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In this work, we investigate the thermoelectrical properties of a silicene nanoribbon
heterostructure composed of a central conductor fully doped with ad-atoms and
connected to two pristine leads of the same material. Using a tight-binding
Hamiltonian, we have calculated the system’s thermoelectric properties as a
function of the geometrical confinement and external field. Our results exhibit an
enhancement of the thermopower when a transverse electric field is applied to the
conductor region for different temperatures. In addition, a violation of the
Wiedemann–Franz law is observed around the ad-atom energy. Our results
suggest the thermoelectric properties of doped silicene nanoribbons can be
efficiently tuned with external perturbations.
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1 Introduction

In thermal devices, the capacity to transform heat into electricity and vice versa is
characterized by the thermoelectric efficiency, which is usually described in terms of the
dimensionless quantity ZT = S2GT/κ called the figure of merit [1]. In this definition, S is the
thermopower or Seebeck coefficient, G is the electronic conductance, and κ is thermal
conductance at a temperature T, respectively. It is well known that in a thermoelectric
system, both electrons and phonons contribute to heat current. Then, the thermal
conductance can be written as κ = κel+κph when the electron–phonon coupling is weak. To
obtain an enhanced thermoelectric efficiency, it is necessary to simultaneously reduce both
contributions to the thermal conductance without affecting electronic conduction. It cannot be
obtained in bulk metallic materials due to the classical Wiedemann–Franz law, which
establishes that the ratio σT/κel is a universal constant. Thus, a possible route to improve
the thermoelectric materials could be a controlled reduction of the lattice thermal conductance
κph by increasing phonon scattering [2]. In the last few years, several works have provided
theoretical [3–6] and experimental evidence [7–11] that nanostructuring yields thermoelectric
efficiency unachievable with bulk materials. In these nanometer systems, the thermal and
electronic properties can be tuned independently to achieve improved efficiency above the
classical limit. In the literature, ZT values greater than 2.4 have been reported in tailored
nanostructured materials such as superlattices [7], nanowires [9], quantum dots [8], or in weak-
coupling molecular junctions with electrode doping [12]. Therefore, in this context,
nanostructures made of silicene sheets and silicene nanoribbons seem to be good
candidates to exhibit high thermoelectric efficiencies [13,14]. Bulk silicene exhibits an in-
plane thermal conductivity of 20W/mK at room temperature, according to equilibrium
molecular dynamics simulations [15]. This value is one order of magnitude lower than that
of silicon. Silicene has a honeycomb lattice structure, but due to the large ionic radius of silicon
atoms, buckling of the lattice is induced [16,17]. Buckling impacts the vibrational modes of

OPEN ACCESS

EDITED BY

Judith Helena Ojeda Silva,
Universidad Pedagógica y Tecnológica de
Colombia, Colombia

REVIEWED BY

Francisco Munoz,
University of Chile, Chile
Ke-Qiu Chen,
Hunan University, China

*CORRESPONDENCE

L. Rosales,
luis.rosalesa@usm.cl

SPECIALTY SECTION

This article was submitted to Condensed
Matter Physics, a section of the journal
Frontiers in Physics

RECEIVED 06 November 2022
ACCEPTED 23 December 2022
PUBLISHED 16 February 2023

CITATION

González KA, Núñez CD, Orellana PA and
Rosales L (2023), Tuning the
thermoelectric properties of doped
silicene nanoribbon heterostructures.
Front. Phys. 10:1091325.
doi: 10.3389/fphy.2022.1091325

COPYRIGHT

© 2023 González, Núñez, Orellana and
Rosales. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 16 February 2023
DOI 10.3389/fphy.2022.1091325

https://www.frontiersin.org/articles/10.3389/fphy.2022.1091325/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1091325/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1091325/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1091325&domain=pdf&date_stamp=2023-02-16
mailto:luis.rosalesa@usm.cl
mailto:luis.rosalesa@usm.cl
https://doi.org/10.3389/fphy.2022.1091325
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1091325


silicene, reducing phonon heat conduction. Finally, the quantum
effects allow thermoelectric devices to overcome the limitations to
the classical Wiedemann–Franz law. Nanodevices with sharp
resonances in electron transmission (such as Fano lineshapes) are
good candidates for highly efficient heat-to-electricity converters
because the ratio GT/κel increases well above the classical
Wiedemann–Franz limit [18–24].

In this context, we have studied the thermoelectric properties of
the doped silicene nanoribbon heterostructure as a function of the
geometrical confinement and the presence of an external electric field.
Considering a central conductor region fully doped with ad-atoms and
connected to two pristine leads, we calculated the electronic
conductance, the Seebeck coefficient, the electronic thermal
conductance, the Lorenz number, and the electronic figure of merit
of armchair silicene nanoribbons. We have found an enhancement of
the thermopower of the device at different temperatures when a
transverse electric field is applied to the conductor region.
Consequently, we have obtained great values of ZTel as the external
potential is increased for different temperatures. Finally, we have
obtained a violation of the Wiedemann–Franz law for different
external potential intensities and temperatures. Our results suggest
that with an appropriate gate configuration, the thermoelectric
properties of doped silicene nanoribbons can be efficiently tuned.

2 Model and formalism

The system under the study consists of a fully doped rectangular
silicene nanoribbon (SNR) of widthW and length L connected to source
and drain leads made of pristine SNRs, as shown schematically in
Figure 1. To avoid topologically protected edge states that appear at
the Fermi energy in zig-zag nanoribbons, we restrict ourselves to
nanoribbons with armchair edges (A-SNR) hereafter. Electronic
properties in these ribbons have been described by using a single-band
tight-binding approximation [25]. For this purpose, the system is split into
three spatial regions: left contact, scattering region (conductor), and right

contact. The Hamiltonian of the doped A-SNR ribbon can be written in
the single-band tight-binding scheme as follows:

HT � ∑N
i�1

εic
†
i ci + γ∑N

i,j

c†i cj + h.c( ), (1)

where ci(c†i ) are the annihilation (creation) electronic operators, γ is
the hopping coupling between the nearest neighbor atoms (we have
considered γ ~ 1.0 eV), and εi is the on-site energy of the ithA(B) atom
of the ribbon. For simplicity, we have fixed the on-site energy of the
right and left leads at εi = 0. In our model, we have re-normalized the
energy of each A(B) site of the central conductor in such a way that it
contains all the information on the ad-atoms pinned at both sides of
the ribbon [Figure 1B)] and the electrostatic potential generated by the
applied external electric field. Thus, the on-site energy εi for the A(B)
atoms of the conductor can be rewritten as

εAi � αUE + Γ2
ε − εD

εBi � −αUE + Γ2
ε − εU

,
(2)

where Γ is the coupling between the ad-atoms and the ribbon’s A(B)
atoms. UE = l E is the electrostatic potential generated by the electric
field E, considering l as the vertical separation between both sub-
lattices in the ribbon; therefore, εU(D) = ε0 ± UE. We introduce the
parameter α as ameasure of ribbon buckling so that 0 ≤ α ≤ 1. It should
be noticed that if the ribbon is planar (α = 0), the electrostatic potential
affects only the energy of the ad-atoms. Therefore, a differentiation is
generated between both sub-lattices of the ribbon. On the other hand,
if α ≠ 0, the electrostatic potential affects both ribbons’ sub-lattices
(staggered potential) and the ad-atoms. Therefore, this electrostatic
potential’s effects on the buckled ribbon’s electronic properties are
stronger than those in the planar case.

To analyze the thermoelectric behavior of the doped A-SNR, we
have adopted the linear response approximation, in which an effective
voltage drop ΔV and a temperature difference ΔT are applied between
the left and right contacts. Within this approach, the electronic current
Ie and the heat current IQ are given by

Ie � −e2K0ΔV + e

T
K1ΔT, , (3)

IQ � eK1ΔV − 1
T
K2ΔT, (4)

where e is the electron charge, T is the absolute temperature, and Kn

(with n = 0, 1, 2) is the thermal integral defined as

Kn μ, T( ) � 2
h
∫∞

0
dε T ε( ) ε − μ( )n −zf ε, T( )

zε
( ). (5)

Here, h is the Planck constant, μ is the chemical potential, f (ε, T) is the
equilibrium Fermi–Dirac distribution, and T (ε) is the energy-
dependent electron transmission probability.

The electronic conductance is defined as G = −Ie/ΔV, and it can be
obtained directly from Equation 3.

G μ, T( ) � e2K0. (6)
The Seebeck coefficient S is calculated in the linear response regime,
namely, |ΔT| ≪ T and |eΔV| ≪ μ. It is defined as the voltage drop
induced by a temperature gradient at zero electric current, S = ΔV/
ΔT|Ie = 0 [Eq. 3], in the limit ΔT → 0. Thus,

FIGURE 1
(A) Schematic view of the considered ASNR, (B) and (C) side view of
the planar (α = 0) and the non-planar (α ≠ 0) Silicene nanostructures. In
this panel, ε(U,D) represents the on-site energy of the ad-atoms pinned at
the A(B) ribbon sites.
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S μ, T( ) � − 1
eT

K1

K0
. (7)

The electron contribution to the thermal conductance is defined as
the ratio between the thermal current IQ and the temperature gradient
ΔT when the electric current Ie is zero, κel � IQ/ΔT|Ie�0. Written in
terms of the thermal integrals, it is given by

κel μ, T( ) � 1
T

K2 − K2
1

K0
( ). (8)

Finally, we have calculated the Lorenz number for the considered
heterostructures, which is defined as

L � κel
σT

, (9)

where σ is the electronic conductivity and T is the temperature of the
system. For metals, this relation remains constant, with a value of
π2

3 (kbe )2 � 2, 44 × 10−8V2K−2, where kb is the Boltzmann constant and
e is the electron charge.

We have analytically determined the transmission function of the
system as a function of the energy. For this purpose, we have used an
effective model in which the nanoribbon is mapped into a one-
dimensional diatomic chain (See the Supplementary Material).
Thus, the total transmission T (ε) is written as

T ε( ) �
Rc S1,1( )2 ScN+1,0( )2F 1 + ScN+2,1( )2F 2 + 2 ScN+2,1( )2F 3 − 2ScN,−1F 4 + ScN,1( )2[ ]

R2
c + 1 − 2RcC

1,1
−1,1( ) F 5 + R2

cF 6 − 2RcF 7 + 2R2
cF 8[ ] .

(10)

Considering Ci,j
p,q � cos[(ikc − jθc) + (pk − qθ)] and defining zc �

ei[kc−θc] and Scp,q � sin[pkc + qθc] for the conductor, and z = ei[k−θ]

and Sp,q = sin[pk + qθ] for each lead, the F i functions are defined by

F 1 � R2
c + 1( ) + 2RcC

1,1
1,1,

F 2 � R2
c 1 − 2ScN+1,9C

1,1
0,0[ ],

F 3 � Rc ScN,1C
1,1
−1,1 − ScN+1,0C

0,0
1,1[ ],

F 4 � ScN+1,0 RcC
0,0
1,1 + C1,1

0,0[ ],
F 5 � R2

c + 1( )2 ScN+1,0( )2,
F 6 � ScN,1( )2 + ScN+2,−1( )2,
F 7 � R2

c + 1( )ScN+1,0C
0,0
1,1 ScN,1 + ScN+2,−1[ ],

F 8 � ScN,1S
c
N+2,−1 C0,0

1,1( )2 − S1,−1[ ].
In the aforementioned equations, we have considered the following
definitions:

k � arccos
ε2 − γ2 1 + 4 cos2qm( )

4γ2 cos qm
[ ],

kc � arccos
ε − εA( ) ε − εB( ) − γ2 1 + 4 cos2qm( )

4γ2 cos qm
[ ],

Rc �
�����
ε − εA
ε − εB

√
,

θ � arctan
2 cos qm sin k

1 + 2 cos qm cos k
[ ],

θc � arctan
2 cos qm sin kc

1 + 2 cos qm cos kc
[ ],

(11)

where kc and k are the wavenumbers in the effective one-dimensional
chain, θc and θ are phases between the A(B) atoms in the ribbons, and
qm is the discrete electronic wavenumber obtained by imposing the
hard-wall boundary condition to the ribbon width. In armchair
nanoribbons qm = mπ/(M+1), with m = 1, 2, . . ., M, which

corresponds to the number of transverse energy channels available
in the ribbon.

3 Results

The results for the transmission function T (ε) for an A-SNR of
width N = 5, conductor length L = 80 (measured in unit cells), and α =
0.1γ for different potential intensities U are exhibited in Figure 2. We
have considered two different ad-atoms’ energies: i) ε0 = 0 γ [panels (a)
and (c)] and ii) ε0 = 0.1 γ [panels (b) and (d)]. These plots exhibit the
standard transmission function behavior for a quasi-one-dimensional
system, reflecting the number of discrete wavenumbers allowed in the
transverse direction of the ribbon. However, centered at the ad-atom
energy, an electronic gap becomes larger and noisy as the external
potential U is increased. Furthermore, it is possible to observe in
Figures 2C, D that there is an asymmetry of the transmission function
at the gap edges, especially if the ad-atom energy differs from the on-
site energy of the A(B) sub-lattices of the ribbon. As is shown further
in this paper, the abrupt changes in T (ε) affect the thermoelectrical
behavior of the heterostructure. We have analyzed the behavior of the
transmission T (ε) as a function of α, considering fixed values of the
potential U. Due to the form that we have modeled the on-site energy
at the conductor region and analyzing how Eqs 10, 11 depend on α, we
can affirm that the primary physical mechanism that affects the
transmission of electrons through the heterostructure is the
external field. In this sense, without loss of generality, hereafter, we
will use a realistic value of α = .1.

The results for the electronic conductance G and the Seebeck
coefficient S for a N = 5 A-SNR, of length L = 80 and α = .1, for
different potential intensities U and different temperatures are
exhibited in Figure 3 (a) and (c). To analyze the case of an
impurity other than a silicon atom of the ribbon, we have chosen
the ad-atom energy ε0 = 0.1 γ. At room temperature (300K), it is
possible to observe that U strongly affects the behavior of G,
progressively generating a conductance gap for U values greater
than 0.1 eV. It is a consequence of the T (ε) behavior for different
potentials U shown in Figure 2D. The smoothness of the conductance
curves around the ad-atom energy is produced by the Fermi–Dirac
distribution at room temperature, which weighs the behavior of the
thermal integral K0 used to define G in Eq. 6. Furthermore, and as is
expected, for a fixed value ofU, the conductance vs. temperature curve
behaves as a standard semiconductor, showing slight variations as the
temperature increases, as shown in Figure 3C.

On the other hand, in Figure 3B, we show that the Seebeck
coefficient S presents a crescent value of its maximum as the
external potential U increases. This behavior is a direct
consequence of the noisy and asymmetric curves of transmission
T (ε) around the ad-atom energy, shown in Figure 2 (d). It is well
known that S strongly depends on the behavior of T ′(ε) � zT (ε)/zε.
Therefore, abrupt changes in the transmission function will produce
an enhancement of the thermopower of the system. To better visualize
this point, it is useful to examine the Sommerfeld expansion of thermal
integrals K0 and K1 and then replace them on Eq. 7. It generates a
dominant term in the expansion of the Seebeck coefficient of the form
S ≈ (ε − μ)T ′(μ)/T (μ) which defines the shape and the maximum of
the thermopower. Thus, the noisier an asymmetric is in the
transmission T (ε), the higher the Seebeck maximum Smax can be
obtained. The ratio T ′(μ)/T (μ) is not linear, and it is expected that for
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FIGURE 2
Transmission vs. Fermi energy for an A-SNR of width N = 5 and length L =80 for several external potential intensities, considering two different on-site
energies for the ad-atoms. In (A) ε0 = 0 and (B) ε0 = 0.1γ. In both panels, the pristineN = 5 A-SNR has been included as references (dashed blue line). Panels (C)
and (D) are zoomed in to the region of interest (around the energy of the ad-atoms). All curves were made considering α = 0.1.

FIGURE 3
Electronic conductance and thermopower for an A-SNR of width N = 5 and length L = 80. In panels (A) and (B),we have fixed the temperature in 300K,
and then variations of the external potential intensity, whereas in panels (C) and (D),we have considered variations of the temperature of the heterostructure.
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specific values of U, the maximum Smax tends to saturate. It is what we
have obtained, and in the case of N = 5 A-SNR, this potential value is
aroundU ~ 0.25 eV, as shown in Figure 4A. It is interesting to mention
that in this plot, Smax starts to increase for U ~ 0.1eV, which
corresponds to the on-site energy for the ad-atoms at the
conductor region. Just at this energy, the ratio between the thermal
integrals K1 and K0 defines this behavior. Although the K0 function

opens a gap around the impurity energy, the K1 function changes its
slope around it so that the ratio is maximized as the U potential is
increased. The maximum of the Seebeck coefficient decreases as the
temperature of the system increases, for the potential intensity fixed
(for instance, atU = 0.2 eV), as shown in Figure 3D and Figure 4B. This
behavior is mainly because the Fermi–Dirac distribution becomes a
smooth energy function as the temperature increases. Therefore, the
thermal integrals K0 and K1 are weighted by a broad-band energy
function, which absorbs any abrupt change in the transmission
function T (ε).

The results for the electronic conductance, the electronic
thermal conductance, and the Lorenz number for a N = 5
A-SNR of length L = 80 and α = 0.1, for different potential
intensities U and different temperatures T, are exhibited in
Figure 5. In these plots, it is possible to observe that the
electronic thermal conductance κel is affected by the variations
of U and T [panels (b) and (e), respectively], reducing its value
around the ad-atom energy (ε0 = 0.1 γ) and generating a gap
behavior that differs with respect to the conductance curves [panels
(a) and (d)]. The κel gap becomes broader and softens compared to
the G gap. In addition, for different values of the external potential
U and temperatures T and just at the ad-atom energy, κel exhibits an
increase from the thermal integrals’ behavior K0, K1, and K2 at this
energy. Thus, if we considered the Sommerfeld expansion of these
integrals, the dominant terms in the definition of κel will be
quadratic in the transmission function derivative and on the
energy so that κel ≈ (ε − μ)2T ′2(μ)/T (μ). Thus, for energies close
to the ad-atom energies, κel shows this small increase that plays an
essential role in the thermoelectrical properties of the system.

FIGURE 4
Maximum of the Seebeck coefficient behavior (Smax) as a function
of (A) external potential intensity for room temperature and (B)
temperature, for a fixed external potential U.

FIGURE 5
Electronic conductance, electronic thermal conductance, and Lorenz number for an A-SNR of widthN= 5 and length L= 80.We have plotted panels (A),
(B), and (C) for room temperature, increasing the external potential intensity. In panels (D), (E), and (F),we have considered variations of the temperature of the
system.
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In this context, by using the definition given in Eq. 9, we have
calculated the Lorenz number L (measured in the unit of
L0 � (πkb)2/3e2) for different values of external potential U and
different temperatures T, as it is shown in Figures 5C, F. For
normal metals, L/L0 ≈ 1 remains constant as a function of energy
or the chemical potential of the system. However, the Lorenz number
changes, increasing its value over L0 just around the impurity energy,
for nanostructures that present quantum confinement and
interference effects, such as those promoted by the ad-atoms in the
central conductor of our heterostructure. It is the so-called violation of
the classical Wiedemann–Franz law and represents clear evidence of
the presence of quantum phenomena in the system. Thus, it is possible
to observe in our case at chemical potential μ = 0.1 eV, for several
values of U and T, that L/L0 presents larger values, which tends to
decrease as the temperature and the external potential are increased. It
is direct to understand the changes in the Lorenz number of the system
and the origin of the violation of the Wiedemann–Franz law in our
system, observing the ratio between the conductance curves of panels
(a) and (d) and the electronic thermal conductance curves of panels
(b) and (e).

In order to estimate the thermoelectrical efficiency of the
proposed system, we present results for the electronic figure of
merit ZTel = TS2G/κel, which are displayed in Figure 6. For these
calculations, we have not considered the phonon contribution to
the thermal conductance because it is well-known that in narrow
pristine A-SNR, κph ≤ κel [see Pan et al. [14] for a complete analysis
of these quantities]. In this sense, we expect that the ad-atoms in
the central conductor would reduce even more the lattice
contribution to the total thermal conductance of the system κ.
As it is observed in both panels of Figure 6, as the external
potential intensity is increased, the thermal efficiency becomes
better. In addition, as the temperature is increased, the maximum
of ZTel tends to reduce its magnitude. Both results are a direct

consequence of the Seebeck coefficient behavior as a function of
the external potential and the temperature, as it is shown in
Figure 3 and Figure 4. The electronic figure of merit depends
quadratically on S; therefore, any abrupt change on this thermal
quantity strongly affects the thermoelectrical efficiency of the
proposed system.

4 Final remarks

In this work, we have studied the thermoelectrical properties of
armchair silicene nanoribbon heterostructures. Using an effective
one-dimensional model, we have determined the electron
transmission function of the system analytically. With this
result, we have calculated and analyzed the behavior of the
electronic conductance, the Seebeck coefficient, and the
electronic contribution to the thermal conductance as a function
of an external potential intensity and the temperature. We have
obtained a controlled tuning of the Seebeck coefficient maximum
Smax at room temperature as the external potential U is modified.
This behavior is explained by the abrupt changes in the
transmission function around the electronic gap produced by
the ad-atoms. Furthermore, as expected, as the system’s
temperature increases, Smax decreases because the transmission
changes become smooth, especially for temperatures above 300K.

In the case of electronic thermal conductance, we have obtained
a reduction of its magnitude around the ad-atom energy as U
increases. However, this reduction is less than that obtained for the
electronic conductance at the same energy range. Therefore, we
have obtained a violation of the classical Wiedemann–Franz law,
reflected in the Lorenz number behavior, which presents a clear
dependence on the external potential intensity U and the
temperature of the system.

FIGURE 6
Electronic figure ofmerit as a function of the chemical potential, for an A-SNR of widthN= 5 and length L= 80.We have plotted panels (A) and (B) for two
different temperatures, increasing the external potential intensity.

Frontiers in Physics frontiersin.org06

González et al. 10.3389/fphy.2022.1091325

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1091325


It is important to mention that the obtained thermoelectric
efficiency only considers the electronic contribution to the thermal
conductance. Independently that we expect a strong reduction to the
phonon mean free path due to the presence of the ad-atoms, the lattice
contribution to the thermal conductance will not be zero; therefore,
the total figure of merit should be less than that of our results but still
better in comparison with the pristine case.

The thermoelectric behavior described in this work is quite
general for the considered heterostructures. We have obtained
similar results for different geometrical configurations,
considering variations in the width and length of the conductor
region. In this sense, we have focused on the simplest system to give
a better physical understanding of the thermoelectrical phenomena
present in these nanostructures.
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