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A collinear backscattering Mueller matrix (CBMM) imaging system has clear

advantages in the detection of bulk biological tissues, which are highly

scattering and depolarizing. Due to the double-pass configuration and noise

in the system, the calibration of a collinear backscattering Mueller matrix

imaging system is usually complex and of poor accuracy. In this work, we

propose an alternative modified eigenvalue calibration method (ECM) based on

the equivalent standard sample. For better noise suppression and higher

calibration accuracy, we design the distribution of polarization states over

the Poincaré sphere and solve for the parameters of equivalent standard

samples by means of an optimization. Compared to other variants of the

eigenvalue calibration method used in the double-pass system, the accuracy

of the proposed method is improved by more than 40 times. The comparison

results with the error model-based calibration methods indicate that the

modified eigenvalue calibration method generally gives the best accuracy

and precision, as well as the best reliability.
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1 Introduction

The Mueller matrix, which describes the transformation of the state of polarization

(SOP) of light, contains rich information about the microstructure and properties of an

object [1–3]. As a non-invasive, non-contact, and label-free detectionmethod, theMueller

matrix imaging technology has unique advantages in biomedical detection: it can provide

extra information about the sample while being compatible with many existing optical

systems, for example, microscopes and endoscopes [4]. Recently, the biomedical and

clinical applications of the Mueller matrix imaging technique have attracted substantial

attention [5, 6], such as the early detection of cancerous tissues [7–9].

Generally, a thin sample can be detected with a transmission Mueller matrix (TMM)

imaging system [10], while a bulky sample which is highly scattering and depolarizing, is

more appropriate for detection by a collinear backscattering Mueller matrix (CBMM)

imaging system [11]. The calibration of a TMM system based on dual-rotating retarders is
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easy due to its simple optical system. One of the most popular

calibration methods used to calibrate the TMM system is the

analysis calibration method (ACM), which builds an error model

with five main systemic errors and obtains the error values by the

Fourier analysis method [12–14]. The calibration of a CBMM

system is more complex due to the variety of error sources, for

example, the parasitic polarization of the beam splitter also affects

the SOP of light. In our previous work, to calibrate the CBMM

system we proposed a numerical calibration method (NCM) that

takes into account the parasitic polarization of the beam splitter

and solves the system errors numerically by Levenberg–Marquardt

(LM) algorithm [15]. However, the systematic error model-based

calibration methods have the following drawbacks, they require a

priori knowledge of the system and are prone to over-calibration

when the systematic error model is overly complex.

Different from the error model-based calibration methods, the

eigenvalue calibration method (ECM) does not require any priori

information such as the polarization states produced in the system

[16, 17]. As a general method for the calibration of Mueller matrix

imaging systems, the ECM has shown an increase in popularity

[18]. However, due to the complex double-pass configuration, the

original ECM is not suitable for the calibration of the CBMM

system and some modifications of the original ECM are necessary

[19]. Besides, the ECM is inefficient in the case of low signal-to-

noise ratio (SNR) since it assumes that there is no noise in the

measurement system [20].

In this paper, we propose an alternative modified ECM for

the CBMM system. Unlike other variants of the ECM, we

simplify the double-pass calibration to a single-pass

calibration by the mirror symmetry and the concept of the

equivalent standard sample; it is much simpler in theory as it

does not need to address issues such as matrix reciprocity and

eigenvalue squaring. For better calibration performance, we

optimize the distribution of analysis states over the Poincaré

sphere taking into account the inherent constraints of

polarization modulators, and calibrate the parameters of

equivalent standard samples by means of an optimization. To

compare the performance of the modified ECM and the error

model-based calibration methods, a series of experiments with

various samples are performed.

2 Materials and methods

2.1 Experimental setup

The optical path diagram of the CBMM system is shown in

Figure 1. A LED (center wavelength = 610 nm and FWHM=20 nm)

is used as the light source in the system. The output beam from the

LED is collimated by an objective lens (L1) and a convex lens (L2).

P1 and P2 are linear polarizers (LPVISE100-A, 400–700 nm,

Thorlabs, Inc., U.S.). R1 and R2 are zero-order quarter-wave

plates (GCL-060402, 633 nm, Daheng, Optic, China). The

polarization state generator (PSG) consists of a fixed polarizer

(P1) and a rotating quarter-wave plate (R1), while the

polarization state analyzer (PSA) consists of a rotating polarizer

(P2) and a rotating quarter-wave plate (R2). Wave plates R1, R2 and

polarizer P2 are driven by three servo motors (PRM1Z8E, Thorlabs,

Inc., U.S.), respectively. The polarization-modulated beam is reflected

by the sample at normal incidence after passing through a beam

splitter (GCC-403102, Daheng, Optic, China), and then the

backscattered light is imaged by a charged couple device (CCD)

camera (PCO. panda 4.2, 16bit, Inc., Germany) after passing through

the PSA and a low numerical aperture (NA) objective lens (L3).

2.2 The modified eigenvalue calibration
method

Previous studies on the eigenvalue calibration method in the

double-pass system needed to consider the complex reciprocal

relationship between the Mueller matrix of the reflection mirror

and the Mueller matrix of the sample [19, 21]. In this work, we

propose an alternative modified ECM that effectively simplifies

the calibration theory by utilizing the mirror symmetry and

equivalent standard samples.

In the absence of depolarization, the Mueller matrices of

polarizers and wave-plates can be written uniformly as follows [22]:

M τ, θ,φ,Δ( ) � τR −θ( )
1 −cos 2φ 0 0

−cos 2φ 1 0 0
0 0 sin 2φ cosΔ sin 2φ sinΔ
0 0 −sin 2φ sinΔ sin 2φ cosΔ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R θ( )

(1)

where τ is the transmission coefficient, φ and Δ are ellipsometric

parameters, θ stands for the azimuth angle, and R(θ) is the

rotation matrix. Assuming that the observer is at the detector and

looks in the direction from which the light is incoming, the

counterclockwise direction of rotation is chosen as the positive

FIGURE 1
Optical path diagram of the collinear backscattering Mueller
matrix imaging system.
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direction of the azimuth angle θ. In addition, it is necessary to

assume that the light is reflected by a perfect flat mirror at normal

incidence and the polarization properties of optical elements are

independent of the direction of propagation of the light. The

mirror Mueller matrixMm is actually the mirror transformation

matrix satisfying MmMm � E, where E stands for the identity

matrix. It is obvious that any left rotation transformation can be

equated to a right rotation transformation in mirror space, and

vice versa. According to this simple property, the mirror

transformation of an arbitrary Mueller matrix described by

Eq. 1 can be written as follows,

MmM τ, θ,φ,Δ( )Mm � M τ,−θ,φ,Δ( ) (2)

Given the properties of mirror symmetry, the double-pass

process for an arbitrary standard sample can be simplified to

the left multiplication of Mueller matrix Mm with an equivalent

Mueller matrix M′,

Mb τ,−θ,φ,Δ( )MmM
f τ, θ,φ,Δ( ) � MmM′ τ′, θ′,φ′,Δ′( ) (3)

where Mf and Mb represent the Mueller matrix of the forward

and backward propagating path of a standard sample,

respectively. The parameters of the equivalent Mueller matrix

satisfy the following relationships: τ′ � τ2(1 + cos 2 2φ), θ′ � θ,

φ′ � 1/2asin[(1 − cos 2 2φ)/(1 + cos 2 2φ)], and Δ′ � 2Δ, which
means that the equivalent standard sample has the same azimuth

angle as the standard sample and the double phase retardance. It

is clear that Eq. 3 transforms the double-pass process into a

single-pass process by using the equivalent Mueller matrix, hence

in the next theoretical analysis only the equivalent standard

sample needs to be considered.

Similar to the calibration process for single-pass system, air, ± 45°
linear polarizers, and a 30° λ/8 wave plate whose equivalent Mueller

matrix is a quarter-wave plate are chosen as the four standard samples.

The detected intensity matrix Ii of the ith equivalent standard sample

can be described by the following equation,

Ii � AMmM
′
iW (4)

where W and A are the polarization generation matrix and the

polarization analysis matrix, respectively, and M′
i stands for the

equivalent Mueller matrix of the ith standard sample. Obviously,

the equivalent Mueller matrix of air is still an identity matrix,

therefore I1 can be simplified as,

I1 � AMmW (5)

Define matrix Ci as follows:

Ci � I†1Ii � W†Mm
†A†AMmM

′
iW � W†M′

iW (6)

where superscript ‘†’ denotes theMoore-Penrose pseudo-inverse.

Notice that Ci andM′
i are similar matrices in this modified ECM,

which means that they share the same eigenvalues. Hence, it is

possible to partially reconstruct the four equivalent Mueller

matrices using the following eigenvalue relationships [16],

λ1 � 2τ′isin
2 φ′

i( ), λ2 � 2τ′icos
2 φ′

i( ),
λ3 � τ′i sin 2φ′

i( ) exp iΔ′
i( ), λ4 � τ′i sin 2φ′

i( ) exp −iΔ′
i( ) (7)

where λi stands for the eigenvalue of matrix Ci. Nevertheless, it is

found that the reconstruction of the equivalent Mueller matrices by

Eq. 7may be inefficient in the actual experiment, because the process

of computing ratios of eigenvalues is highly noise sensitive. An

optimization algorithm is introduced in the next section to exactly

reconstruct each equivalent Mueller matrix, and the results given by

Eq. 7 can be used as a starting point for the optimization algorithm.

Left multiplying Eq. 6 on both sides by matrix W, one

obtains:

M′
iW −WCi � 0 (8)

which is in the form of the Sylvester equation [18, 23]. Using the

vec operator [24] and the Kronecker product (⊗) [25], Eq. 8 can
be rewritten as follows,

E ⊗ M′
i − Ci

T ⊗ E( )vec W( ) � Hivec W( ) � 0 (9)

where the superscript ‘T’ represents the transpose. To uniquely

determine the vec(W), a positive semidefinite Hermitian matrix

L is constructed by using the Hi matrix of each equivalent

standard sample,

Lvec W( ) � H1
TH1 +H2

TH2 +H3
TH3 +H4

TH4( )vec W( ) � 0

(10)
Theoretically, the matrix L should only have one null

eigenvalue and the corresponding eigenvector is vec(W).
Once polarization generation matrix W is determined,

polarization analysis matrix A can be easily obtained by the

pseudo-inverse matrix of W as follows:

A � I1W
†M†

m (11)

After calibration, the backscattering Mueller matrix of an

arbitrary sample can be calculated directly from the detected

intensity matrix of sample (Isample) as shown below:

Msample � A†IsampleW
† (12)

2.3 Optimization of the modified ECM

The ECM assumes that all the Mueller matrices of standard

samples are perfectly known. However, due to noise in the

system, the reconstruction of the equivalent Mueller matrices

by calculating the ratios of eigenvalues becomes inefficient; in

fact, even if the whole system is perfectly known, the noise still

causes the SOP of light to deviate from the theoretical value, thus

decreasing the calibration performance. For higher calibration

accuracy, two optimizations for the modified ECM are

introduced: designing a reasonable polarization state analyzer

(PSA) to restrain noise and calculating the parameters of the

equivalent Mueller matrices by a noise insensitive method.

Frontiers in Physics frontiersin.org03

Zhou et al. 10.3389/fphy.2022.1097125

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1097125


Relevant studies have shown that the optimization of analysis

states over the Poincaré sphere can be described by the spherical-2

designs [26]. Considering each row of theN × 4 (N ≥ 4) matrix A

as a point on the surface of Poincaré sphere, the regular

tetrahedron (N = 4), the octahedron (N = 6), the cube (N = 8)

are well-known examples of spherical-2 designs [27]. Nevertheless,

the polarization modulation module of a CBMM system based on

dual-rotating retarders is usually composed of a fixed polarizer and

a rotating quarter-wave plate, which results that the modulated

polarization states cannot cover the entire sphere but only form an

8-shaped curve on the surface of Poincaré sphere. In addition, a

non-ideal quarter wave plate causes the 8-shaped curve incapably

crossing the two poles of Poincaré sphere. In the experiment, the

phase retardance of the quarter-wave plate used in the PSA is

approximately 96°. Taking into account the inherent limitations of

polarizationmodulators, we design the distribution of polarization

states on the surface of Poincaré sphere for a fixed polarizer (FP)

based PSA and a rotating polarizer (RP) based PSA, respectively.

Two quantitative indicators the condition number (CN) and

the equally weighted variance (EWV) are used to estimate the

performance of PSA [28, 29],

CN � μ0
μ3
,

EWV � ∑
j�0

1

μj
2, j � 0, 1, 2, 3 (13)

where the μj is the singular value of a matrix A. Theoretically,

the optimal distribution of polarization states with constraints on the

surface of Poincaré sphere can still be obtained by minimizing the

CN or EWV with the genetic algorithm (GA) [30]. Considering the

two constraints of a fixed polarizer and a non-ideal waveplate, part

of the optimal modulation frames for a FP-based PSA and a RP-

based PSA are shown in Figure 2. It is found that the optimal results

given by the CN and EWV are consistent with each other. For a FP-

based PSA, the optimal frames are irregular polyhedra with small

volumes since the modulable polarization states are restricted to the

8-shaped curve on the surface of Poincaré sphere, as shown in

Figures 2A–C.And for a RP-based PSA, the polarization states in the

polar regions on Poincaré sphere become unmodifiable as the phase

retardance of the quarter-wave plate deviates from 90°, as shown in

Figures 2D–F. Generally, the influence of a non-ideal quarter wave

plate on the optimal results is insignificant, the optimal modulation

frames are still inscribed regular polyhedra with only the optimal

frame for RP-6 being slightly tilted.

To compare the performance of different optimal modulation

frames in the Mueller matrix measurements, a homogeneous wave

plate is used as the sample and itsMuellermatrix image ismeasured

under different polarization analysis modes. Then the phase

retardance image of the sample for each of optimal modulation

frames is calculated by Mueller matrix polar decomposition

(MMPD) method, respectively [31]. The SNR calculated for

each phase retardance image is shown in Table 1. The CNs of

the RP mode can reach

3

√
, which is considered as the theoretical

minimum CN for an optimal PSA [32], while the CNs of the FP

mode cannot reach this limit due to the inherent constraint of the

FP mode. For the same N, the optimal modulation frame of the RP

mode has smaller optimization indicators, i.e., the CN and the

EWV, and a higher SNR, thanks to the higher degree of freedom of

FIGURE 2
(A–C) Optimal modulation frames of a FP based PSA for N = 4, 6, 8, (D–F) optimal modulation frames of a RP based PSA for N = 4, 6, 8.
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the RP mode. The EWV decreases as N increases while the CN is

independent of N, because the CN only considers the ratio of the

largest and smallest singular values of a matrix A whereas the EWV

takes into account the effect of all singular values. As only the EWV

can be used to estimate the performance of PSA in the presence of

Poisson noise [33], it can be seen that optimizing the EWV is

effective in improving the SNR of the measurement results despite

the fact that the CN remains the same, which indicates that the

EWV is a better indicator. More importantly, Table 1 proves that

optimizing the distribution of polarization states on the surface of

Poincaré sphere can effectively suppress noise and improve the

SNR of measurement results, even under an optimally constrained

condition.

In the previous calibration study, the ellipsometric parameters of

standard samples are obtained by calculating the ratios of the

eigenvalues of the matrix Ci according to Eq. 7. Nevertheless,

due to noise in the system, it is found that such a Mueller

matrix reconstruction method for equivalent standard samples is

inaccurate; especially the transmission coefficient τ′i and the

retardance Δ′
i are calculated with poor accuracy. Assuming that

the transmission coefficients of the ± 45° linear polarizers are the
same, i.e., τ2′ � τ3′, and their phase retardances can be ignored,

i.e., Δ2
′ � Δ3

′ � 0, there are only 6 parameters of equivalent

standard samples that need to be accurately calibrated: one phase

retardance Δ4
′, two transmission coefficients τ2′ and τ4′, and three

azimuth angles θ2, θ3 and θ4. In the absence of noise, if all

parameters of equivalent standard samples are correct, all the

eigenvalues of the Hermitian matrix L are non-zero except one;

on the other hand, if the reconstruction of the equivalent standard

samples is inaccurate, the system has only a trivial solution and all

the eigenvalues of L are nonzero [16]. Owing to noise in the system,

the minimum eigenvalue of the system is no longer zero, however

the eigenvalues still satisfy the following relationship that the more

accurately the equivalent standard samples are reconstructed, the

smaller the minimum eigenvalue of L is with respect to the 15 other

eigenvalues [16]. Therefore, it is possible to calculate the

6 parameters of equivalent standard samples by means of an

optimization with the result given by Eq. 7 as a starting point.

Similar study has shown that the reconstruction of matrices by

means of an optimization has better noise resistance than the direct

calculation of the ratios of eigenvalues [20]. In the modified ECM,

we adopt the following fitness function,

f � λ16 τ2
′, τ4

′, θ2, θ3, θ4,Δ4
′( )

λ15 τ2
′, τ4

′, θ2, θ3, θ4,Δ4
′( ) (14)

where λ16 is the smallest eigenvalue and λ15 is the second smallest

eigenvalue of matrix L, respectively. The fitness function can be

easily solved by various optimization algorithms such as the

genetic algorithm. Hence, the Mueller matrix reconstruction for

equivalent standard samples is transformed from calculating the

ratios of the eigenvalues of the matrix Ci to an overall

optimization for the matrix L.

For the same set of experimental data, we compared the accuracy

and relative error (RE) of the parameters of equivalent standard

samples calculated by different methods, as shown in Table 2. It can

be seen that the RE calculated by the previous method is as high as

5%, while the RE calculated by means of an optimization is less than

1.6%, only 1/3 of the former. In other words, the accuracy of the

proposedmethod to reconstruct theMueller matrix of the equivalent

standard sample is three times that of the previous method.

The accuracy of the equivalent standard sample has a direct

impact on the final accuracy of the calibration. The comparison

results of the eigenvalues of Matrix L calculated with different

methods are shown in Figure 3. Thanks to the more accurate

Mueller matrices of equivalent standard samples, the minimum

eigenvalue of the proposed method is 1.45E-05, which is two

orders of magnitude lower than that of the previous method. In

ECM, the error estimator ε � 
λ16/λ15

√
is commonly used to assess

the actual relative error of the entire system after calibration [31].

The error estimator ε of the previous method is 0.72, while that of

the new method is 0.016, which also means that the calibration

accuracy of the proposed method is more than 40 times higher

than that of the previous method.

3 Results and discussion

To compare the calibration performance of the modified ECM

with the error model-based methods such as the ACM and NCM,

wemeasured several samples including a polarizer, a wave plate, and

a well-aligned silk sample. For the modified ECM, we adopt the RP-

8 polarization state analysis mode and reconstruct the Mueller

matrices of equivalent standard samples by means of an

optimization with the genetic algorithm. For the ACM and

NCM, the quarter-wave plates in PSG and PSA rotate

synchronously with a fixed ratio of angular velocity 1:5 and a

total of 30 measurements are required to calculate the Mueller

matrix image of the sample. During calibration with the ACM and

the NCM, the two polarizers in the PSG and PSA are fixed, in other

words the PSA is in the FP mode. Since the transmission Mueller

matrices of transparent samples can be accurately measured in a

calibrated TMM system, their true equivalent Mueller matrices

which can be calculated by Eq. 3 are in fact well-known, namely

Mtrue. Therefore, it is simple to compare the differences of the

TABLE 1 The SNRs of measurement results in different configurations.

N The FP mode The RP mode

CN EWV SNR (dB) CN EWV SNR (dB)

4 2.86 4.32 50.02 1.73 2.500 51.66

6 2.86 2.87 50.28 1.73 1.667 52.26

8 2.86 2.18 51.68 1.73 1.250 53.62
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measured equivalent Mueller matrices of samples, i.e.,Mmeasured by

different calibration methods with respect to Mtrue during the

calibration of the CBMM system.

To estimate the performance of different calibration

methods, four accuracy indicators the average root mean

square error (RMSE), the average maximum error (MAX ),

the average relative diattenuation error (δD), and the average

relative retardance error (δR) are defined as follows,

RMSE � average(RMSE Mmeasured −Mtrue( )
MAX � average MAX Mmeasured −Mtrue( )( )

δD � average
D Mmeasured( ) −D Mtrue( )

D Mtrue( )( )
δR � average

R Mmeasured( ) − R Mtrue( )
R Mtrue( )( ) (15)

where the “average” refers to the average over all pixels in the

selected area of the Mueller matrix image, D and R represent the

diattenuation function and the phase retardance function defined

in theMMPD, respectively.RMSE andMAX are used to estimate

the average and maximum deviation of the Mueller matrix

measurement results given by different calibration methods

from the true Mueller matrix Mtrue, respectively. δD and δR

are used to estimate the relative diattenuation error and the relative

retardance error for different calibration methods, respectively.

The Mueller Matrix images of a quarter-wave plate (GCL-

060403, 488 nm, Daheng, Optic, China) and a polarizer

(LPVISE100-A, 400–700 nm, Thorlabs, Inc., U.S.) are measured

in the CBMM system based on three different calibration methods.

The comparison results are shown in Figure 4. It is clear that the

modified ECM has the best calibration performance, with the NCM

the second best and the ACM the worst. For the wave plate sample,

the RMSE and the MAX of the modified ECM are 0.0054 and

0.034, which are less than half and about 3/5 of the results of the

NCM, respectively. Due to the absence of the beam splitter in the

error model, theMAX of the ACM is close to 0.15, which indicates

that the ACM is not suitable for the calibration of the CBMM

system. Although the NCM takes into account the effect of the beam

splitter, it is still less effective than the modified ECM, due to the

deviation of the error model from the actual system and over-

calibration. Calibration results for the polarizer sample with different

methods are similar to the former results. In addition, the error bars

of the modified ECM are also minimum, benefiting from the

efficient noise suppression of the optimal RP-based PSA.

In the next experiment, a well-aligned silk sample is selected as

the experimental sample, as shown in Figure 5. Because of its highly

scattering property and typical birefringent nature, the silk sample is

an ideal object of study for the Mueller matrix imaging system [34].

As the illumination light and detection light are collinear in the

CBMM system, several polarization parameters independent of the

azimuth angle of the sample, i.e., rotation invariant indicators can be

derived from theMueller matrix [35]. Obviously, if a CBMM system

is well calibrated, the rotation invariant indicators separated from

different azimuthal regions of a circularly symmetric sample should

be constant; on the other hand, when a CBMM system is not well

calibrated, these rotation invariant indicators may still be orientation

dependent. Considering the circular symmetry of the silk sample, it

is possible to estimate the calibration performance of different

calibration methods in the view of symmetry.

In the experiment, we select three different azimuthal regions

on the silk sample, i.e., ± 45° and 90°, as shown in the red

TABLE 2 Parameters of equivalent standard samples calculated by different methods.

Parameters Actual values The previous method The proposed method

Values REs (%) Values REs (%)

τ2′ 0.321 0.337 4.98 0.326 1.56

τ4′ 0.964 0.982 −1.87 0.961 −0.31

θ2 −44.99° −44.70° −0.66 −45.34° 0.78

θ3 44.99° 45.50° 1.12 45.56° 1.26

θ4 30.18° 31.03° 2.80 29.86° −1.06

Δ4
′ 96.03° 92.12° −4.07 95.97° −0.05

FIGURE 3
Comparison of the eigenvalues calculated by different
methods.
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FIGURE 4
The calibration performance comparison of three calibration methods with different samples, (A) a wave plate sample, (B) a polarizer sample.

FIGURE 5
A well-aligned silk sample (A) and its Mueller matrix image (B).

FIGURE 6
Frequency distribution images of different rotation invariant indicators, (A–C) rotation invariant indicator DL , (D–F) rotation invariant indicator
rL.

Frontiers in Physics frontiersin.org07

Zhou et al. 10.3389/fphy.2022.1097125

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1097125


rectangles in Figure 5A. Two rotation invariant indicators are

defined as follows:

DL �

M12

2 +M13
2

√
rL �


M24

2 +M34
2

√
(16)

where M12, M13, M24, and M34 are Mueller matrix elements.

The rotation invariant indicator DL represents the linear

diattenuation of the sample and rL relates to the ability of

the sample to convert circularly polarized light into linearly

polarized light [35]. Frequency distributions images ofDL and

rL obtained by different calibration methods are shown in

Figure 6 [36].

It is clear that the rotation invariant curves obtained by the

modified ECM for different azimuthal regions are perfectly

coincident with each other, while the results of the error

model-based calibration methods are partially non-overlap. In

other words, the rotation invariant indicators measured by the

modified ECM do not depend on the azimuth angle of samples,

whereas the results given by the NCM and the ACM are still

azimuth dependent. As a result, it can be deduced that only the

calibration result of the modified ECM is reliable from the view of

symmetry. In fact, the calibration performance of the NCM and

the ACM depends on their error models, however, it is difficult

for a theoretical error model to accurately describe the actual

measurement system. In addition, solving an error model that is

overly complex may lead to over-calibration, which affects the

accuracy of the calibration. The major advantage of the modified

ECM is that it does not require modelling the errors in the

system, hence it is more suitable for the complex CBMM system.

Thanks to the optimal modulation frames for the PSA and the

optimization-based Mueller matrix reconstruction method, the

modified ECM gives the best calibration performance in the

CBMM system.

4 Conclusion

In this paper, based on the eigenvalue calibration method we

propose a simple modified ECM to calibrate the CBMM system

configured in double-pass. In the modified ECM, we transform

the complex double-pass calibration problem into a simple

single-pass form by using mirror symmetry and the concept

of the equivalent standard sample. To suppress the effect of noise

on calibration accuracy, we design the distribution of

polarization states over Poincaré sphere considering the

inherent constraints of polarization modulators, and

reconstruct the Mueller matrix of equivalent standard samples

by means of an optimization. It is found that an optimal PSA can

effectively improve the SNR of the measurement data and the

optimization-based Mueller matrix reconstruction method is

more robust against noise than the direct calculation method.

After optimization, the accuracy of the modified method is

40 times better than the previous variants of the ECM. The

comparison results with the error model-based calibration

methods indicate that the modified ECM has clear advantages

in the calibration of the CBMM system with higher accuracy and

superior reliability.
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