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It is known that the dynamics and geometric phase of a quantum system can be
simulated by classical coupled oscillators using the quantum−classical mapping
method without loss of physics. In this work, we show that this method can also
be used to simulate the schemes of quantum shortcuts to adiabaticity, which can
quickly achieve the adiabatic effect through a non-adiabatic process. By mapping
quantum systems by classical oscillators, two schemes, Berry’s “transitionless
quantum driving” and the Lewis−Riesenfeld invariant method, are simulated by a
corresponding transitionless classical driving method, which keeps adiabatic phase
trajectories and acquires Hannay’s angle and the classical Lewis−Riesenfeld invariant
method by manipulating the configurations of classical coupled oscillators. The
classical shortcuts to adiabaticity for the two coupled classical oscillators, which is
the classical version of a spin-1/2 in a magnetic field, is employed to illustrate our
results and compared with quantum shortcuts-to-adiabaticity methods.
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1 Introduction

Adiabatic processes of quantum systems have become a significant ingredient in
quantum information processing for various practical purposes in metrology,
interferometry, quantum computing, and control of chemical interaction [1–4].
Achieving state preparation or transferring the population with high fidelity versus
parameter fluctuations should take a long time [5–7]. However, there are many
instances where we need to speed these operations up to prevent them from suffering
decoherence, noise, or losses [8, 9]. Therefore, proposing a way to speed up the adiabatic
approaches has drawn considerable attention [10–13]. So far, a variety of techniques to
implement shortcuts to adiabaticity (STA) have been proposed [5, 8, 14–21]. Notably,
there is a shortcut passage algorithm proposed by Berry called “transitionless quantum
driving” (TQD) [10]. This method accelerates adiabatic evolution in a hurry by designing a
time-dependent interaction followed by the system exactly [10]. Moreover, Chen et al. put
forward another method to accelerate the adiabatic passage using the Lewis−Riesenfeld
(LR) invariant to keep the eigenstates of a Hamiltonian from a specified initial to the final
configuration in an arbitrary time [8].

Not only STA techniques are developed in quantum systems but there are also
dissipationless classical drivings in classical systems [20, 22–26]. Moreover, it is already
known that a quantum system in a Hilbert space possesses a mathematically canonical
classical Hamiltonian structure in the phase space [27–41]. For example, the structures of
their phase spaces are usually regarded as the same [42, 43]. Classical and quantum mechanics
can also be embedded in a unified formulation as a quantum−classical hybrid system [44].
There is a way to devote elements of quantum mechanics to classical mechanics, in which we
can simulate the microscopic quantum behavior by a transition of the average value from a
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quantum system Hamiltonian into a classical system consisting of
oscillators without losing any physics [45–55]. Therefore, it is possible
to map and generalize adiabatic processes and STA for quantum
systems to classical systems by the quantum−classical mapping
method. As a matter of fact, we are inspired to ask if we can
simulate the STA in quantum systems by classical oscillators. Based
on this mapping and simulation, can it give specific classical schemes
for quantum schemes for the STA as the dissipationless classical
driving did? What is the relation between the quantum and
classical STA?

In this paper, we first introduce the quantum−classical mapping and
the relation between the Berry phase for the original quantum system and
Hannay’s angle for the mapped classical system in Section 2. In Section 3,
we generalize and simulate the two kinds of STA methods, TQD and LR
invariant-based methods, for quantum systems into the classical system
through the quantum−classical mapping and construct a complete
theoretical framework for both methods of achieving the STA in
classical systems. On one hand, the TQD method which implements
the STA by finding an additional Hamiltonian to drive the system can be
simulated by adding an additional driving Hamiltonian to keep adiabatic
phase trajectories and acquireHannay’s angle [23, 24]. On the other hand,
the LR invariant method which keeps energy eigenstates from a specified
initial to the final configuration can also be simulated bymanipulating the
configurations of classical coupled oscillators [20, 22]. To illustrate these
two classical methods, we study the quantum−classical mapping and the
two STAmethods for a spin-1/2 in amagnetic field, which corresponds to
two coupled classical oscillators in Section 4. Finally, we give a conclusion
in Section 5.

2 Adiabatic evolution in
quantum−classical mapping

We consider an N-level quantum system governed by
Hamiltonian Ĥ(t); its dynamical evolution can be described by the
following Schrödinger equation (see Appendix for details):

iZ
dψn t( )
dt

� zHC

zψn*
, (1)

with the probability amplitudes ψn of the state |Ψ〉 = ∑nψn(t)|ψn〉 on
the bare basis {|ψn〉} and the mean value energy
HC(ψ,ψ*, t) � 〈Ψ|Ĥ(t)|Ψ〉, where ψ(t) � (ψ1(t), . . . ,ψn(t), . . . ,ψN(t))T.
To study the adiabatic evolution of the system, it is convenient to
transform the bare basis {|ψn〉} into the adiabatic basis {|Ek(t)〉}, which
consists of the time-dependent eigenstates |Ek(t)〉 of the Hamiltonian
Ĥ(t). The amplitudes φ(t) � [φ1(t), . . . ,φn(t), . . . ,φN(t)]T on the
adiabatic basis are determined by |Ψ〉 = ∑kφk(t)|Ek(t)〉. These two
bases can be connected by the unitary transformation given as follows:

ψ t( ) � U t( )φ t( ), (2)
with Unk = 〈ψn|Ek(t)〉. By the adiabatic theorem, the probability |φk(t)|

2

remains unchanged in the adiabatic limit. The phase of the amplitudes φk
accumulated via evolution includes a dynamic phase ∫Ek(t)dt and a Berry
phase γk = ∫〈Ek(t)|dtEk(t)〉dt [56].

This quantum adiabatic evolution can be equivalently mapped into
a classical one without losing any physics [45, 46, 52]. If we decompose
ψn into real and imaginary parts ψn(t) � [qn(t) + ipn(t)]/

���
2Z

√
, the

Schrödinger equation and its complex conjugate can be written as
Hamilton canonical Eqs 46, 47, 53, shown as follows:

_qn �
zHC

zpn
, _pn � −zHC

zqn
. (3)

The Hamiltonian HC(ψ, ψ*, t) can be transformed into h(q, p, t),
and the quantum dynamics in Eq. 1 can be represented by the classical
evolution of the “position variable q(t)” and “momentum variable
p(t)” in Eq. 3.

The adiabatic evolution of adiabatic states can also be mapped to a
classical one. One can introduce a new pair of variables (θ, I)
corresponding to the amplitudes on the adiabatic basis by

φk t( ) �
��
Ik
Z

√
e−iθk t( ) (4)

and the Hamiltonian changes into [52]

HC θ, I, t( ) � ∑
k

Ek t( )Ik/Z + zS q, I, t( )
zt

, (5)

where Ek(t) corresponds to the eigenvalues of the Hamiltonian Ĥ, with
corresponding eigenstates |Ek(t)〉. S(q, I, t) is the generating function
of the classical transformation (q(t), p(t)) → (θ(t), I)

pn t( ) � ∑
k

���
2Ik

√
cos θkIm Unk t( )[ ] − sin θkRe Unk t( )[ ]{ },

qn t( ) � ∑
k

���
2Ik

√
cos θkRe Unk t( )[ ] + sin θkIm Unk t( )[ ]{ } (6)

between the position−momentum variable and action−angle variable,
which corresponds to the quantum unitary transformation |Ek(t)〉 =∑nUnk(t)|ψn〉 between the adiabatic basis and the bare basis. Under the
adiabatic evolution, it has been proved that the two new variables θ(t)
and I satisfy the same canonical equations as the angle−action
variables in classical mechanics [46], given as follows:

_θk � Ek t( )/Z − zAH I; t( )
zIk

, _Ik � 0. (7)

Like the Berry phase, the adiabatic evolution will accumulate a
dynamic angle ∫Ek(t)/Zdt and an additional angle onto the angle
variable called Hannay’s angle [57].

Δθk I( ) � − z

zIk
∫AH I; t( ), (8)

where

AH I; t( ) � 〈p θ, I; t( )ztq θ, I; t( )〉θ
� 1

2π( )N ∫dθ∑
n

pn θ, I; t( )ztqn θ, I; t( ) (9)

is the angle connection for Hannay’s angle [51]. The angular brackets
〈/ 〉θ denote the averaging over all angles θ (this averaging process is
called the averaging principle, which can be treated as the classical
adiabatic approximation), and zt is defined as ztF(t) � zF(t)

zt . It can be
proved that AH = ∑kiIkAB(k; t) [52]. We note that AB(k; t) is nothing
but a one-form for the Berry phase [51], and this means that Hannay’s
angle is exactly equal to the minus Berry phase of the original quantum
system [48, 52], which is given as follows:

Δθk I( ) � − z

zIk
∫AH I; t( ) � −i∫AB k; t( ) � −γk. (10)

So far, a quantum adiabatic evolution and its Berry phase can be
perfectly mapped to a classical one and its Hannay’s angle. Next, we
will show that the two different methods for the quantum STA can also
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be mapped to classical systems. It will not only connect the current
methods for the classical STA to the quantum ones but also shed more
light on the classical methods.

3 Shortcut to adiabaticity: From a
quantum to classical system

3.1 Transitionless classical driving

We first discuss the transitionless tracking algorithm. For the non-
adiabatic quantum driving, the quantum evolution cannot be restricted to
an eigenstate, whatever the initial state is. According to the STA proposed
by Berry, for the Hamiltonian Ĥ(t) we discussed in the previous section,
if we want to keep no transitions between the eigenstates

|φn t( )〉 � ei βn+γn( )|En t( )〉 (11)
of Ĥ(t) in the exact quantum evolution without the adiabatic
approximation with the dynamic phase βn � −1

Z∫ t

0
En(τ)dτ and the

geometric phase γn � i∫ t

0
∫〈En(τ)|zτEn(τ)〉dτ, we need an effective

TQD Hamiltonian [10], given as follows:

Ĥeff � ∑
n

|En t( )〉En t( )〈En t( )|

+ iZ∑
n

|ztEn t( )〉〈En t( )| − 〈En t( )|ztEn t( )〉|En t( )〉〈En t( )|( ).

(12)
To drive state Eq. 11, the first sum in Eq. 12 is exactly the original

Hamiltonian Ĥ(t) represented by the adiabatic basis, and the second
sum contains two terms that cancel the transition between eigenstates
and generate the accumulated Berry phase, respectively.

Similarly, for non-adiabatic classical driving, the evolution of the
canonical coordinates q and p will also fail to keep the action variable I
unchanged without the averaging principle, and their trajectories in the
phase space will not follow adiabatic trajectories (see Figure 1B).
Accordingly, the action variable I will be conserved in a classical
evolution as long as the additional effects caused by the time-
dependent canonical transformation are canceled. This means that if
we want the Hamiltonian function driving the canonical variables as Eq.
7 without the average principle, the transitionless classical driving (TCD,
no transition between action variables) Hamiltonian function can be
written as follows [25]:

Heff
C I; t( ) � HC I; θ; t( ) +HCI I; θ; t( )

� HC I; θ; t( ) − zF

zt
− AH.

(13)

With the quantum−classical mapping method we introduced in
the last section, we can derive a more explicit form of the TCD
HamiltonianHeff

C by averaging TQDHamiltonian Ĥeff Eq. 12. After
a straightforward derivation, we have

Heff
C � 〈ψ|Ĥeff|ψ〉

� ∑
n

En|φn|2 + iZ ∑
n,m≠n

φm*φn〈Em|ztEn〉

� ∑
n

Inωn −∑
n

〈pn θ, I; t( )ztqn θ, I; t( )〉θ

+1
2
∑
n

pn θ, I; t( )ztqn θ, I; t( ) − qn θ, I; t( )ztpn θ, I; t( )[ ]
�∑

n

Inωn −∑
n

zt pn θ, I; t( )qn θ, I; t( )[ ], (14)

where ωn = En/Z and the angular brackets 〈/ 〉 denote the averaging
over all angle variables 1

(2π)NΠ
N
k ∫ 2π

0
dθk. Comparing Eq. 13 with Eq. 9,

FIGURE 1
(A) Initial phase trajectory (solid line) and initial phase points (blue dots). (B) Final adiabatic trajectory (solid line) and final phase points driven byHCwhen t/
τ= 1, τ = .5 (red dot blanks) and τ = 30 (blue dots). (C) Final adiabatic trajectory (solid line) and final phase points driven byHC+HCI, when t/τ= 1 and τ = .5 (blue
dots). (D) Final adiabatic trajectory (solid line) and final phase points driven by HC + HCI, when t/τ = 2 and τ = .5 (blue dots). (E) Final adiabatic trajectory (solid
line) and final phase points driven by Heff

I , when t/τ = 1 and τ = .5 (blue dots). (F) Final adiabatic trajectory (solid line) and final phase points driven by Heff
I ,

when t/τ = 2 and τ = .5 (blue dots).
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the terms canceling the non-adiabatic evolution and generating
Hannay’s angle can be written as follows:

zF

zt
� −1

2
∑
n

qn θ, I; t( )ztpn θ, I; t( ) − pn θ, I; t( )ztqn θ, I; t( )[ ],
AH � ∑

n

〈pn θ, I; t( )ztqn θ, I; t( )〉θ,
(15)

respectively. Like the TQD, the choice of eigenfrequencies ωn can be
arbitrary and the geometric angles can be dropped for keeping the
actions I conserved [10]. The simplest form of the Hamiltonian
driving the canonical coordinates q and p with the conserved
action I can be written as follows:

Heff
I � 1

2
∑
n

pn θ, I; t( )ztqn θ, I; t( ) − qn θ, I; t( )ztpn θ, I; t( )[ ]. (16)

3.2 LR invariant-based scheme

A different approach to realize the quantum STA is based on the
LR invariants [8, 58]. For the Hamiltonian Ĥ(t), a time-dependent
invariant can be determined by

iZ
zÎ t( )
zt

+ Î t( ), Ĥ t( )[ ] � 0. (17)

The eigenvalues λn of Î(t) remain constant over time, and the
time-dependent eigenstates |λn(t)〉 will accumulate an LR phase

Ωn t( ) � 1
Z
∫ t

0
〈λn τ( )|iZ z

zτ
−H τ( )|λn τ( )〉dτ (18)

via the dynamical evolution. By using the time-dependent unitary
evolution operator

U � ∑
n

eiΩn t( )|λn t( )〉〈λ 0( )|, (19)

the Hamiltonian can be written as follows [8]:

Ĥd ≡ iZ ztU( )U† � −Z∑
n

|λn t( )〉 _Ωn〈λn t( )| + iZ∑
n

|ztλn t( )〉〈λn t( )|,

(20)

where the second term can be used to drive the eigenstates |λn(t)〉 of
Î(t) and generate the LR phase. Without loss of generality, the
arbitrariness of choosing Hd can be fixed by the constrain
[Î(0), Ĥ(0)] � 0 and [Î(t), Ĥ(t)] � 0 [8]. Invariant condition Eq.
17 can also be derived by comparing Eq. 20 with the original form of
Ĥ(t). Therefore, one can design an evolution path from the initial
Hamiltonian Ĥ(0) to the final one Ĥ(T) along one of the eigenstates
|λn(t)〉 of Î(t) to achieve the STA.

For a classical system, we can also find similar classical time-
dependent invariants that satisfy

_Jk � zJk t( )
zt

+ Jk t( ), HC q, p; t( ){ } � 0. (21)

By introducing a new pair of variables including the time-
dependent invariants (ξ, J) (hereafter referred to as LR variables),
we have the following canonical equations:

_Jk � −zG α, t( )
zξk

� 0, _ξk � zG α, t( )
zJk

, (22)

where G(ξ, t) =HC(ξ, J, t) + S(ξ, J, t) is the Hamiltonian after a classical
transformation (q(t), p(t))→ (ξ(t), J) with the generating function S(q,
I, t). Since Jk are invariants, the Hamiltonian G(ξ, t) does not contain
the angle variables ξk. The changes of angles then can be rewritten as
follows:

Δξk � ∫ T

0
dt

z〈HC ξ, J, t( )〉ξ
zIk

+ z〈S ξ, J, t( )〉ξ
zIk

( ),
� ∫ T

0
dt

z �HC J, t( )
zIk

− zALR J, t( )
zIk

( ) (23)

with �HC(J, t) ≡ 〈HC(ξ, J, t)〉ξ and
ALR(J, t) ≡ ∑n〈pn(ξ, J, t)ztqn(ξ, J, t)〉ξ which is similar to the
dynamical part and geometrical part in the angle changes of the
classical adiabatic evolution. The angular brackets 〈/ 〉ξ denote an
averaging over all LR angles ξ. Note that these LR variables are
generally not action−angle variables of HC. However, we can set
{Jk(0), HC(0)} = {Jk(T), HC(T)} = 0; the LR action variables Jk can,
thus, be chosen as action variables that are related to the
eigenfrequencies at initial time t = 0 and final time t = T. Similar
to the quantum STA based on LR invariants, we can also design an
evolution path from HC(0) to HC(T) with the invariants Jk, in which
the initial action variables of H are equal to those in the final time.

To determine the specific form of the classical LR invariant-based
scheme, we define the probabilities amplitudes dk of |Ψ〉 =∑kdk|λk〉 on
the LR basis {|λk〉} as

dk �
��
Jk
Z

√
e−iξk , (24)

using the quantum−classical mapping method. The canonical
transformation (q, p) → (ξ, J) between position−momentum
variables and LR variables can correspond to the quantum unitary
transformation |λk(t)〉 =∑nUnk(t)|ψn〉 between the adiabatic basis and
the bare basis given as follows:

pn t( ) � ∑
k

���
2Jk

√
cos ξkIm Unk t( )[ ] − sin ξkRe Unk t( )[ ]{ },

qn t( ) � ∑
k

���
2Jk

√
cos ξkRe Unk t( )[ ] + sin ξkIm Unk t( )[ ]{ }. (25)

Similar to the classical TQD scheme of the STA, the driving
Hamiltonian should cancel the effect of the time-dependent
transformation S and generate the angle Δξk. By Eqs 13–23, we have

Hd � �HC J, t( ) − ALR J, t( ) − zS

zt
� 〈HC ξ, J, t( )〉ξ −∑

n

〈pn ξ, J, t( )ztqn ξ, J, t( )〉ξ

+1
2
∑
n

pn ξ, J; t( )ztqn ξ, J; t( ) − qn ξ, J; t( )ztpn ξ, J; t( )[ ],
(26)

with

zS

zt
� −1

2
∑
n

pn ξ, J; t( )ztqn ξ, J; t( ) − qn ξ, J; t( )ztpn ξ, J; t( )[ ]. (27)

According to the quantum−classical mapping, this classical
Hamiltonian of LR invariants method is just the mean value of the
quantum LR, given as follows:
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Hd � 〈ψ|Ĥd|ψ〉. (28)
Therefore, the form of LR variables can be determined by equating

Hd and HC, and the boundary conditions are as follows:

Jk 0( ), HC 0( ){ } � Jk T( ), HC T( ){ } � 0. (29)
On the contrary, we can design the classical Hamiltonian Hd from

the evolution of LR variables to realize the classical LR invariant-based
scheme.

4 Spin-1/2 in a magnetic field

To illustrate our results, we consider the adiabatic evolution and
STA scheme for a simple two-level quantum system, i.e., a spin-half
particle with the magnetic moment μ in an external magnetic field B =
B(sin α cos β, sin α sin β, cos α). Its Hamiltonian reads

Ĥ � −μσ̂ · B � −μB cos α sin αe−iβ

sin αeiβ −cos α( )
� −μB cos α | + 〉〈 + | − | − 〉〈 − |( ) + sin α e−iβ| + 〉〈 − | + eiβ| − 〉〈 + |( )[ ],

(30)

where σ̂ � (σ̂1, σ̂2, σ̂3) are Pauli matrices and |±〉 are the two spin
eigenstates.

4.1 Transitionless classical driving

As we introduced in the previous section, if the two spin
eigenstates |±〉 are chosen as the basis, the Hamiltonian in Eq. 30
can be mapped to the classical Hamiltonian of a coupled oscillator,
given as follows:

h p, q;B( ) � −μB
Z

1
2

p2
2 + q22 − p2

1 − q21( )cos α[
+ p1q2 − p2q1( )sin α sin β + q1q2 + p1p2( )sin α cos β], (31)

with |ψ〉 = ψ1| − 〉 + ψ2| + 〉 and ψj � (qj + ipj)/
���
2Z

√
, (j = 1, 2). The

canonical variables (q, p) satisfy the normalization condition [46],
shown as follows:

∑2
j�1

p2
j + q2j( ) � 2Z. (32)

It is interesting to note that by defining a vector S = (S1, S2, S3) with

S1 � 〈σ1〉 � q1q2 + p1p2( )/Z,
S2 � 〈σ2〉 � p1q2 − p2q1( )/Z,
S3 � 〈σ3〉 � p2

2 + q22 − p2
1 − q21( )/ 2Z( ),

⎧⎪⎨⎪⎩ (33)

the Hamiltonian function can be written as follows:

h S;B( ) � −μS · B, (34)
where the normalization condition of S is S2 ≡ S21 + S22 + S23 � 1, and
their Poisson bracket has a relation with the quantum commutator,
shown as follows [45]:

Si, Sj{ } � 2εijkSk/Z � 1
iZ
〈ψ| σ̂ i, σ̂j[ ]|ψ〉. (35)

We now move to calculate Hannay’s angle. Since the Hamiltonian
in Eq. 30 has two eigenstates,

|E1〉 � cos
α

2
| + 〉 + sin

α

2
eiβ| − 〉,

|E2〉 � −sin α

2
| + 〉 + cos

α

2
eiβ| − 〉,

(36)

with eigenenergies −μB and μB, respectively. The canonical
transformation (q, p) → (θ, I) and the mapped Hamiltonian
function can be written as follows:

q1 � ���
2I1

√
sin

α

2
cos β − θ1( ) + ���

2I2
√

cos
α

2
cos β − θ2( ),

q2 � ���
2I1

√
cos

α

2
cos θ1 −

���
2I2

√
sin

α

2
cos θ2,

p1 � ���
2I1

√
sin

α

2
sin β − θ1( ) + ���

2I2
√

cos
α

2
sin β − θ2( ),

p2 � − ���
2I1

√
cos

α

2
sin θ1 +

���
2I2

√
sin

α

2
sin θ2,

�h I;B( ) � μB I2 − I1( )/Z.
(37)

We can calculate the forms of variable I by the following:

I1 � Z

2
1 + S · b( ),

I2 � Z

2
1 − S · b( )

(38)

with q = (q1, q2), p = (p1, p2), θ = (θ1, θ2), I = (I1, I2), and b = B/B.
Therefore, we obtain the angle one-form by Eq. 9, given as follows:

AH � −1
2

1 − cos α( ) _βI1 − 1
2

1 + cos α( ) _βI2. (39)

Hannay’s angles can, thus, be obtained by Eq. 10, given as follows:

Δθ1 � ∮ 1
2

1 − cos α( ) _βdt,
Δθ2 � ∮ 1

2
1 + cos α( ) _βdt,

(40)

which differ from the Berry phases in the original quantum
Hamiltonian [58] only by a sign.

By Eq. 14, we have the following:

Heff
I � 1

2
−p2

1 − q21( ) _β + p1q2 − p2q1( )cos β _α − p1p2 + q1q2( )sin β _α[ ]
� Z

2
S3 − 1( ) _β + S2 cos β _α − S1 sin β _α[ ],

(41)
AH � −1

2
1 − cos α( )I1 − 1

2
1 + cos α( )I2

� −Z
4

1 − cos α( ) 1 + S · b( ) + 1 + cos α( ) 1 − S · b( )[ ]
� −Z

2
1 − cos αS · b( ).

(42)

Therefore, we can get the TCD Hamiltonian function

HCI I; θ;X( ) � Z

2
S3 − 1( ) _β + S2 cos β _α − S1 sin β _α[ ] + Z

2
1 − cos αS · b( ) _β

� Z

2B2 S · B ×
zB
zt

( ),
(43)

which takes a similar form as the counter-adiabatic driving
Hamiltonian for spin-1/2 system Eq. 30. This means that the TCD
scheme can be treated like a classical version of the TQD scheme by
representing coordinate−momentum variables by the classical “spin”
defined by Eq. 33.
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We illustrate the evolution of the states through their trajectories
in the phase space. The evolution of the points on phase trajectories
can be determined by the dynamic equation of classical “spin,” given
as follows:

_Si � Si,HC{ } � −2μB
Z

εijk bjSk − bkSj( ). (44)

By defining θ = arccos S2 and ϕ = arctan S2/S1, the dynamics of the
original Hamiltonian HC takes the following form:

_θ � −2μB
Z

sin α sin β − ϕ( ),
_ϕ � −2μB

Z
cos α − sin α cos β − ϕ( )

tan θ
[ ]. (45)

The parameters of the magnetic field B are chosen as

α � π

2
− π

4
sin

πt

τ
, β � π − π

2
cos

πt

τ
,

_α � −π
2

4τ
cos

πt

τ
, _β � π2

2τ
sin

πt

τ
,

(46)

and μB/Z = −1.
As shown in Figure 1B, the evolution of the canonical coordinates

p and q will keep the action variable I almost unchanged, and their
trajectories in the phase space will follow adiabatic trajectories when
the frequency is slow.

For the TCD Hamiltonian HC + HCI, the effective magnetic field
changes into the following:

Beff � B − Z

2μ
b × _b( )

� B sin α cos β + Z

2μB
sin β _α + sin α cos α cos β _β( )[ ]i{

+ sin α sin β − Z

2μB
cos β _α − sin α cos α sin β _β( )[ ]j+ cos α − Z

2μB
sin2 α _β( )k}.

(47)

The dynamics of the TCD Hamiltonian can, thus, be written as
follows:

_θ � cos β − ϕ( ) _α − sin α sin β − ϕ( ) 2μB
Z

+ cos α _β( ),
_ϕ � −2μB

Z
cos α + sin2 α _β + sin α cos β − ϕ( )(2μB/Z + cos α _β) + sin β − ϕ( ) _α

tan θ
.

(48)

To drive the eigenstates using HC + HCI, the evolution of the
canonical coordinates p and q will keep action variables I unchanged,
and their trajectories in the phase space will follow adiabatic
trajectories no matter how fast the frequency is (see Figures 1C,
D). By tracing the same phase points of the initial phase trajectory
(see Figure 1A) and the final adiabatic trajectory, we can find that there
is an angle of shift after an adiabatic evolution. Also, the angle of shift
after a whole period is double that after half a period.

Moreover, for the simplest Hamiltonian Eq. 41 [dropping the
constant term and the term generating the Hannay’s angle Eq. 42], the
dynamics of the simplest Hamiltonian Heff

I is determined by the
following:

_θ � cos β − ϕ( ) _α,
_ϕ � _β + sin β − ϕ( ) _α

tan θ
.

(49)

It is easy to find that the adiabatic trajectories will remain
unchanged after any period (see Figures 1E, F).

4.2 Classical LR invariant

In the approach of the LR invariant, the eigenstates of the LR
invariant parallel to the eigenstates in Eq. 36 can be constructed as
follows [8]:

|λ1〉 � cos
η

2
| + 〉 + sin

η

2
eiδ | − 〉,

|λ2〉 � −sin η

2
| + 〉 + cos

η

2
eiδ| − 〉,

(50)

and the LR invariant can be expressed as follows:

Î t( ) � Z

2
Ω0

cos η sin ηe−iδ

sin ηeiδ −cos η( ). (51)

In the classical expression of the adiabatic process, without loss of
generality, the time-dependent classical invariants can be designed by
classical spin Eq. 33 as follows:

J1 � Z

2
1 + S · b′( ), J2 � Z

2
1 − S · b′( ). (52)

where b′ = (sin η cos δ, sin η sin δ, cos η) is the scaling factor with the
parameters (η, δ).

The canonical transformation between position−momentum
variables (q, p) and LR variables (ξ, J) can be written as follows:

q1 � ���
2J1

√
sin

η

2
cos δ − ξ1( ) + ���

2J2
√

cos
η

2
cos δ − ξ2( ),

q2 � ���
2J1

√
cos

η

2
cos ξ1 −

���
2J2

√
sin

η

2
cos ξ2,

p1 � ���
2J1

√
sin

η

2
sin δ − ξ1( ) + ���

2J2
√

cos
η

2
sin δ − ξ2( ),

p2 � − ���
2J1

√
cos

η

2
sin ξ1 +

���
2J2

√
sin

η

2
sin ξ2.

(53)

After this canonical transformation, the Hamiltonian h(q, p; B)
becomes

G J;B( ) � �HC J;B( ) − ALR J;B( )
� μ

Z
B · b′ J2 − J1( ) + 1

2
J1 1 − cos η( ) + J2 1 + cos η( )[ ] _δ.

(54)
We can calculate LR angles accumulated via the evolution process

by Eq. 23, given as follows:

Δξ1 � ∫dt
μ

Z
B · b′ − 1

2
1 + cos η( ) _δ[ ],

Δξ2 � ∫dt −μ
Z
B · b′ − 1

2
1 − cos η( ) _δ[ ]. (55)

According to Eq. 26, the driving Hamiltonian of the LR invariant-
based scheme becomes

Hd � �HC J, t( ) − ALR J, t( ) − zS

zt
� μ

Z
B · b J2 − J1( ) + sin ξ1 − ξ2( ) _η − cos ξ1 − ξ2( ) sin η _δ[ ] ����

J1J2
√

,

� S3 −μB · b′ cos η + Z

2
sin2 η _δ[ ] + S1 −μB · b′ sin η cos δ − Z

2
sin δ _η + sin η cos η cos δ _δ( )[ ]

+S2 −μB · b′ sin η sin δ + Z

2
cos δ _η − sin η cos η sin δ _δ( )[ ]

� S · Bd,

(56)

where Bd � (B · b′)b′ − Z
2μb′ × _b′. Comparing it with Eq. 34, the

scaling factor b′ satisfies the following:

_b′ � 2μ
Z
b′ × B. (57)
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The system invariant boundary conditions in Eq. 29 become

_b′ 0( ) � _b′ T( ) � 0, (58)
and the driving magnetic field in the Hamiltonian H can be chosen as

B � − Z

2μ
b′ × _b′ (59)

to realize the evolution from initial energy eigenstates |λn(0)〉 to final
energy eigenstates |λn(T)〉.

By equating HamiltonianHd Eq. 56 and �HC(J, t), we can calculate
these two pairs of parameters satisfying the following equation:

_δ � −2μB
Z

cos α + sin α
cos η
sin η

cos β − δ( )[ ],
_η � −2μB

Z
sin α sin β − δ( ). (60)

In particular, there is still arbitrariness in the choice of parameters η
and δ. To illustrate the adiabatic evolution driven by Eq. 56, we make the
invariants of the initial and finalmoments satisfy the boundary conditions
and Eq. 60. For example, to transfer the state from the first oscillator with
canonical variables q1 and p1 to the second oscillator with canonical
variables q2 and p2, we can set _η(0) � 0, η(0) = 0, and η(T) = π to satisfy
the boundary conditions and chose a different scheme for δ.

To illustrate this result, we choose two different configurations of
time-dependent parameters as shown in Figure 2. The first set of
parameters

η � π

2
+ π

2
cos

πt

τ
,

δ � −π
2
+ sin

πt

τ

(61)

in Figure 2A which implements the adiabatic invariance of action
variables can reproduce the evolution manipulated by the TQD
Hamiltonian Eq. 43 as shown in Figure 2B. The action variables Ji

exactly follow the adiabatic trajectories. The evolution of the phase
trajectory is just like that in Figures 1A, E driven by Heff

C . Similar to
the fact that the TQD can be seen as one of the schemes for the inverse
engineering based on the quantum LR invariant [59], the TCD which
keeps the evolution exactly on the adiabatic trajectories in phase space of
the classical Hamiltonian can be seen as one of the schemes for inverse
engineering based on the classical LR invariant, which only needs the
initial and final trajectories in the phase space matching adiabatic
trajectories in the phase space of the classical Hamiltonian. Therefore,
we can also design the classical Hamiltonian by different parameters to
realize the classical LR invariant scheme. For example, the parameters

η � π − 3πt2 + 2πt3,

δ � −π
2
+ π

2
t − 5π

2
t2 + 4πt3 − 2πt4

(62)

in Figure 2C can also realize the state transfer between the two
oscillators with a nearly unchanged δ. Thus, the optional form of
the parameters to implement the adiabatic invariance is not unique.
These results can be perfectly related to the LR invariant method for
the spin-1/2 system [59].

5 Conclusion

To sum up, we use the quantum−classical mapping method to
simulate the two schemes of the STA, i.e., the TQD and quantum LR
invariant method, by the classical system consisting of coupled
oscillators. On one hand, for the TQD, which implements the STA
by finding an additional Hamiltonian to drive the system, we derived
the explicit form of an additional driving Hamiltonian to keep the
evolution of adiabatic phase trajectories and acquire the Hannay’s
phase. This TCD method can perfectly simulate and match the TQD
method. On the other hand, the Lewis−Riesenfeld invariant method,
which keeps the energy eigenstates from a specified initial to the final

FIGURE 2
(A−C) Evolution of the parameters η (solid blue line) and δ (solid red line). (B−D) Time evolution of the action variables J1 (solid red line), J2 (solid blue line)
driven by Hd, and adiabatic approximate invariants Jad1 (dashed red line) and Jad2 (dashed blue line) when t/τ = 1 and τ = .5.
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configuration, can also be simulated by manipulating the
configurations of classical coupled oscillators. Both of the
approaches can accelerate the adiabatic process effectively under
different circumstances and matches the quantum methods of the
STA. These results prove that the protocol of the quantum−classical
mapping can be used to generalize quantum schemes of the STA into
the classical system. By this simulation, our theory could be expected
to find applications of the STA for classical systems.
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Appendix: Derivation of the Schrödinger
equation in the canonical form

The dynamical evolution of the N-level quantum system governed
by the Hamiltonian Ĥ(t) can be described by the following
Schrödinger equation:

iZzt|Ψ〉 � Ĥ t( )|Ψ〉, (63)
which can be expanded by the quantum state |Ψ〉 = ∑ψn(t)|ψn〉 as
follows:

iZzt ∑
n

ψn t( )|ψn〉⎛⎝ ⎞⎠ � Ĥ t( )|Ψ〉, (64)

with the probability amplitudes ψn on the bare basis {|ψn〉}. Since
{|ψn〉} is a time-independent bare basis, Eq. 64 becomes

iZdtψn t( )|ψn〉 � Ĥ t( )|Ψ〉. (65)
Multiplying Eq. 65 by 〈ψm|, we have the following:

iZdtψm t( ) � 〈ψm|Ĥ t( )|Ψ〉, (66)
withHC(ψ,ψ*, t) � 〈Ψ|Ĥ(t)|Ψ〉 � ∑mψm* 〈m|Ĥ(t)|Ψ〉. Therefore, the
Schrödinger equation in the canonical form can be written as follows:

iZ
dψm t( )

dt
� zHC

zψm*
, (67)

which is just the same as Eq. 1.
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