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Direction Of Arrival (DOA) of signals detection technology is an important

vehicle in the field of in remote sensing, radar, wireless communication. In

this study, we elaborate on an enhanced method to detect the DOA. In the

developed scheme, we mainly focus on solving the steering matrix of the

array which contains all the information of the signals. The iterative relation

between the steering matrix and the signal vector is first established on the

basis of the equation of the array output. Then, to get a more accurate of

steering matrix, we construct a cost function that aims to minimize some

signal subspace error. In the optimization process of the developed

scheme, we also set a constraint for the steering matrix which can

effectively eliminate convergence on local optimum and also reduce the

number of iterations. Subsequently, the steering matrix of the array can be

recovered faithfully. Finally, the DOA can be solved from the estimated

steering matrix. Explicit analysis and derivation of the proposed scheme are

presented.
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Introduction

Array signal processing is an indispensable technique in signal processing with

ubiquitous applications [1, 2]. The Direction Of Arrival (DOA) detection technology

is a very popular topic in array signal processing [3, 4] in the field of in remote sensing,

radar, wireless communication, etc. High-resolution subspace-based DOA methods have

attracted considerable attention concerning the accurate detection of the DOA from

observations of array output. The most representative high-resolution subspace-based

approaches are the MUltiple SIgnal Classification (MUSIC) [5] and the Estimation Signal

Parameter via Rotational Invariance Techniques (ESPRIT) [6]. The MUSIC method

detects the DOA based on the orthogonality between the signal subspace and noise

subspace [7, 8], and the ESPRIT algorithm builds on the rotational invariance of signal

subspaces [9, 10]. The detection performance of this type of methods mainly depends on
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the accuracy of the signal subspace. Thus, how to capture a high-

precision signal subspace has always been the pursuit of these

approaches [11, 12].

In this study, we design an enhanced scheme for the DOA

detection. During the design process, a cost function by

minimizing some signal subspace error is established to

optimize the steering matrix of the array [13, 14]. In the

optimization, a constraint is set to converge rapidly and

eliminate converging on local optimum. Ultimately, the

DOA can be solved from the obtained steering matrix of

the array. We provide a series of simulations to

demonstrate the superiority of the proposed method. To

the best of our knowledge, the idea in this paper has not

been considered in previous studies.

The organization of the paper reflects the key phases of the

design process. The array signal model is first presented to

formulate the problem. Next, we develop an enhanced DOA

detection scheme through optimization of the steering matrix of

the array. This is followed by the experimental results.

Conclusions are covered in the last section.

Problem formulation

Without loss of generality, in this letter, we use a Uniform

Linear Array (ULA) to illustrate the array signal model for DOA

detection. We consider P narrow band noncoherent far field

signals sp(t){ }P
p�1 [15, 16] with different DOAs impinging on the

ULA which is composed of M antenna elements. Based on the

above conditions, the array output is generally written in the

following manner

X t( ) � As t( ) + n t( ) (1)
where n(t) is the noise vector, and A �
[a1, a2,/, ap,/, aP] ∈ CM×P contains the DOA information

that is the so-called steering matrix of the array. For a given

ULA, the steering vector in A is usually written as

ap � exp 0,/, j
2πd
λ

m − 1( ) sin θp,/, j
2πd
λ

M − 1( ) sin θP[ ]T

m � 1, 2,/,M

(2)
where T stands for the transpose operation, d denotes the spacing

between adjacent antenna elements, λ and θp are the wavelength
and the pth DOA of the signals, respectively. The array signal

model is shown in Figure 1.

The high-resolution subspace-based approaches detect the

DOA based on the accurate signal and the noise subspaces.

Normally, the signal and the noise subspaces can be achieved

through the Eigen decomposition of the array output covariance

matrix [17]. Theoretically, the Eigen decomposition of the array

output covariance matrix is computed in the following manner

RX � E XXH{ } � ARsA
H + σ2I (3)

where H stands for the complex conjugate transpose, Rs is the

correlation matrix of the signal vector, and σ2 means the noise

power. The eigenvalue decomposition of the array output

covariance matrix is expressed as

RX � U sAsU
H
s + σ2UnU

H
s (4)

where As is a diagonal matrix composed of P signal

eigenvalues, U s and Un are respectively the signal and noise

subspaces determined by the distribution of eigenvalues. Then,

the DOA of the signals can be solved with the high-resolution

subspace-based approaches.

Most of the existing subspace-based methods enhance the DOA

detection performance through solving or optimizing an accurate

signal subspace, which has always been a hot topic for scholars [18].

Optimization of the signal subspace

Based on the above array signal model, in this section, we

develop a novel optimization scheme of the signal subspace.

Mathematically, the detection of the DOA can be considered as

the solution of the steering matrix of the array, and the

corresponding problem is formulated as

Â � argmin
A

X − As‖ ‖22 (5)

where ‖•‖22 denotes the 2-norm. Normally, if we fix one of the

variables, the other one can be solved through the method of least

squares (by minimizing the standard squared error), which is

expressed in the following manner

Â � X ŝ ŝ ŝT[ ]−1 a( )
ŝ � Â

T
Â[ ]−1Â X b( ) (6)

It seems that the steering matrix of the array can be obtained

in the above way (iteratively update the steering matrix and the

FIGURE 1
Signal model of the ULA.
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signal vector). However, the array output contains not only

signals but also noises, minimizing the standard squared error

of (5) to produce the steering matrix is probably not desirable. To

capture an accurate steering matrix so as to solve the DOA of the

signals, we carry out the following design.

Assume that the steering matrix of the array computed by

minimizing some cost function during the iteration is ~At, where t

denotes the index of the successive iteration. Then, we build up a

signal subspace in the following form

~U t � ~At
~A
H

t
~At[ ]−1 /2 (7)

and the projection matrix [19, 20] of the signal subspace is

defined as

Qt � ~At
~A
H

t
~At[ ]−1 ~AH

t (8)

Ideally, this reconstructed signal subspace and the estimated

signal subspace through the covariance matrix of the array

output should be equal. Thus, from this point of view, we

establish such a cost function

J � ~A ~A
H ~A[ ]−1 ~AH − Û sÛ

H

s (9)

and combine it with (5) to optimize the signal subspace to

determine the DOA.

Proceeding with more details, the developed scheme starts by

computing the covariance matrix of the array output. Then, a set

of initial DOAs is estimated using some classical approaches (say,

MUSIC, ESPRIT, etc.) to form an initial steering matrix of the

array ~A0 to promote the implementation of the algorithm.

Subsequently, the steering matrix of the array and the signal

vector update according to (6), and then minimize the

constructed cost function. The entire process is repeated until

there are no significant changes to the entries of the cost function

reported in the two successive iterations of the method. Finally,

the DOA can be solved from the resulting steering matrix of the

array.

In order to avoid the algorithm falling into a local optimum,

we set a constraint for the steering matrix of the array. Let

U(θp0, δ) denote the δ-neighborhood of θp0 (the pth initial

DOA), which is expressed in the following form

U θp0, δ( ) � χ θp0 − δ < χ < θp0 + δ
∣∣∣∣{ } (10)

That is, during the iteration process, we limit the steering

matrix of the array to a certain range by keeping the DOA to be

detected to a certain range, which can effectively eliminate

convergence on local optimum and also reduce the number of

iterations of the algorithm. Obviously, this strategy can not only

ensure the detection accuracy of DOA, but also accelerate the

convergence speed of the method.

Experimental studies

We offer a series of simulations to demonstrate the Root-

Mean-Square Error (RMSE) [20] performance of the approach

compared with the MUSIC and the ESPRIT methods. In all

simulations, a 15 elements ULA with a relative interelement

spacing of d = λ/2 is used, and four narrowband signals with the

DOAs [5°, 10°, 15°, 30°] impinge on the array. In this letter, the

RMSE is defined as [21, 22].

FIGURE 2
RMSE versus SNR.

FIGURE 3
RMSE versus number of snapshots.
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10 log 10

�����������������������
1
N

∑N
n�1

1
P
∑P
p�1

θ̂p n( ) − θp[ ]2⎧⎨⎩ ⎫⎬⎭
√√

dB( ) (11)

where N denotes the independent trials, and in the following

simulations we set it as 200; θ̂p is the pth estimated DOA of the θp.

First, we test the RMSE performance of the methods versus the

SNR, where the number of snapshots is fixed at 32, and the SNR

varies from −10 to 0 with two intervals. Themeans of the simulation

results are plotted in Figure 2. It is apparent that the performance of

DOA detection is enhanced compared with the MUSIC and the

ESPRIT methods with the developed method, and the developed

method is also not very sensitive to the low SNR.

After that, we test the RMSE performance of the methods

versus the number of snapshots. In the simulation, the SNR is

fixed as −10 dB, and the number of snapshots varies from 32 to

80 with eight intervals. Figure 3 shows the simulation results. It is

noticeable that the proposed method outperforms the MUSIC

method and becomes insensitive to the changes of the number of

snapshots. As previously mentioned in this letter, the detection

performance of these subspace-based methods mainly depends

on the accuracy of the signal subspace. The developed scheme

optimizes the signal subspace through constructing a cost

function and determining an optimal solution of the steering

matrix of the array so as to solve the DOA. During this process,

the signal subspace is optimized and the performance of the DOA

detection becomes enhanced.

Conclusion

A scheme for DOA detection is put forward in this paper.

The proposed scheme mainly involves the construction of the

cost function of the steering matrix and the design of the steering

matrix optimization. A constraint for the steering matrix is also

set to make the method converge fast and eliminate the

convergence on local optimum. The DOA is solved from the

resulting steering matrix of the array. The simulation results

indicate that the developed scheme achieves much better

estimation performance than the traditional algorithms.

Hence, this paper proposes a fresh way to detect the DOA

and also poses a problem of reducing the complexity of the

method, as the developed scheme includes a series of iterations.

Furthermore, hardware design and consideration of a real noise

environment would also be interesting topics for research.
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