameters τ and μ1, (F) R0 versus sensitive parameters θ
and μ1, (G) R0 versus sensitive parameters τ and η, (H) R0 versus sensitive parameters τ and γ.
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5 Conclusion and discussion

This paper mainly considers the dynamic behavior of

computer worms in the process of using USB to transmit

data. The novel ideas of our paper are as follows: (a)

the exposed compartments of computer and USB are

introduced because of the latent nature of worms; (b)

infected computers will gain temporary immunity after

recovery due to anti-virus software installed, but after a

period of time will join again susceptible class because of

the variability of computer worms; (c) the elimination rate of

computers is not only related to natural mortality, but also to

worm attacks; (d) the saturation incidence is used thanks to

the inhibition effect of susceptible equipments and the

crowding effect of infectious equipments.

Firstly, through theoretical analysis, the existence of

disease free equilibrium and endemic equilibrium is

studied, and the sufficient conditions for their asymptotic

stability are given. The global stability of disease free

equilibrium is carried out using the Castillo-Chavez

method, whereas, the global stability of the unique endemic

equilibrium is also investigated via using geometrical

approach. It can be seen that when R0 < 1, worm

transmission is effectively controlled and verified by

numerical simulation. Therefore, one effective means to

extinguish worm is to keep R0 below 1. Furthermore, the

sensitivity analysis is complemented by numerical simulation

to explore the influence of some parameter changes on the

basic reproduction number R0. It is seen that Λ1, Λ2, β1, β2, τ, η

and ξ are positively correlated with R0, while σ, ], μ1, μ2, ϵ, ϕ, p,
θ and γ are negatively correlated with R0. Finally, we establish

a optimal control system by taking the installation coverage

rate of anti-virus software and the disinfection of computer

and USB device as control variables. The numerical simulation

results show that compared with the situation without control

measures, the total number of computers and USB devices in

the exposed state and infected state is significantly reduced

after control measures are taken, that is to say, adding control

could effectively reduce the spread of computer worms.

In this paper, the mathematical model is used to describe

the propagation process of computer worms, which is helpful

to analyze the propagation characteristics of worms, and then

propose more effective defense measures and control

strategies. In addition, the research of this subject is

beneficial to predict the propagation trend of worms, test

the effect of various defensive measures, and provide

theoretical guidance for the defense and control of

computer worms.

FIGURE 5
Plots of different classes showing the difference between with control and without control, respectively: (A) exposed computers, (B) infected
computers, (C) exposed USB devices, (D) infected USB devices.
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