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The BUQEYE collaboration (Bayesian Uncertainty Quantification: Errors in Your
effective field theory) presents a pedagogical introduction to projection-based,
reduced-order emulators for applications in low-energy nuclear physics. The
term emulator refers here to a fast surrogate model capable of reliably
approximating high-fidelity models. As the general tools employed by these
emulators are not yet well-known in the nuclear physics community, we discuss
variational andGalerkin projectionmethods, emphasize the benefits of offline-online
decompositions, and explore how these concepts lead to emulators for bound and
scattering systems that enable fast and accurate calculations using many different
model parameter sets. We also point to future extensions and applications of these
emulators for nuclear physics, guided by themature field of model (order) reduction.
All examples discussed here and more are available as interactive, open-source
Python code so that practitioners can readily adapt projection-based emulators for
their own work.
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1 Introduction

Nuclear systems are notoriously complex. But typically, our theoretical modeling of nuclear
phenomena contains superfluous information for quantities of interest. Model order reduction
(MOR) refers to powerful techniques that enable us to reduce a system’s complexity
systematically (e.g., see Refs. [1–3] for comprehensive introductions). These techniques
enable emulators, which are low-dimensional surrogate models capable of rapidly and
reliably approximating high-fidelity models, making practical otherwise impractical
calculations. But the nuclear physics community has barely scratched the surface of the
types of emulators that could be crafted or explored their full range of applications.

A fertile area for new emulators is uncertainty quantification (UQ) [4–13] in nuclear
physics, which is the general theme of this Frontiers Research Topic [14]. Quantifying
theoretical uncertainties rigorously is crucial for comparing theory predictions with
experimental and/or observational constraints and performing model comparison and/or
mixing [15]. However, UQ has only recently drawn much attention as nuclear theory has
entered the precision era. Bayesian parameter estimation for nuclear effective field theory (EFT)
and optical models, UQ for nuclear structure pushing toward larger masses and for reactions
across the chart of nuclides, experimental design [15–17] for the next-generation of precision
experiments probing the nuclear dripline, and many other applications will all benefit from
emulators. This Research Topic [14] already contains several new applications of emulators for
nuclear physics. Key to the wider adoption of these tools is the evangelization of their potential
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and the creation of pedagogical guides for those first starting in this
field [18]. This article is aimed at both goals.

To do so, the BUQEYE collaboration (Bayesian Uncertainty
Quantification: Errors in Your EFT) [19] has created a rather
unconventional document comprised of the article you are reading
now along with a companion website [20] containing interactive
supplemental material and source code that generates all the results
shown, and much more. Interested individuals can dynamically
generate different versions of this document based on tunable
parameters. We hope that this format encourages readers to
experiment and build upon the examples presented here, thereby
facilitating new applications.

Various types of emulators have already been applied with success
within nuclear physics. A non-exhaustive list of applications includes
Refs. [7, 9, 21–42]. But as emphasized in Refs. [18, 43], there is a broad
and relatively mature MOR literature outside of nuclear physics
waiting to be exploited (e.g., see Ref. [44] for an overview of the
Universe of MOR approaches). Our goal in this guide will be to
facilitate this exploitation through a selective treatment of physics-
informed, projection-based emulators relevant to a wide range of
nuclear physics problems.

To this end, we organize this guide as follows. Section 2 focuses on
emulators for bound-state calculations using subspace-projection
methods. We then provide a more general introduction to MOR
for solving differential equations in Section 3, which leads to our
discussion of scattering emulators in Section 4. Section 5 concludes
with a summary and outlook. Throughout, we draw connections
between variational and Galerkin projection methods and illustrate
these concepts with pedagogical examples, supplemented by source
code on the companion website [20].

2 Eigen-emulators

In this section, we discuss the construction of fast and accurate
emulators for bound-state calculations. Given a (Hermitian)
Hamiltonian H(θ) parameterized by θ, we aim to find the solutions
{E(θ), |ψ(θ)〉} of the Schrödinger Equation

H θ( )|ψ θ( )〉 � E θ( )|ψ θ( )〉, (1)
subject to the normalization 〈ψ(θ)|ψ(θ)〉 = 1. The components of the
vector θ may be model parameters, such as the low-energy couplings
of a nuclear EFT, or other parameters describing the system of interest
[33, 40]. We consider here cases in which Eq. 1 can be solved with high
fidelity, but doing so requires a significant amount of compute time.
This compute time is compounded when repeated solutions are
required throughout the parameter space, e.g., during optimization
routines or Monte Carlo sampling. In the following, we will discuss
how the Ritz variational principle and the Galerkin method can be
used to construct rapid and reliable1 emulators that facilitate these
calculations.

2.1 Variational approach

To construct an emulator for bound state calculations, we use here
the Rayleigh–Ritz method2 and thus consider the energy functional

E ~ψ[ ] � 〈~ψ|H θ( )|~ψ〉 − ~E θ( ) 〈~ψ|~ψ〉 − 1( ), (2)
where the Lagrange multiplier ~E(θ) (also known as Ritz value)
imposes the normalization condition 〈~ψ|~ψ〉 � 1 for bound states.
The Generalized Ritz Theorem [47]3 states that the functional (Eq.
2) is stationary about all (discrete) solutions of the Eq. 1, not just the
ground state solution, which can be seen by imposing the stationary
condition

δE ~ψ[ ] ≡ 0 � 2〈δ ~ψ| H θ( ) − ~E θ( )[ ]|~ψ〉 − δ~E θ( ) 〈~ψ|~ψ〉 − 1[ ], (3)

and noting that Eq. 3 is only fulfilled for arbitrary variations 〈δ ~ψ| if |~ψ〉
is a solution of the Schrödinger Eq. 1 with ~E(θ) � E(θ).

Let us now define the trial wave function we use in conjunction
with the functional (2):

|~ψ〉 �∑nb
i�1

βi|ψi〉 ≡ X �β, (4a)

X � |ψ1〉 |ψ2〉 / |ψnb
〉[ ], (4b)

where the column-vector �β contains the to-be-determined coefficients
and the row-vector 4 X the (in principle) arbitrary basis states. Here, we
use snapshots of high-fidelity solutions of the Eq. 1 at a set of given
parameter values; i.e., {|ψi〉 ≡ |ψ(θi)〉}nbi�1 [2, 48–50]. No assumption
has been made as to how to obtain the high-fidelity solutions.

FIGURE 1
Illustration of a projection-based emulator using only two
snapshots |ψi〉 ≡ |ψ(θi)〉 (dark gray points). These snapshots are high-
fidelity solutions of the Schrödinger Eq. 1, which span the subspace of
the reduced-order model, as indicated by the red arrows and the
gray plane. The trajectory of a high-fidelity eigenvector is denoted by the
blue curve. The orange dot depicts an eigenvector |ψ(θ)〉 along the
trajectory that, when projected onto the reduced space, corresponds to
the turquoise point; hence, the difference between the orange and
turquoise points represents the error due to the emulator’s subspace
projection (i.e., the dotted line). Inspired by Figure 2.1 in Ref. [2].

1 A reliable emulator may not necessarily be required to be highly accurate,
e.g., if the other uncertainties of the theoretical calculation dominate the
overall uncertainty budget

2 For a critical commentary on the history of the method’s name, see, e.g.,
Refs. [45, 46].

3 Many helpful theorems relevant to the Rayleigh–Ritzmethod can be found in
Section 3 in Ref. [47].

4 In a representation of H, the ψi corresponding to |ψi〉 are the nb columns of
the matrix X in that representation
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Figure 1 motivates the efficacy of snapshot-based trial
functions. Although a given eigenvector |ψ(θ)〉 obtained from
a high-fidelity solver resides in a high-dimensional (or even
infinite-dimensional) space, the trajectory traced out by
continuous variations in θ remains in a relatively low-
dimensional subspace (as illustrated by the gray plane). Hence,
linear combinations of high-fidelity eigenvectors spanning this
subspace (i.e., the snapshots) make extremely effective trial wave
functions for variational calculations. In nuclear physics,
snapshot-based emulators already have accurately
approximated ground-state properties, such as binding
energies, charge radii [7, 9, 25], and transition matrix elements
[9, 29], and have been explored for applications to excited
states [51].

Given the trial wave function (4), we determine the
coefficients �β+ that render E[~ψ � X �β] stationary under
variations |δ ~ψ〉 � X|δ �β〉 of the trial wave function, as opposed
to arbitrary variations. Solving for the optimal �β+ occurs then in
the low-dimensional space spanned by the basis elements in X
(i.e., the red arrows in Figure 1) rather than in the high-
dimensional space in which |ψ〉 resides. From the stationarity
condition Eq. 3, we obtain the reduced-order model [52],

~H θ( ) �β+ θ( ) � ~E θ( ) ~N �β+ θ( ), (5a)
�β
†

+ θ( ) ~N �β+ θ( ) � 1, (5b)
where ~H(θ) ≡ X†H(θ)X is the subspace-projected Hamiltonian
and ~N ≡ X†X the norm matrix in the snapshot basis. As
opposed to H(θ) in Eq. 1, ~H(θ) (and likewise ~N) is a nb × nb
Hermitian matrix,

~H θ( ) �
〈ψ1|H θ( )|ψ1〉 / 〈ψ1|H θ( )|ψnb

〉
..
.

1 ..
.

〈ψnb
|H θ( )|ψ1〉 / 〈ψnb

|H θ( )|ψnb
〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

In practice, the generalized eigenvalue problem Eq. 5 may
experience numerical instabilities due to small singular values in
~N. (The instabilities also appear in reduced-order modeling of
differential equations, see Section 3). One way to ameliorate these
instabilities is to orthonormalize the snapshots in X, hence
yielding ~N � 1. This approach could also permit some
efficiency gains, by excluding the least important vectors as
measured by their singular values. Alternatively, Ref. [53]
recently introduced a trimmed sampling algorithm that can
substantially reduce the effects of noise in solving generalized
eigenvalue problems. Finally, a well-known approach to
regularize both generalized eigenvalue problems and matrix
inversion is through the use of a nugget [54, 55]. Here, a
regularization parameter ] ≪ 1 (called a nugget) is added to
the diagonal of the ill-conditioned matrix one wishes to invert
(here, ~N), thus shifting its singular values.

By solving the generalized eigenvalue problem Eq. 5, one
obtains nb pairs {~E(θ), �β+(θ)} consisting of a Lagrange
multiplier (i.e., an eigenvalue) and its corresponding
coefficient vector. Let us index the eigenvalues of the Eq. 5 and
Eq. 1 in ascending order; that is, ~En#~En+1 and En#En+1,
respectively, with n = 1 indicating the lowest eigenvalue. If the
snapshot basis X in the trial wave function (Eq. 4) contains nb

linearly independent states, then the Min–Max Theorem [47]
asserts that each Lagrange multiplier,

~En θ( )PEn θ( ) for 1#n#nb, (7)
provides an upper bound on its corresponding eigenvalue of the
Schrödinger Eq. 1.5 Furthermore, the Generalized Ritz Theorem
implies that the ~En(θ) provide not only the variational bounds (Eq.
7) but also stationary approximations for these high-fidelity
eigenvalues. Adding another basis state to X can only improve
these approximations, which converge to the high-fidelity
eigenvalues as the projected subspace approaches the high-fidelity
space [47].

Although excited states can also be emulated, especially when
adding excited-state snapshots to the trial wave function to improve
the emulator’s accuracy (see also Ref. [51]), we focus on ground-state
properties and thus use only ground-state snapshots in the trial wave
function. For brevity, we will omit the subscripts henceforth. To obtain
the approximate ground-state wave function associated with ~E(θ), one
evaluates the Ritz vector |ψ(θ)〉≈ X �β+(θ). Expectations values of
operators O can then be straightforwardly computed using

〈ψ θ( )|O θ( )|ψ θ( )〉 ≈ �β
†

+ θ( ) ~O �β+ θ( ), (8)
with the subspace-projected ~O(θ) � X†O(θ)X. However, these
expectation values generally do not provide variational bounds
unless O = H is the Hamiltonian, as discussed (see, e.g., Figure 5 in
Ref. [25] for emulated 4He ground-state radii).

2.2 Galerkin approach

The reduced-order model (5) can be alternatively derived via a
Galerkin projection, as we will also see with the variational emulators
for scattering in Section 4. To this end, we construct the weak form of
the Eq. 1 by left-multiplying it by an arbitrary test function 〈ζ| and
asserting that

〈ζ |H θ( ) − E θ( )|ψ〉 � 0, ∀〈ζ |. (9)
If the weak form (9) is satisfied for all 〈ζ| for a given set {E, |ψ〉}, then
the set must also satisfy the Eq. 1. The proof of this statement can be
obtained via a contrapositive: if Eq. 1 were not satisfied, then one could
find a 〈ζ| such that Eq. 9 is nonzero.

The weak form of the high-fidelity system is the starting point for
deriving a reduced-order model. Although Eq. 9 still operates in the
large space in which |ψ〉 resides (cf. Figure 1), we can reduce its
dimension by replacing |ψ〉→|~ψ〉, where |~ψ〉 is defined in Eq. 4. With
the degrees of freedom for |ψ〉 reduced, we enforce a less strict
orthogonality condition: we select nb test functions ζi and assert
that the residual due to the trial wave function (cf. Figure 1)
should be orthogonal to the subspace Z spanned by these test
functions Z � [|ζ1〉, . . . , |ζnb〉]:

H θ( ) − ~E θ( )( )|~ψ〉⊥ Z, (10)
or likewise

5 For non-Hermitian Hamiltonians, one generally does not obtain the
variational bounds (Eq. 7) as can be observed in, e.g., the subspace-
projected coupled-cluster method developed in Ref. [7].
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〈ζ |H θ( ) − ~E θ( )|~ψ〉 � 0, ∀|ζ〉∈ Z. (11)
But replacing |ψ〉→|~ψ〉 also implies that the true eigenvalue E is in
general not exactly reproduced unless X contains |ψ(θ)〉. Hence, we
also had to apply the approximation ~E ≈ E in Eqs. 10 and 11.

In the Galerkin method, which is also known as the “method of
weighted residuals,” the test and trial function bases are chosen to be
equivalent; i.e.,Z � X . The so-called Galerkin condition Eq. 11 is then
equivalent to imposing that 〈ψi|H − ~E|~ψ〉 � 0 holds for i ∈ [1, nb].
This yields a system of nb equations with nb unknowns �β and, together
with the normalization condition, reduces to Eq. 5 obtained from the
variational principle in Section 2.1. However, we stress that the test
and trial function bases can be chosen differently (i.e., |ζi〉 ≠ |ψi〉),
which makes the Galerkin method more general than the variational
approach. Note that the normalization condition does not affect the
Galerkin condition Eq. 11 and can be implemented by normalizing the
trial function.

2.3 Emulator workflow and offline-online
decomposition

Figure 2 illustrates the workflow for implementing fast and
accurate emulators as described in Section 2.1. The workflow involves

1. a computational framework capable of reliably solving the high-
fidelity system Eq. 1,

2. the snapshot-based trial wave function Eq. 4 with the optimal
coefficients (i.e., the weights) determined by the Eq. 5, and

3. an efficient offline-online decomposition in which the
computational heavy lifting is performed once before the
emulator is invoked.

Several computational frameworks exist in nuclear physics
(and quantum chemistry) for solving the few- and many-body
Schrödinger Eq. 1 [56]. For illustration, Figure 2 assumes that the
high-fidelity solver performs a direct diagonalization of the Nh ×
Nh Hamiltonian in a chosen (truncated) model basis of length Nh.
The corresponding runtime ts per sampling point θi is indicated
by the width of the blue bar in Figure 2. In nuclear physics, such

approaches are referred to as Configuration Interaction (CI).
However, the following discussion will be independent of how
the high-fidelity solutions of the Eq. 1 are obtained in practice.

Using the high-fidelity solver, one constructs a set of snapshots
{|ψ(θi)〉}nbi�1 in the truncated model basis to build the columns of the
Nh × nb matrix X. The runtime for this task is nb × ts. For simplicity,
Figure 2 assumes nb = 3 and depicts the basis functions
schematically in different colors. This phase of the emulator
needs to be completed only once before the emulator is invoked
and is thus called the offline stage as opposed to the online stage of
the emulator. The predictions are made quickly and with little
memory footprint in the online stage.

The appearance of the full-order Hamiltonian during the
offline stage, where the projected Hamiltonian
~H(θ) ≡ X†H(θ)X is computed (see Figure 2), implies that this
class of projection-based emulators is intrusive in nature. In
general, intrusive emulators apply the basis expansions and
projections to the operators implemented in the high-fidelity
model [57]. On the other hand, non-intrusive emulators use
only outputs of the full-order solver without access to the full-
order operators such as the Hamiltonian. Non-intrusive
emulators include Gaussian processes [58], Dynamic Mode
Decompositions [59, 60], and other machine learning methods
[61–63]. More details on this classification scheme can be found in
Section 8 in Ghattas and Willcox [57].

The emulator’s efficiency greatly benefits from moving all size-Nh

operations into the offline stage, which can easily be achieved for
HamiltoniansH(θ) with an affine parameter dependence. These affine
operators can be written as a sum of products of parameter-dependent
functions hn(θ) and parameter-independent operators Hn,

H(θ) �∑
n

hn(θ)Hn. (12)

Note that the functions hn(θ) are only required to be smooth but not
necessarily linear in θ. The affine parameter dependence in Eq. 12 then
allows one to store the subspace-projected operators ~Hn � X†HnX
separately up front in the offline phase, from which

~H θ( ) �∑
n

hn θ( ) ~Hn, (13)

FIGURE 2
Illustration of the workflow for implementing fast and accurate emulators, including a high-fidelity solver (left) and an intrusive, projection-based
emulator with efficient offline-online decomposition (right), for sampling the (approximate) solutions of the Schrödinger Eq. 1 in the parameter space θ. For
brevity, the figure assumes that the snapshots are orthonormalized during the offline stage such that ~N � 1 in the emulator Eq. 5. See the main text for details.
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can be efficiently constructed for each θi during the online stage to
solve the emulator equation 5. For instance, Hamiltonians derived
from chiral EFT can be cast into the form (12) due to their affine
dependence on the low-energy couplings. The runtime per sample θi
in the online phase is therefore typically just a small fraction of that
of the high-fidelity solver, as depicted by the small blue box in
Figure 2. Likewise, emulating expectation values of other operators
with an affine parameter dependence via Eq. 8 also benefits from this
offline-online decomposition. For non-affine operators, various
hyperreduction methods have been developed to construct
approximate affine representations [50, 64], including the
empirical interpolation (EIM) [65–68] and gappy proper
orthogonal decomposition [69, 70]. See also Refs [48, 71–73] for
hyperreduction methods that interpolate X or ~H(θ) directly, and
Refs [33, 74] for recent applications of machine learning tools for
hyperreduction.

How should one choose the snapshots in the trial wave function
Eq. 4 effectively? For relatively small parameter spaces, one can use
Latin hypercube sampling to obtain space-filling snapshots or choose
the snapshots in the proximity of the to-be-emulated parameter
ranges, keeping nb ≪ Nh in practice. A chosen set of snapshots
expressed in the (truncated) model basis can be optimized by
applying a singular value decomposition (SVD) or the closely
related proper orthogonal decomposition (POD) [75] to the Nh ×
nb matrix X. One then creates a new set of snapshots from the
(orthonormal) left-singular vectors associated with the singular
values greater than a chosen threshold [64]. This (optional)
preprocessing step can be performed during the offline stage, as
illustrated in Figure 2, thereby rendering the Eq. 5 an eigenvalue
problem (i.e., ~N � 1) and less sensitive to numerical noise.

The basis states of the trial wave function can also be obtained
iteratively, using a greedy algorithm [64, 76, 77]. These algorithms
estimate and then minimize the emulator’s overall error by adding
basis states (obtained from a high-fidelity solver) in the parameter
space where the error is expected to be the largest. Greedy algorithms
require fast approximations of the emulator’s error and terminate
when either a requested error tolerance or a maximum number of
iterations has been achieved. Uncertainty quantification for reduced-
order models has been studied in various contexts, including
differential equations [64, 77, 78] and nuclear physics problems
[24, 43].

2.4 Illustrative example

The formal results so far in this Section can be illuminated by a
simple example, which allows us to compare results from a
snapshot-based emulator to more conventional approaches, such
as direct diagonalization in a harmonic oscillator basis and
Gaussian process emulation. Let us define the system we would
like to solve as a single particle with zero angular momentum in
three dimensions and trapped in an anharmonic oscillator
potential. This example can be directly generalized to few- and
many-body systems. The potential operator is the sum of a
conventional harmonic oscillator (HO) potential and a finite-
range piece:

V r; θ( ) � VHO r( ) +∑3
n�1

θn exp −r2/σ2n( ), (14)

with σn = [0.5, 2, 4] fm. The potential Eq. 14 has the affine structure
defined in Eq. 12 for θ and hence can be emulated rapidly after
projecting into the snapshot basis during the offline stage. Even the
high-fidelity system considered here is still small enough to be solved
quickly and accurately using a fine radial mesh on a standard
laptop. However, this provides an illuminating setting within which
we can observe many qualities seen in more complicated scenarios.

Following the MOR paradigm, we take snapshots of the high-
fidelity wave function at various training parameters {θi} and collect
them into our basis X. Here, we choose nb = 6 training points
randomly and uniformly distributed in the range [−5, 5] MeV for
all θn; 50 validation parameter sets are chosen within the same range.
The snapshots and the corresponding potentials are shown in Figure 3.
These snapshots are then used to construct the reduced-order system
as in Eq. 5. All of this, and more, is made simple by the
EigenEmulator Python class provided in the supplemental
material [20].

Once the reduced system has been constructed and the affine
structure of the Hamiltonian exploited to store the projected matrices
during the offline stage, we can begin rapid emulation during the
online stage. To help provide a baseline to a common approach in
nuclear physics, we provide an emulator constructed with the first nb =
6 HO wave functions as the trial basis X in Eq. 5. We label this
approach the HO emulator and the snapshot-based approach the
reduced-basis method (RBM) emulator. See Ref. [18] for a guide to the
extensive literature on RBMs. One can emulate quantities with this
HO approach via our OscillatorEmulator class [20].

For example, we take three of the validation parameter sets we
sampled and compare the exact and emulated wave functions for both
emulators. Figure 4 shows the results. The gray lines depict the nbwave
functions used to create the reduced-order models, and the colored
lines show the emulated results on top of the high-fidelity solutions
(black lines). Although both the reduced basis and HO basis are rich

FIGURE 3
Basis functions for training the snapshot-based eigen-emulator.
The black curves show the potential, and the blue curves show the wave
functions as functions of the radial coordinate r. The wave functions are
offset vertically by their corresponding energies for clarity. See the
main text for details.
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enough to capture the main effects of varying θ, the RBM emulator is
much more effective at capturing the fine details of the wave function.
This can be seen in more detail in Figure 5, where the absolute
residuals of the RBM emulator are orders of magnitude smaller than
those of the HO emulator. The sensitivity of the emulator accuracy as
nb is varied can be readily studied using the Python code provided on
the companion website [20].

The quality of the emulators can be understood by noting in
Figure 4 that the basis functions of the RBM emulator match much
more closely with the emulated wave functions than the HO emulator,
whose wave functions have nodes not seen in the ground state (see the
gray lines). Thus, although the HO basis functions may be better at
spanning the space of all possible wave functions, they are, in fact, a
poor basis for spanning the set of all possible ground states as θ are
varied. The RBM emulator constructs an extremely effective basis
almost automatically, with minimal input required by the modeler.
This can prove particularly effective for cases where the system’s
complexity limits the quality of the basis that can be constructed from
intuition or expertise alone.

Next, we discuss the emulation of bound-state observables.
Straightforward to emulate are the eigen-energies E(θ), whose
emulated values ~E(θ) are the result of solving the Eq. 5. But as
discussed in Section 2.1, other observables associated with the
operator O can be emulated via 〈ψ(θ)|O|ψ(θ)〉 ≈ 〈~ψ(θ)|O|~ψ(θ)〉
using the ~ψ(θ) found from Eq. 5. We choose to show the results of
emulating the radius-squared operator R2, defined here to be

〈ψ|R2|ψ〉 � 1
N∫

∞

0
r2 dr r2ψ2 r( ), (15)

with the normalization N � ∫∞
0
r2 drψ2(r). As stated previously, the

bulk of the numerical effort in the evaluation of this matrix element is
handled during the offline stage, where the integration is performed
once,

~R
2

ij ≡ 〈ψi|R2|ψj〉 � 1
N∫

∞

0
r2 dr r2ψi r( )ψj r( ), (16)

and then the online stage emulation can occur quickly via Eq. 8; i.e.,
〈ψ(θ)|R2|ψ(θ)〉 ≈ ∑ij

�β
(i)
+ (θ)~R2

ij
�β
(j)
+ (θ).

For illustrative purposes, we continue our example using the
trained RBM and HO emulators, but add a popular emulation tool
to the discussion: Gaussian processes (GPs). GPs are non-parametric,
non-intrusive machine learning models for both regression and
classification tasks [58, 79, 80]. Their popularity stems partly from
their convenient analytical form and flexibility in effectively modeling
various types of functions. GPs benefit from treating the underlying set
of codes as a black box [57]; as we will soon see, this is a double-edged
sword. We employ two independent GPs to emulate the ground-state
energy and the corresponding radius expectation value. Each GP uses
a Gaussian covariance kernel and is fit to the observable values at the
same values of θi used to train the RBM emulator. We use the
maximum likelihood values for the hyperparameters.

The absolute residuals at the validation points for each of the
RBM, HO, and GP emulators are shown in Figures 6 and 7 for the
energy and radius, respectively. Among these emulators, the GP
emulators perform the worst, despite being trained on the values of
the energies and radii themselves to perform this very emulation
task. Furthermore, its ability to extrapolate beyond the support of
its training data is often poor unless great care is taken in the
design of its kernel and mean function (see Figures 1 and 2 in Ref.
[25]). The GP suffers from what, in other contexts, could be
considered its strength: because it treats the high-fidelity system
as a black box, it cannot use the structure of the high-fidelity
system to its advantage (although some information can be
conveyed via physics-informed priors for the hyperparameters).
Note that the point here is not that it is impossible to find some GP
that can be competitive with other RBM emulators after using
expert judgment and careful (i.e., physics-informed)
hyperparameter tuning. Rather, we emphasize that with the
reduced-order models, remarkably high accuracy is achieved
without the need for such expertise.

FIGURE 4
Emulated wave functions for the RBM emulator (top panel) and HO
emulator (bottom panel) as a function of the radius. The solid black lines
represent the exact solution, and the dots represent the emulator result.
The gray lines give the wave functions used to train the emulator.
See the main text for details.

FIGURE 5
Absolute residuals of the emulated wave functions (in fm−1/2) based
on the RBM and HO emulator as a function of r, with colors
corresponding to those in Figure 4. The emulator results are compared
to the exact solutions. See the main text for details.
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The HO emulator performs better than the GP emulator, but it was
not “trained” per se, it was merely given a basis of the lowest six HO wave
functions as a trial basis, from which a reduced-order model was derived.
However, the HO emulator can still outperform the GP emulator because
it takes advantage of the structure of the high-fidelity system: it is aware
that the problem to be solved is an eigenvalue problem, for this is built into
the emulator itself. This feature permits a single HO emulator to emulate
the wave function, energy, and radius simultaneously.

Coming in first in the comparison of the emulators’ performances is
the RBM emulator, which typically results in higher accuracies than the
HO and GP emulators by multiple orders of magnitude. The RBM
emulator combines the best ideas from the other emulators. Like the GP,
the RBM emulator uses evaluations of the eigenvalue problem as training
data. However, its “training data” are curves (i.e., the wave functions)
rather than scalars (e.g., eigen-energies), like the GP is trained upon. Like
the HO emulator, the RBM emulator takes advantage of the structure of
the systemwhen projecting the high-fidelity system to create the reduced-
ordermodel.With these strengths, the RBM emulator is highly effective in
emulating bound-state systems, even with only a few snapshots and far
from the support of the snapshots (see Figures 1 and 2 in Ref. [25]). As we
will see in Section 4, many of these strengths carry over to systems of
differential equations.

3 Model reduction

In this Section, we provide a more general discussion of variational
principles and the Galerkin method as the foundations for
constructing highly efficient emulators for nuclear physics (see also
Ref. [18]). The general methods discussed here will be used as a
springboard to develop emulators for the specific case of scattering
systems in Section 4.

We consider (time-independent) differential equations that
depend on the parameter vector θ and aim to find the solution ξ of

D ξ; θ( ) � 0 inΩ, (17a)
B ξ; θ( ) � 0 on Γ, (17b)

where {D, B} are differential operators and Ω is the domain with
boundary Γ. See Ref. [18] for illustrative examples. Here, we use the

generic function ξ because different choices of ξ will be made in
Section 4. In what follows, we will discuss two related methods for
constructing emulators from Eq. 17, which states the physics problem
in a strong form (i.e., Eq. 17 holds for each point in the domain and on
the boundary). The first begins by finding a variational principle
whose stationary solution implies Eq. 17. The second instead
constructs the corresponding weak form of Eq. 17.

3.1 Variational principles

Variational principles (VPs) have a long history in physics and play a
central role in a wide range of applications; e.g., for deriving equations of
motion using stationary-action principles and Euler–Lagrange equations
in classical mechanics (see, e.g., Ref. [81] for a historical overview). Here,
we use VPs as an alternate way of solving the differential Eq. 17.

Variational principles are based on scalar functionals of the form

S[ξ] � ∫
Ω
dΩF ξ[ ] + ∫

Γ
dΓG ξ[ ], (18)

where F and G are differential operators. Many differential Eq. 17 can
be solved by finding stationary solutions of a corresponding functional
Eq. 18; i.e., the solution ξ+ that leads to δS[ξ+] � 0.

However, VPs can also lead straightforwardly to a reduced-order
model. This follows from the following trial ansatz

|~ξ〉 ≡ ∑nb
i�1

βi|ξi〉 � X �β, (19a)

X ≡ |ξ1〉 |ξ2〉 / |ξnb〉[ ], (19b)
with the to-be-determined coefficients vector �β. Rather than stipulate
that δS � 0 for any arbitrary variation δξ, we instead extract the
optimal coefficients, �β+, as those for which S is stationary under
variations in �β:6

δS �∑nb
i�1

zS
zβi

δβi � 0. (20)

FIGURE 7
Similar to Figure 6 but for the root-mean-squared radius

�����
〈R2〉
√

and
in units of fm.

FIGURE 6
Absolute residuals in the energy (in MeV) at the 50 validation points
for the RBM, HO, and GP emulators. The validation points are chosen
randomly from a uniform distribution within the same range as the
training points. See the main text for details.

6 For simplicity we consider ξ to be a real variable; for complex variables,
independent variations δ �β* should be included in the discussion
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The general case would involve a numerical search for the solution to
Eq. 20 but if S is quadratic in ξ, as are all the examples considered here,
then the solution can be determined exactly. In this case, S can be
written as

S[ �β] � 1
2
�β
u
A �β + �b · �β + c (21)

for some matrix A, vector �b, and scalar c. Symmetrizing the quadratic
portion—if it is not already symmetric—by rewriting A← (A + Au)/2
can be desirable for numerical purposes. It then follows that the
optimal coefficients, �β+ are those for which

δS � A �β+ + �b � 0, (22)
which can be solved for �β+ using standard linear algebra methods.
Solving for �β+ occurs only in a space of size nb, the number of basis
elements {ξi}nbi�1, rather than in the much larger space of ξ itself.
Therefore, as long as {ξi}nbi�1 approximately spans the space in which ξ

lives, the trial function constructed by Eqs. 19a and 22 will be both a
fast and accurate emulator of ξ.

Similar to the discussion in Section 2.1, the matrix A in Eq. 22 may
be ill-conditioned and require regularization. A nugget ] ≪ 1 can be
added to the diagonal elements of A to help stabilize the solution for
�β+ [54, 55].

3.2 Galerkin emulators

The Galerkin approach, also more broadly called the “method of
weighted residuals,” relies on the weak formulation of the differential
Eq. 17. To obtain the weak form, the differential equation and
boundary condition (in Eq. 17) are left-multiplied by arbitrary test
functions ζ and �ζ and integrated over the domain and boundary,
respectively, and then their sum is set to zero:

∫
Ω
dΩ ζD ξ( ) + ∫

Γ
dΓ �ζB ξ( ) � 0. (23)

If Eq. 23 holds for all ζ and �ζ , then Eq. 17) must be satisfied as well.
The form of Eq. 23 is often rewritten using integration by parts to
reduce the order of derivatives and simplify the solution.
Importantly, the weak form has the integral form needed for
our emulator application. The weak form and its Galerkin
projection are used extensively, e.g., in the finite element
method; see Refs. [82–84] for an in-depth study and examples.
For a discussion of the convergence properties of the Galerkin
method, its relation to abstract variational problems, and other
salient mathematical details, see Refs. [64, 85–87]. Here, we follow
the introduction of Galerkin methods as provided in Ref. [82].

Starting with the weak form, we can construct an emulator that
avoids the need for an explicit variational principle. It begins by first
noting that substituting our trial function Eq. 4 into D(ξ) and B(ξ) will
not, in general, satisfy Eq. 17 regardless of the choice of �β. Therefore,
there will be some residual, and the goal is to find the �β+ which
minimizes that residual across a range of test functions ζ and �ζ . This
system would be over-determined in the case of truly arbitrary test
functions, so instead, we propose the test bases

|ζ〉 �∑nb
i�1

δβi|ζ i〉, |�ζ〉 �∑nb
i�1

δβi|�ζ i〉, (24)

where δβi are arbitrary parameters, not related to the βi in Eq. 19a. The
δβi will play the same role as those in Eq. 20, namely as a bookkeeping
method for determining the set of equations that are equivalently zero.
By enforcing that the residuals against these test functions vanish for
arbitrary δβi, the bracketed expression in

δβi ∫
Ω
dΩ ζ iD X �β+( ) + ∫

Γ
dΓ �ζ iB X �β+( )[ ] � 0, (25)

is zero for all i ∈ [1, nb], from which the optimal �β+ are extracted.
Because this approximately satisfies the weak formulation, we have
found an approximate solution to Equation (17).

In a variety of cases [82], the subspace Z spanned by the test
function basis is chosen to coincide with the subspace X spanned by
the trial function basis X; i.e., Z � X . This particular choice is known
as the Galerkin method, but it is sometimes further specified as the
Ritz–Galerkin or Bubnov–Galerkin methods. The Galerkin method is
more general than the variational methods described in Section 3.1
because the test space need not be equivalent to the trial space (i.e.,
Z ≠ X). In these cases, the approach is described as the
Petrov–Galerkin method [82]; this can result in more efficient
emulators for some differential equations (84).

4 Scattering emulators

In this Section, we describe various reduced-basis emulators
one could construct for quantum scattering systems. Throughout,
we note how the variational principles used to construct emulators
in recent works are related [30–33, 88]. We also describe how each
of the results from VPs could instead be derived from Galerkin
projections.

For scattering problems, the Equation 1 is no longer an eigenvalue
problem. The task is to solve the differential equation for the wave
function at a given energy E rather than searching for discrete energies
with normalizable wave functions. Differential equations are well
studied in the field of MOR, where parametric reduced-order
models have been constructed with great success across a multitude
of fields [44, 89]. This is a relatively mature field whose formal results
are quite extensive. For example, UQ for the RBM has been well
studied, along with the development of effective algorithms for
choosing the best training points [64, 76, 77, 90].

One can formulate the Schrödinger equation in multiple ways,
including any flavor of Lippmann-Schwinger (LS) integral equation
(which builds in boundary conditions) or as a differential equation in
either homogeneous or inhomogeneous form. This freedom, along
with the freedom of trial and test bases for the Galerkin projection,
leads to multiple alternative emulators that one could construct for
quantum scattering systems. For simplicity, we restrict our discussion
to two-body scattering for Hermitian Hamiltonians. (See, however,
Section 4.6.2 for an extension to higher-body systems.) As a concise
reference, we provide Table 1 to show the connections between the
fundamental differential or integral equations, variational principles,
and Galerkin projections. This section thus provides multiple distinct
examples of using Galerkin projections to create emulators, whichmay
prove useful to newcomers wishing to apply model reduction to their
own systems, and ends with an example for an emulator applied to a
separable potential.

Frontiers in Physics frontiersin.org08

Drischler et al. 10.3389/fphy.2022.1092931

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092931


4.1 Constrained Kohn emulators

The Kohn variational principle (KVP) [91, 92] is one of the most
well-known VPs for quantum scattering systems. Here we focus on the
KVP flavor that relates a trial wave function to the reactance matrix K.
However, alternative flavors exist for other matrices such at T± and S
(see Section 4.6). Analogously to the Ritz VP for bound states, the KVP
then allows us to guess effective wave functions by finding those that
make the KVP stationary. This Section will discuss a style of KVP
emulator that relies on the homogeneous Schrödinger equation, which
requires a normalization constraint during emulation; an alternative
style without such a constraint will be discussed in Section 4.2.

We start with a rescaled version of the KVP discussed in Ref. [30]:

K ~ψ[ ] � ~KE + 〈~ψ|H − E|~ψ〉, (26)
where |~ψ〉 is the trial wave function (denoted by |~ξ〉 in Section 3) and
~KE ≡ ∑iβiKE,i the associated on-shell trial K matrix with on-shell
energy E = q2/2μ. This flavor of KVP applies when ψ satisfies the
asymptotic normalization condition in position space

ψ
ℓ
r( ) �������→

r ����→∞
jℓ qr( ) + nℓ qr( )tan δℓ , (27)

where ϕ(r) = jℓ(qr) is the (regular) free-space wave function, and jℓ(qr)
and nℓ(qr) are spherical Bessel and Neumann functions, respectively. 7

Note that we define the on-shell KE matrix as

KE � −tan δℓ
2μq

, (28)

which differs from the convention in Ref. [30]. The KVP is
stationary about exact solutions ψ, such that K[ψ + δψ] � KE +
O(δK)2.

Eq. 26 can be cast into the form of the generic functional (Eq. 18)
by noting that, in position space,

∫Γ dΓG ~ψ[ ]→G ~ψ[ ]∣∣∣∣∞r�0 ≡
W rϕ, r~ψ; r( )

2μ

∣∣∣∣∣∣∣∣
∞

r�0
� ~KE,

(29)

which has defined the surface functional G in Eq. 18 and where we
have used the Wronskian

W ϕ,ψ; r( ) ≡ ϕ r( )ψ′ r( ) − ϕ′ r( )ψ r( ). (30)
Both rϕ(r) and r~ψ(r) vanish at r = 0 so only the limit of r → ∞
contributes, from which we can use Eq. 27 when evaluating
Eq. 29.

Because the Schrödinger equation is a linear, homogeneous
differential equation, the normalization of rψ(r) is proportional to
its derivative at, say, r = 0. Therefore, a constraint on the normalization
of ψ is equivalent to a boundary condition on ψ′. However, to satisfy
this boundary condition we must include a constraint on Eq. 26 if we
are to ensure that the trial function ~ψ continues to satisfy the
normalization condition of Eq. 27. If we assume that each snapshot
ψi satisfies Eq. 27, then

~ψ
ℓ
r( ) � ∑

i

βi⎡⎣ ⎤⎦jℓ qr( ) + nℓ qr( )∑
i

βi tan δℓ,i , (31)

whose first term implies that we must impose the constraint∑iβi = 1.
We are now in a position to find the �β that make Eq. 26 stationary.

If we insert the definition of ~ψ and ~K into Eq. 26, along with the
Lagrange multiplier, we have (with repeated indices indicating
summations)

K �β[ ] � βiKE,i + 1
2
βiΔ ~Uijβj + λ ∑

i

βi − 1⎡⎣ ⎤⎦, (32)

where we define Vi = V(θi) and

Δ ~Uij ≡ 〈ψi|H − E|ψj〉 + i ↔ j( )
� 〈ψi|V θ( ) − Vj|ψj〉 + i ↔ j( ). (33)

In the second line we have used that the |ψj〉 are eigenstates with the
corresponding Vj. If V(θ) is affine in θ, then Δ ~U can be projected once
in the emulator’s offline stage, and reconstructed quickly during the
online stage.

TABLE 1 Description of common variational principles (VPs) in quantum scattering, and how to relate them to a Galerkin projection. The quantities are defined as the free wave
function |ϕ〉, the full wave function |ψ〉, the scattered wave function |χ〉, and the reactancematrix K along with its on-shell form KE. Tildes denote trial quantities. The expressions for
the Newton VP are written in operator rather than scalar form; any matrix element can be made individually stationary (see Section 4.4 for details). To compute the weak form of
the Schwinger and Newton VPs, one must first left multiply by V(θ) and G0, respectively, before orthogonalizing against the test basis. The rightmost column specifies whether a
constraint for the trial wave function has to be imposed (e.g., using a Lagrange multiplier λ).

Variational principle Galerkin projection information

Name Functional for K Strong form Trial basis Test basis Constrained?

Kohn (λ) ~KE + 〈~ψ|H − E|~ψ〉 H|ψ〉 = E|ψ〉 |ψi〉 〈ψi| Yes

Kohn (No λ) 〈~χ|H − E|~χ〉 + 〈ϕ|V|~χ〉
+〈ϕ|H − E|ϕ〉 + 〈~χ|V|ϕ〉

[E−H]|χ〉 = V|ϕ〉 |χi〉 〈χi| No

Schwinger 〈~ψ|V|ϕ〉 + 〈ϕ|V|~ψ〉
−〈~ψ|V − VG0V|~ψ〉

|ψ〉 = |ϕ〉 + G0V|ψ〉 |ψi〉 〈ψi| No

Newton V + VG0 ~K + ~KG0V
− ~KG0 ~K + ~KG0VG0 ~K

K = V + VG0K Ki Ki No

7 We focus here on examples with real-valued potentials and without long-
range Coulomb interactions. Cases with complex-valued potentials and/or
the Coulomb interaction may be analyzed in similar ways; relevant
discussions specific to Kohn emulators can be found in Refs. [30, 32].
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Now we can follow the steps outlined in Section 3.1 to determine
�β+. Taking the gradient of Eq. 32 with respect to �β and setting it equal
to 0 yields

�KE + Δ ~U �β+ + λ+ � 0, (34)
where �KE are the nb on-shell K-matrices used to train the emulator,
and �β+ are the optimal coefficients of the trial wave function. The
gradient with respect to λ simply returns the constraint. This system
can be solved via the system of equations

Δ ~U �1
�1u 0

[ ] �β+
λ+
[ ] � − �KE

1
[ ], (35)

where �1 is an nb × 1 vector of ones. If the nb number of basis functions
is much smaller than the size of ψ, then Eq. 35 can be a highly
computationally efficient emulator for scattering systems and requires
little computer memory to store. The on-shell K matrix can then be
emulated via

KE ≈ K �β+[ ] � �β+ · �KE + 1
2
�β
u

+Δ ~U �β+, (36)

whose operations all occur quickly in the size-nb space during the
online stage.

The derivation above followed closely that of Refs [30, 93], but one
could instead arrive at exactly Eq. 35 from a Galerkin projection [43].
Rather than begin with the VP, we start here with (the strong form of)
the homogeneous Schrödinger equation, i.e., H(θ)|ψ〉 = E|ψ〉. To
construct the weak form, we multiply with a test function |ζ〉 and
assert that the residual vanishes:

〈ζ |H − E|ψ〉 � 0, ∀|ζ〉. (37)
To make explicit the boundary conditions, we make use of the
relation

0 � 〈ζ |H − E|ψ〉
� 〈ζ |H←− E|ψ〉 −W rζ , rψ; r( )

2μ

∣∣∣∣∣∣∣∣
∞

r�0
,

(38)

where we have again used theWronskian from Eq. 30, and assignedH
←

as the operator acting, after integration by parts, on 〈ζ| instead of |ψ〉.
By adding Eqs. 38 and 37, we have

〈ζ |H − E|ψ〉 + 〈ζ |H←− E|ψ〉 �W rζ , rψ; r( )
2μ

∣∣∣∣∣∣∣∣
∞

r�0
. (39)

This is the weak form of the homogeneous Schrödinger equation
that we will use to construct the emulator, although the
asymptotic normalization condition Eq. 27 still needs to be
enforced. This will be imposed via a Lagrange multiplier after
inserting our trial basis.

Now that we have a weak form, the next step to construct the
reduced-order model equations is to define our trial and test bases to
project the weak form into the finite space of these bases. To align with
the Kohn emulator from the variational argument above, we choose
the trial and test basis to be identical as snapshots ψi. Then we can
evaluate

W rψi, rψj; r( )
2μ

∣∣∣∣∣∣∣∣∣∣
∞

r�0
� Kj − Ki (40)

and thus, it follows after including the Lagrange multiplier that

λ + 〈ψi|H − E|ψj〉 + 〈ψi|H
←− E|ψj〉[ ]βj �∑

j

βjKj −Ki∑
j

βj. (41)

The sum in the rightmost term can be evaluated using the constraint∑j βj = 1, and we can make the redefinition λ′ ≡ λ−∑j βj Kj without
impacting the solution because this term does not depend on i. Thus,
we have

λ′ + �KE + Δ ~U �β+ � 0, (42)
which is exactly Eq. 34 found by making the KVP stationary. This
simplification can be understood by noting that if { �β+, λ+} satisfy
Eq. 41, then we know that { �β+, λ+′ } is the unique solution to Eq. 42.
Therefore, we can solve Eq. 42 to obtain �β+ rather than Eq. 41. In
conclusion, using the Galerkin projection of the homogeneous
Schrödinger equation with trial and test bases of ψi, we were able
to obtain the same coefficients as the KVP in Eq. 35, which yield
the same on-shell K matrix when used in Eq. 36.

4.2 Unconstrained Kohn emulators

The Kohn emulators from Section 4.1 start with the
homogeneous Schrödinger equation, which does not enforce any
specific normalization of the wave function; hence this requirement needs
to be enforced at the time of emulation. This effectively takes the nb
degrees of freedom {ψi}—which were potentially costly to obtain—and
reduces the degrees of freedom to nb−1. However, one can instead build in
the normalization from the very start, thus removing the need to constrain
our basis via ∑nb

j�1βj � 1 during emulation. The unconstrained emulator
is fundamentally different from any approach that constrains the
coefficients (e.g., explicit substitution of β1 � 1 −∑nb

j�2βj), regardless of
if a Lagrangemultiplier is explicitly used as in Section 4.1. This is the topic
of the current section.

The full wave function |ψ〉 can be written as the sum of the free
wave function |ϕ〉 and the scattered wave |χ〉, that is, |ψ〉 = |ϕ〉 + |χ〉.
Thus, we can rewrite the KVP as

K � K + 〈ψ| H − E[ ]|ψ〉
� K + 〈χ| H − E[ ]|χ〉 + 〈ϕ| H − E[ ]|χ〉
+〈ϕ| H − E[ ]|ϕ〉 + 〈χ| H − E[ ]|ϕ〉

� 〈χ| H − E[ ]|χ〉 + 〈ϕ|V|χ〉 + 〈ϕ| H − E[ ]|ϕ〉 + 〈χ|V|ϕ〉,
(43)

where we used (via integration by parts)

〈ϕ| H − E[ ]|χ〉 − 〈ϕ| H
←− E[ ]|χ〉 � −K. (44)

We choose our trial function as |~χ〉, which always enforces the
normalization condition |~ψ〉 � |ϕ〉 + |~χ〉, and so no additional
constraint needs to be included in the variational principle.

Now we can construct the set of linear equations that makes Eq. 43
stationary in |~χ〉 � ∑iβi|χi〉. By taking the gradient with respect to βi,
we find

Ω �β+ � �ω, (45)
where
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Ωij � 〈χi| E −H[ ]|χj〉, (46a)
ωi � 〈χi|V|ϕ〉, (46b)

which is the set of equations used to obtain �β+. The matrix elements
Ωij can be evaluated with the help of

E −H[ ]|χj〉 � E −Hj[ ]|χj〉 + Vj − V[ ]|χj〉
� Vj|ϕ〉 + Vj − V[ ]|χj〉, (47)

with Hj = H (θj) and Vj = V (θj).
An equivalent approach follows from a Galerkin

orthogonalization procedure. We begin by writing the
homogeneous Schrödinger equation in inhomogeneous form using
|ψ〉 = |ϕ〉 + |χ〉:

E −H[ ]|χ〉 � V|ϕ〉. (48)
We can construct the weak form by multiplying by a generic test
function |ζ〉, which yields

〈ζ |E −H|χ〉 � 〈ζ |V|ϕ〉. (49)
Next, we insert the trial function |~χ〉 and choose the test basis of {|χi〉}i,
which is the same as the trial basis. This yields a reduced weak form
that is identical to Eq. 45.

We have shown that the coefficients �β+ found via the appropriate
Galerkin procedure aligns exactly with the KVP. However, we can
go one step further and in fact derive an estimate for the K matrix
that is equivalent to K[ �β+]. By inserting the optimal coefficients into
K|ϕ〉 = V|ψ〉,

〈ϕ′|K|ϕ〉 ≈ 〈ϕ′|V|ϕ〉 + 〈ϕ′|V|~χ〉
� 〈ϕ′|V|ϕ〉 +∑

ij

〈ϕ′|V|χi〉 Ω−1( )ij〈χj|V|ϕ〉[ ], (50)

with the factors in brackets equating to βi using Eq. 45. The
equivalence to the KVP is demonstrated in Refs. [94, 95].

4.3 Schwinger emulators

The Schwinger variational principle (SVP) is given by [94].

K ~ψ[ ] � 〈~ψ|V|ϕ〉 + 〈ϕ|V|~ψ〉 − 〈~ψ|V − VG0V|~ψ〉, (51)
where G0 is the Green’s operator. This too has the stationary property
K[ψ + δψ] � K +O(δK)2 when ψ is a wave function satisfying the LS
equation. Following the MOR philosophy and inserting a trial
function ~ψ, the stationary condition becomes

W �β+ � �w, (52)
where

Wij � 〈ψi|V − VG0V|ψj〉 (53a)
wi � 〈ψi|V|ϕ〉, (53b)

for all i ∈ [1, . . ., nb].
The system of Eq. 52 can also be determined by a Galerkin

projection procedure. In this case, we start with the LS equation
for wave functions,

|ψ〉 � |ϕ〉 + G0V|ψ〉, (54)

and create a weak form by left-multiplying by V(θ) along with the test
function |ζ〉:

〈ζ |V|ψ〉 � 〈ζ |V|ϕ〉 + 〈ζ |VG0V|ψ〉. (55)
The weak form can then be converted to its discrete form by setting
ψ → ~ψ and enforcing orthogonality against |ζi〉 = |ψi〉 for i ∈ [1, . . .,
nb].

8 This yields then Eq. 52, and so the coefficients found by making
Eq. 51 stationary are indeed identical to those found via the Galerkin
procedure for Eq. 54.

Using the emulation of ψ, which is calculated by inserting the
optimal coefficients obtained from Eq. 52 into the definition of ~ψ, we
can get the associated K through

〈ϕ′|K|ϕ〉 � 〈ϕ′|V|ψ〉
≈ 〈ϕ′|V|~ψ〉
�∑

ij

〈ϕ′|V|ψi〉 W−1( )ij〈ψj|V|ϕ〉.
(56)

This Equation is exactly the solution for K found via the LS equation
while assuming a finite-rank approximation for V:

Vf �∑
ij

V|ψi〉Λij〈ψj|V, (57)

where

Λ−1( )ij � 〈ψi|V|ψj〉. (58)

It is known that the SVP yields a K matrix that is equivalent to that
found via a finite-rank approximation to V [94, 95], which shows that
the Galerkin projection described in this Section is identical to
the SVP.

4.4 Newton emulators

The Newton variational principle (NVP) for the Kmatrix is given
by [31, 96].

K ~K[ ] � V + VG0
~K + ~KG0V − ~KG0

~K + ~KG0VG0
~K, (59)

where ~K is a trial matrix. If desired, one could instead emulate T(±) by
imposing the associated boundary conditions on G0. Here it is
assumed that we have chosen an on-shell energy E, which will
remain implicit throughout. A separate emulator can be
constructed for each choice of E. The functional Eq. 59 is
stationary about exact solutions of the LS equation, i.e.,
K[K + δK] � K + (δK)2. If we write the trial matrix as a linear
combination of exact snapshots

~K �∑nb
i�1

βiKi, (60)

then we can construct an emulator of the K matrix in the spirit of
the RBM.

Unlike some of the VPs discussed so far, the NVP is written here
in operator form, without yet projecting it into a basis. This gives us

8 Note that left-multiplying by V(θ) and enforcing orthogonality against |ζi〉 =
|ψi〉 is different than simply defining |ζ〉 = V|ψ〉 and enforcing orthogonality
against |ζi〉 = Vi|ψi〉 because V(θ) depends on θ. Thus, this is indeed a purely
Galerkin approach, rather than a Petrov-Galerkin approach
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the freedom to assert that any component 〈ϕ′|K|ϕ〉 constructed
from Eq. 59 is stationary, which yields an emulator for 〈ϕ′|K|ϕ〉.
For example, one could choose |ϕ〉 to be a plane-wave partial-wave
basis |kℓm〉 with momentum k and angular momentum quanta (l,
m), or one could keep the angular dependence explicit via |ϕ〉 = |k〉
in a single-particle basis. Coupled channels could be emulated by
choosing the angular momentum quanta differently between |ϕ′〉
and |ϕ〉. In fact, the NVP does not even require |ϕ〉 and |ϕ′〉 to be
free-space states; one can impose stationarity of Eq. 59 between any
two states due to its operator form. Note that the independent
coefficients �β are found for each choice of |ϕ′〉 and |ϕ〉. Thus, in the
case of coupled partial waves, for example, each channel is
emulated independently. To compute phase shifts, we must
emulate K at the on-shell energy E = q2/2μ and thus, k = k′ = q
for |ϕ〉 = |kℓm〉 and 〈ϕ′| = 〈k′ℓ′m′|.

Expressed in the chosen basis, simplifying the functional Eq. 59
after inserting Eq. 60 yields [31]

〈ϕ′|K θ, �β( )|ϕ〉 � 〈ϕ′|V θ( )|ϕ〉 + �β
u �m θ( ) − 1

2
�β
u
M θ( ) �β, (61)

with

mi θ( ) � 〈ϕ′| KiG0V θ( ) + V θ( )G0Ki[ ]|ϕ〉, (62a)
Mij θ( ) � 〈ϕ′| KiG0Kj − KiG0V θ( )G0Kj[ ]|ϕ〉 + i ↔ j( ). (62b)

If the potentialV(θ) has an affine parameter dependence, �m andM can
be efficiently constructed by linear combinations of matrices pre-
computed during the emulator’s offline stage, resulting in substantial
improvements in CPU time, e.g., for chiral interactions.

By imposing the stationary condition zK/z �β � 0, one then finds
�β+(θ) such that M �β+ � �m. Given that the optimal �β+(θ) yields a
trial matrix Eq. 60 with an error δK, one can insert �β+ in Eq. 61 to
obtain an error (δK)2. The resulting emulator K+(θ) ≡ K(θ, �β+) is
then [31]

〈ϕ′|K|ϕ〉 ≈ 〈ϕ′|K|ϕ〉 � 〈ϕ′|V|ϕ〉 + 1
2
�m
u
M−1 �m. (63)

Reference [31] studied several applications of the emulator Eq. 63
to short-range potentials with and without the Coulomb interaction
and partial-wave coupling. They demonstrated that the NVP emulator
has remarkable extrapolation capabilities (see Figure 2 in Ref. [31])
and can quickly reproduce high-fidelity calculations of neutron-
proton cross sections based on modern chiral interactions with
negligible error.

We now repeat the derivation for the NVP emulator, but instead
from the perspective of a Galerkin projection. Here, we will focus on
the case where 〈ϕ′| = 〈ϕ|. We start with the LS equation

K � V + VG0K, (64)
which, in this context, constitutes the strong form of the integral
equation. Although Eq. 64 is written in terms of abstract operators, it
can be turned into a vector equation in a specific representation after
right-multiplying by |ϕ〉. To derive the weak form we left-multiply by
G0 and a test function 〈ζ|:

〈ζ |G0K − G0VG0K|ϕ〉 � 〈ζ |G0V|ϕ〉. (65)
The trial function in this case is K|ϕ〉, which can be expanded in a
discrete (snapshot) basis using Eq. 60. We further employ the
Galerkin prescription, where the test basis is equivalent to the trial

basis, making 〈ζi| = 〈ϕ|Ki. With these assumptions, the reduced
weak form becomes

M �β+ � �m, (66)
with M and �m defined in Equation (62), again with 〈ϕ′| = 〈ϕ|. Thus,
we find the same �β+ using either the NVP or the Galerkin projection.

Given the optimal coefficients �β+, the emulator can be derived by
substituting ~K into the right-hand side of Eq. 64:

〈ϕ|K|ϕ〉 ≈ 〈ϕ|V|ϕ〉 + 〈ϕ|VG0
~K|ϕ〉

� 〈ϕ|V|ϕ〉 + 1
2
�muM−1 �m,

(67)

which is equivalent to Eq. 63 under the assumption that 〈ϕ′| = 〈ϕ|.
Therefore, both the NVP and Galerkin projection lead to identical
emulators for the K matrix.

4.5 Origin emulators

The scattering emulators discussed so far are best known as VPs
but are equivalent to various types of Galerkin projections of the
Schrödinger or LS equation (see Table 1). However, other types of
emulators can be constructed via Galerkin projections, even if they do
not necessarily correspond to any well-known VP.

Starting from the Schrödinger equation—a second-order
differential equation—we must impose two boundary conditions.
The first is that rψ(r) vanishes at r = 0; this constraint has been
automatically satisfied by our choice of trial bases in all VPs considered
above. But the second constraint is yet to be chosen. In the KVP, for
example, the second constraint was obtained via the normalization of
rψ(r) as r→∞, which, in the constrained KVP, led to a normalization
constraint for the coefficients βi. Because the Schrödinger equation is
linear and homogeneous, this normalization condition is equivalent to

FIGURE 8
Results for the scattering emulator with origin boundary conditions
in arbitrary units. Six basis functions are shown as gray lines, and the
exact wave function as a black line. Each of the basis functions and the
emulated wave function satisfy the constraints at the origin.
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imposing a constraint on the derivative of rψ(r), e.g., evaluated at the
origin.

Thus, an alternative weak form for the Schrödinger equation could
be constructed using only constraints at the origin. Let us construct a
coordinate-space emulator with (rψ)′(0) = 1. Starting from the generic
weak form (23), we obtain

〈ζ |H − E|ψ〉 + �ζ rψ( )′ − 1[ ]∣∣∣∣r�0 � 0, (68)

where ζ and �ζ are the (independent) test functions in the domain and
on the boundary, respectively, and the boundary condition is only
evaluated at the origin. Here, we can make the Galerkin choice of
(domain) test functions, where 〈ζ| = 〈ψ|, but make a Petrov-Galerkin
choice for the boundary, with �ζ(0) � 1.

Thus, the discretized weak form, from which our emulator
equations follow, is given by

〈ψi|H − E|ψj〉βj +∑
j

βj − 1 � 0, (69)

where we have assumed that the trial basis is constructed such that
each snapshot satisfies (rψj)′(0) � 1.

As an example, we show the output of such an s-wave (ℓ = 0)
emulator in Figure 8. Here, the potential is given by a sum of two
Gaussians,

V r, θ( ) � θ1 exp −κ1r2( ) + θ2 exp −κ2r2( ), (70)
with κ1 = 0.5 and κ2 = 1. The parameters to be varied are θ = {θ1, θ2}. The
six training and one validation parameters are selected randomly from a
uniform distribution in the range of [−5, 5]. To obtain the snapshots, the
partial-wave decomposed radial Schrödinger equation for ℓ = 0 can be
expressed as the system of coupled first-order differential equations,

y′0(r)
y′1(r)( ) � (rψ)′(r)

2μ V(r; θi) − E[ ](rψ)(r)( ), (71)

and numerically solved with Runge-Kutta methods. For more details
on solving the radial Schrödinger equation and matching the solutions
to the asymptotic boundary condition (27), see, e.g., Ref. [97]. As we
can see from Figure 8, each training and emulated wave function has
matching boundary conditions at the origin, and the discrepancy from
the true wave function is less than 10–3.

4.6 General Kohn variational principle

The KVP functional given in Eq. 26 can be extended to include
arbitrary boundary conditions [32, 98]. For simplicity, let us consider
short-range potentials V(θ) that have been partial-wave decomposed
into an uncoupled channel with angular momentum ℓ. The general
asymptotic form of the (coordinate-space) radial wave functions will
be linear combinations of free-space solutions9

ψ
ℓ,E(r) �������→r ����→∞

�ϕ
(0)
ℓ,E(r) + Lℓ,E

�ϕ
(1)
ℓ,E(r) , (72)

where

�ϕ
(0)
ℓ,E r( )
�ϕ
(1)
ℓ,E r( )

⎛⎝ ⎞⎠ � N −1 u00 u01

u10 u11
( ) jℓ qr( )

η
ℓ
qr( )( ), (73)

with q � ����
2μE
√

and an arbitrary normalization constant N ≠ 0.
Here, Lℓ,E is a generic scattering matrix that is determined by the
boundary condition, as parametrized by the non-singular
matrix u.

We now define L as a general functional for the generic L-matrix
in Eq. 72 [32, 88, 98],

L[~ψ] � Lℓ,E + 2μN 2

q det u
〈~ψu|H − E|~ψu〉. (74)

Note that Eq. 74 is not restricted to coordinate space, e.g., it also holds
for scattering in momentum space (see Ref. [88]). With Eq. 26, one can
follow the process described in Section 4.1 to emulate any asympototic
boundary condition. Obtaining an emulator prediction for different
boundary conditions does not mean that Eq. 74 has to be solve
multiple times. In fact, it only needs to be solved once and each
term in the functional rescaled using the relations derived in Ref. [32]:

Δ ~U
u′( ) � C′−1 Li( )C′−1 Lj( ) det u

det u′Δ
~U

u( )
, (75)

C′ L( ) � det u
det u′

u11′ − u10′ K L( )
u11 − u10K L( ). (76)

The non-primed terms refer to the initial state and primed terms
refer to the final state (explained below). The snapshots used to train
the emulator in the offline stage are transformed using the Möbius (or
linear fractional) transform

L′ L( ) � −u01′ + u00′ K L( )
u11′ − u10′ K L( ) . (77)

Let us consider solving Eq. 74 using the K-matrix boundary
condition, but then wanting a prediction for the T-matrix. We
would first rescale Δ ~U using Eq. 75. Here, u and u′ would
correspond to uK and uT, respectively, given by

uK � 1 0
0 1
[ ], uT � 1 0

i 1
[ ]. (78)

Once Δ ~U
(u′)

is calculated and the snapshots transformed from
the K- to the T-matrix according to Eq. 77, we apply Eq. 35 to
obtain the emulator prediction for the T-matrix. One can also
inverse transform the new emulated solution back to its K-matrix
equivalent by using

K L( ) � u01 + u11L

u00 + u10L
. (79)

Variational principles may not always provide a (unique)
stationary approximation, causing the appearance of spurious
singularities known as Kohn (or Schwartz) anomalies [32, 98,
101], which can render applications of VPs ineffective; especially
for sampling of a model’s parameter space.10 The appearance of
these anomalies depends on the parameters θ used to train the
emulator in the offline stage, the scattering energy, and the
evaluation set used in the online stage. However, Ref. [32]

9 We follow the conventions for scatteringmatrices in Refs. [99, 100]. Thus, the
K matrix in this section is dimensionless and defined without the negative
sign in Eq. 28.

10 These anomalies are not restricted to the KVP but also appear in other VPs
such as the NVP and SVP [102].
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demonstrated that a KVP-based emulator that simultaneously
emulates an array of KVPs with different boundary conditions
can be used to systematically detect and remove these anomalies.
The anomalies can be detected by assessing the (relative)
consistency of the different emulated results for, e.g., the
scattering S-matrix. The results that do not pass the
consistency check are discarded and the remaining ones
averaged to obtain an anomaly-free estimate of the S matrix
(or any other matrix). If all possible consistency checks fail,
one can change the basis size of the trial wave function
iteratively, which typically shifts the locations of the Kohn
anomalies in the parameter space in each iteration. The basic
idea for removing Kohn anomalies is general and can be applied
to other emulators, including the NVP-based emulator discussed
in Section 4.4, as long as multiple scattering boundary conditions
can be emulated independently and efficiently. Alternatively, one
might also consider comparing the consistency of emulated
results obtained from different VPs such as the ones
summarized in Table 1.

4.6.1 Generalization to coupled systems
Following Ref. [88], let us now extend the generalized KVP in

Section 4.6 to coupled systems, which could be coupled partial-wave or
reaction channels. The stationary approximation to the high-fidelity
L-matrix then reads

Lss′ � βiL
ss′
i + 1

2
βiΔ ~U

ss′
ij βj, (80)

where

Δ ~U
ss′
ij ≡

2μN 2

q det u
〈ψs

i |H(θ) − E|ψs′
j 〉[ + i ↔ j)( ]

� 2μN 2

q det u
〈ψs

i |V(θ) − Vj|ψs′
j 〉[ + i ↔ j)( ], (81)

with s and s′ corresponding to the entrance and exit channels. The
uncoupled case is retrieved by replacing ss′ → ℓ. Solving for �β now
proceeds as in Eq. 35 but for a specific choice of ss’ channels. Note
that the coefficients �β are to be determined independently for each
ss′ pair.

The coefficients are independent because Lss′ is independently
stationary for each ss’ pair. This becomes apparent when considering
how one would solve for the coefficients in the case where there are
two uncoupled channels, where ss′ → ℓ in Eqs. 80 and 81. Here, each
partial wave is completely independent of one another, and thus each
VP and their corresponding coefficients �β are independent of one
another across values of ℓ. Without loss of generality, let the two

channels be labeled as ℓ = 0 and ℓ = 1, and let �β
(0)

and �β
(1)

denote the
independent sets of coefficients found by making each channel’s KVP
stationary. Now consider adiabatically turning on a coupling between

two partial waves: the coefficients �β
(0)

and �β
(1)

should remain nearly
fixed to their previously uncoupled values, but now there is a new set of

coefficients to determine, which one could label as �β
(01)

. Thus, even in
the coupled case, there are multiple independent sets of coefficients to
determine: one for each pair of incoming and outgoing channels.

An alternative way to understand how the �β enter in the coupled
case is to instead start with the Schrödinger equation and enforce
(Petrov-)Galerkin orthogonalization as in Section 4.1. For the
diagonal channels, the test functions are chosen to have the

same outgoing channel as the trial functions, making the
procedure of standard Galerkin form. But for the off-diagonal
channels, the test functions have a different outgoing channel
(s) than the trial functions (s′). Because the basis of test
functions differs from the basis of the trial function, this is
instead a Petrov–Galerkin approach. The linear equations to be
solved are exactly what one would obtain from enforcing
stationarity in Eq. 80 for each ss′ independently. See Ref. [88]
for more information on coupled channel emulation.

4.6.2 Generalizations to higher-body systems
The variational emulators for two-body scattering described

so far can be generalized to higher-body scattering. In fact, the
KVP, as a powerful method for solving scattering problems, has
been applied in developing high-fidelity solvers (as opposed to a
KVP-based emulator) for studying three- and four-nucleon
systems (e.g., nucleon-deuteron elastic scattering below and
above the deuteron break-up threshold) [103, 104].11 It is then
natural to combine the KVP with the variational emulation
strategy to develop fast and accurate emulators beyond just
two-body scattering.

Here, we follow Ref. [33], which developed KVP-based emulators
for three-body systems. We focus on systems of three identical spinless
bosons, particularly the elastic scattering between boson and two-
boson bound state in the channel without any relative angular
momenta and below the bound state’s break-up threshold. The
corresponding scattering S-matrix can be estimated via a
variational functional that resembles Eq. 74 in the two-body case:

S ~ψ[ ] � S − i

3N 2 〈~ψ| H − E[ ]|~ψ〉. (82)

Here, S is the S-matrix associated with the trial three-body wave
function |~ψ〉, H and E the full Hamiltonian and energy, respectively.
The trial wave function has the following asymptotic behavior [33]:

〈R1, r1|~ψ〉 →R1→∞ N�
v

√ uB r1( )
r1R1

−e−iPR1 + S eiPR1( ), (83)

with R1, r1 as one of three different Jacobi coordinate sets; v and P as
the relative velocity and momentum between the scattering particles,
N the normalization constant that also appeared in Eq. 82, and uB(r1)
the radial wave function of the two-body bound state.

The emulation procedure is generally similar to those for two-body
emulations. We first collect high-fidelity calculations of |~ψi〉 at various
points in the Hamiltonian’s parameter space during the offline (i.e.,
training) stage and then use these snapshots as the basis to construct
the trial solution (see Eq. 19b) to be used in the variational functional
during the online emulation stage. A similar set of the low-dimensional
linear equations as in Eq. 35 can be derived to fix the weights βi. The
variational functional with these inputs produce accurate results for the S-
matrix at the emulation points [33]. This is all straightforward if we vary
only the three-body interactions in H(θ) when exploring its
parameter space. If the two-body interactions are also changed,
the two-body bound states of those snapshots are different among
themselves and therefore the trial wave functions based on Eq. 19b

11 The other high-fidelity solvers in this context solve problems in momentum
or coordinate space based on the Faddeev formalism [105–107].

Frontiers in Physics frontiersin.org14

Drischler et al. 10.3389/fphy.2022.1092931

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092931


fails to satisfy the asymptotic behavior described in Eq. 83. In Ref.
[33], proper modifications were applied to the constructions of the
trial wave functions to satisfy the asymptotic condition. The
resulting emulator is again a low-dimensional equation system,
but the projected ~H(θ) matrices and the Δ ~U matrices lose the
affine structure as needed for fast emulation (see Eq. 13). To
mitigate this issue, the GP emulation method was employed to
interpolate and extrapolate the Δ ~U’s matrix elements in the
parameter space (note that this dependence is much smoother
than the parameter dependence of the observables). Other
hyperreduction approaches [48] could also be explored in this
context.

The results in Ref. [33] are encouraging: the time cost for
emulating three-boson scattering is on the order of milliseconds
(on a laptop), while the emulation’s relative errors vary from 10–13

to 10–4 depending on the case. It is straightforward to generalize it
to elastic scattering above the break-up threshold, but more
studies need to be done for emulating the break-up processes
and even higher-body systems. Of course, the Fermi statistics,
spin and isospin degrees of freedom, and partial waves beyond the
s-wave need to be included to realize emulation for realistic three
and higher-body scatterings (e.g. for three-nucleon systems).

4.7 A scattering example

We have covered the reduced-order models that can be
constructed from the Kohn, Schwinger, and Newton VPs, and
now we put them into action. This example is given in the context
of a rank-n separable potential where simple analytic forms are
available for the snapshots. This provides a sandbox to explore
many aspects of the RBM for quantum scattering without the
complicating details of more realistic systems. All of the source
code that generates the results shown here is available to explore
on the companion website [20].

Separable potentials lead to simple formulas for the K matrix and
the scattering wave function [108]. A rank-n separable potential in
momentum space is given by

Vℓ �∑n
ij

|vℓi 〉Λij〈vℓj|, (84)

where Λij = Λji are the coefficients of the potential that will be varied
during emulation. For simplicity, we consider here only s-wave
scattering (i.e., ℓ = 0). The potential (Eq. 84) leads to an affine
structure that lends itself to the offline-online decomposition
discussed in Section 3. From the potential (Eq. 84), simple
expressions for K and ψ can be derived [109]. For instance, the K
matrix is given in operator form by

K �∑n
ijk

|vi〉Λij 1 − JΛ[ ]−1jk〈vk|, (85)

with the identity matrix 1 and the matrix

Jij ≡ 〈vi|G0|vj〉, (86)

FIGURE 9
Phase shifts (top panel) and absolute residuals (bottom panel) in
arbitrary units for the Yamaguchi potential Eq. 87 for each scattering
emulator discussed above. The solid black lines represent the high-
fidelity solution and the dots represent the emulator results. The
emulators are so accurate that they are indistinguishable unless looking
at residuals. The training set is given by the two gray lines.

FIGURE 10
Wave functions (top panel) and absolute residuals (bottom panel)
for the Yamaguchi potential Eq. 87 in arbitrary units using the
constrained KVP. The top panel legend description is similar to Figure 9,
but for three different values of q. The bottom panel shows the
relative residuals of the three values previously mentioned.
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where the Green’s function G0 implicitly depends on the on-shell
energy E. Thus, it follows that K is separable if V is separable.

We choose to study the Yamaguchi potential [110].

〈p|vℓi 〉 ≡ vℓi p( ) � pℓ

p2 + b2i( )ℓ+1 (87)

with ℓ = 0 and assume a rank-2 potential with bi = [2, 4] and 2μ = 1. In
this case,

Jij � π

2

q2 − bibj( )
bi + bj( ) q2 + b2i( ) q2 + b2j( ), (88)

which permits all phase shifts, wave functions, and reduced-order
matrices (e.g., Δ ~U) to be evaluated analytically. The training
parameters {Λ00, Λ01, Λ11} are sampled randomly from a uniform
distribution in [−50, 50]. The companion website [20] provides the
following Python classes that implement the scattering emulators:
{Newton, Schwinger, Kohn, UnconstrainedKohn}Emulator.

Figure 9 shows the phase shifts and the absolute residuals for the
Yamaguchi potential Eq. 87 for emulators constructed with nb = 2
training points. The top panel depicts the high-fidelity solution (solid
black curve) and the emulator results (dots). Here, only the
constrained KVP is shown because the others would be
indistinguishable. In gray we show the basis states used to train the
emulator in the offline stage. The bottom panel shows the absolute
residuals for each of the emulators. We can see that all but the
constrained KVP are extremely accurate, with the residuals mostly
governed by the choice of nugget used to regularize the matrix
inversion (see also Section 2.1). For the constrained KVP, we see
that the loss of a degree of freedom to implement the constraint
significantly impacts its predictive power given that we only have two
basis states, although it is still quite accurate in this case. Increasing the
basis to nb = 5 yields predictions that are accurate to 10–13 degrees, or
better, for all emulators.

Figure 10 shows the high-fidelity (solid black line), emulated
(dots), and basis (solid gray line) wave functions for three values of
q with their absolute residuals using the constrained KVP constructed
with nb = 5 training points. The emulator reproduces the high-fidelity
solution at all three values of q, with q = 2.0 having the smallest
residual. The sensitivity of the emulator accuracy as nb is varied can be
readily studied using the Python code provided on the companion
website [20]. An example of how the accuracy is affected when varying
nb is also given in Ref. [88].

While all emulators described in this Section are applicable to
scattering problems in general, their efficacy will depend in practice
on various factors, such as their computational complexity and the
potential to be emulated. The constrained KVP has the advantage that
terms constant in θ, such as the (long-range) Coulomb potential, cancel in
the computation of Eq. 33 but it loses one degree of freedom due to the
normalization constraint of the coefficients. On the other hand, both the
NVP and SVP involve the computation of Green’s functions, which
makes them computationally more complex than the KVP—especially
the SVP since it also depends quadratically on the potential.

5 Summary and outlook

We have presented a pedagogical introduction to projection-
based, reduced-order emulators and general MOR concepts suitable

for a wide range of applications in low-energy nuclear physics.
Emulators are fast surrogate models capable of reliably
approximating high-fidelity models due to their reduced content of
superfluous information. By making practical otherwise impractical
calculations, they can open the door to the various techniques and
applications central to the overall theme of this Frontiers Research
Topic [14], such as Bayesian parameter estimation for UQ,
experimental design, and many more.

In particular, we have discussed variational and Galerkin methods
combined with snapshot-based trial (or test) functions as the
foundation for constructing fast and accurate emulators. These
emulators enable repeated bound state and scattering calculations,
e.g., for sampling a model’s parameter space when high-fidelity
calculations are computationally expensive or prohibitively slow. A
crucial element in this emulator workflow, as summarized in Figure 2,
is an efficient offline-online decomposition in which the heavy
computational lifting is performed only once before the emulator is
invoked. Chiral Hamiltonians allow for such efficient decompositions
due to their affine parameter dependence on the low-energy couplings.
Furthermore, we discussed the high efficacy of projection-based
emulators in extrapolating results far from the support of the
snapshot data, as opposed to the GPs.

While MOR has already reached maturity in other fields, it is still
in its infancy in nuclear physics—although rapidly growing—and
there remains much to explore and exploit [18, 35, 36, 43]. In the
following, we highlight some of the many interesting research avenues
for emulator applications in nuclear physics. All of these avenues can
benefit from the rich MOR literature and software tools available (e.g.,
see Refs. [1–3]):

• Emulator uncertainties need to be robustly quantified and
treated on equal footing with other uncertainties in nuclear
physics calculations, such as EFT truncation errors. This will be
facilitated by the extensive literature on the uncertainties in the
RBM [76, 77, 90, 111].

• The performance of competing emulators (e.g., the Newton vs.
Kohn variational principle) is typically highly implementation
dependent. Best practices for efficient implementation of nuclear
physics emulators should be developed. This may include
exploiting MOR software libraries from other fields, such as
pyMOR [112], when possible.

• Galerkin emulators are equivalent to variational emulators for
bound-state and scattering calculations if the test and trial basis
are properly chosen. But Galerkin (and especially Petrov-
Galerkin) emulators are more general and exploring their
applications in non-linear problems may be fruitful in
nuclear physics. Emulator applied to non-linear problems will
have challenges in terms of both speed and accuracy: 1) the basis
size will, in general, need to be large(r) resulting in lower speed-
up factors and longer offline stages; 2) using hyperreduction
methods will lead to additional approximations that worsen the
accuracy of the emulator and whose uncertainties need to be
quantified.

• Many technical aspects should be further explored, such as greedy
(or active-learning) [24] and SVD-based algorithms for choosing
the training points more effectively, hyperreduction methods for
non-affine problems, and improved convergence analyses.

• Scattering emulators could play pivotal roles in connecting
reaction models and experiments at new-generation rare-
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isotope facilities (e.g., the Facility for Rare Isotope Beams). In
this regard, further studies on incorporating long-range
Coulomb interactions and optical potentials beyond two-body
systems will be valuable. Furthermore, emulators for time-
dependent density functional theories could see extensive
applications in interpreting fission measurements. At facilities
such as Jefferson Lab and the future Electron-Ion Collider,
explorations of nuclear dynamics at much higher energy
scales should also benefit from emulators.

• The emulator framework can be used to extrapolate
observables far away from the support of the training data,
such as the discrete energy levels of a many-body system
calculated in one phase to those of another, as demonstrated
in Ref. [22]. Using emulators as a resummation tool to
increase the convergence radius of series expansions [26]
falls into this category as well, and so does using them to
extrapolate finite-box simulations of quantum systems across
wide ranges of box sizes [40]. Moreover, for general quantum
continuum states, emulation in the complex energy plane can
enable computing scattering observables with bound-state
methods [113]. Extrapolation capabilities of emulators
should be investigated further.

• While projection-based emulators have had successes (e.g., see
Refs. [7, 9, 25]), it is also important to understand their
limitations and investigate potential improvements. The
synergy between projection-based and machine learning
methods [114] is a new direction being undertaken in the
field of MOR for this purpose (e.g., see Ref. [63]). Nuclear
physics problems, with and without time dependence, will
provide ample opportunities for such explorations.

• Emulators run fast, often with a small memory footprint, and
can be easily shared. These properties make emulators effective
interfaces for large expensive calculations, through which
users can access sophisticated physical models at a
minimum cost of computational resources and without
specialized expertise, creating a more efficient workflow for
nuclear science. As such, emulators can become a
collaboration tool [33, 34] that can catalyze new direct and
indirect connections between different research areas and
enable novel studies.

To help foster the exploration of these (and other) research
directions in nuclear physics, we have created a companion website
[20] containing interactive supplemental material and source code so
that the interested reader can experiment with and extend the
examples discussed here.

We look forward to seeing more of the MOR methodology
implemented as these research directions are being pursued. But

especially we look forward to the exciting applications of emulators
in nuclear physics that are currently beyond our grasp.
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