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A self-powered IoT system with high integration, robust performance, and

adaptability to complex environments is one of the current research hotspots.

Piezoelectric materials have been widely used in pressure sensing and energy

harvesting due to their stable output electrical properties. In this paper, a

heterogeneous integrated self-powered IoT system based on a lithium

niobate (LiNbO3) piezoelectric device and CMOS readout circuit is proposed.

The piezoelectric sensor is fabricated by depositing electrodes on the surface of

the 36°Y-cut LiNbO3 piezoelectric material. The sensitivity of the fabricated

sensor is 17.5 mV/kPa. Based on the CSMC 0.18 μm BCD process, a ring

voltage-controlled oscillator (VCO) based on the current starvation delay

element is designed as a wireless data transmission unit. The oscillator has

two tuning terminals, which can realize frequency alignment and voltage

threshold judgment. Using photolithography, wire bonding technology, etc.,

the heterogeneous integration of the Si-based chip and LiNbO3 piezoelectric

device is realized. The experimental results show that below 1.8 V supply

voltage, the oscillation frequency of the chip increases with the increase in

the control terminal voltage, which provides an idea for solving the energy

supply problem of an IoT system. This system has great application potential in

the field of self-powered sensing.
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1 Introduction

With the advent of the Internet of Things (IoT) era, sensor networks have gradually

become a research hotspot. The traditional wired sensor network has the advantages of

fast transmission rate and good robustness [1]. However, the power supply problem and

existence of external wires limit its application in industrial, medical [2] and other fields.

Therefore, wireless sensor networks are favored by researchers. At present, most wireless

sensor systems require external power supply, while traditional batteries are bulky, short-

lived and pollute the environment. An effective way to solve this problem is to obtain
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energy from nature, such as solar energy [3, 4], biological

mechanical energy [5-7], ocean energy [8, 9], and convert it

into electrical energy to achieve the self-powered IoT system

[10, 11].

At present, energy harvesters based on the pyroelectric

effect [12, 13] and photovoltaic effect [14] have been

proposed, but their application scenarios are limited. The

energy-harvesting system based on the triboelectric effect

has also been widely used [15-17], although it has good

output performance, but the output stability is poor. Since

the piezoelectric effect was discovered in 1880, piezoelectric

materials have been widely used in industrial, medical,

military and other fields [18-20]. Based on the positive

piezoelectric effect, piezoelectric materials can convert

mechanical energy into electrical energy to drive electronic

devices [21]. Since its charge is generated due to the

asymmetry of the positive and negative charge centers

inside the material, it has stable output performance.

However, the electromechanical conversion efficiency of

piezoelectric materials is low, while the power consumption

of electronic devices is high. Technical solutions such as

increasing the output power of piezoelectric devices [22-24]

and reducing the power consumption of external readout

circuits [25, 26] provide ideas for realizing self-powered

supply for IoT systems, exploring applications in the

human–computer interaction, health monitoring, and other

fields. In addition, heterogeneous integration of piezoelectric

devices with active electronic devices will contribute to more

efficient, reliable, and portable self-powered IoT systems [27].

In this work, a heterogeneous integrated self-powered

IoT system based on the LiNbO3 piezoelectric device and low

power CMOS readout circuit is introduced. The LiNbO3

crystal is a good piezoelectric crystal with a small

temperature coefficient, high electromechanical coupling

coefficient, and stable performance. In this paper, the

LiNbO3 crystal is used as a piezoelectric material. In

addition, a current-starved voltage-controlled oscillator

(VCO) with low power consumption is designed in this

paper. The circuit is implemented using the CSMC

0.18 μm BCD process. The designed ring VCO consumes

8.67 μW and has a center frequency of 13.56 MHz. It belongs

to the ISM band and can be used to send information in a

wireless way.

2 Design of the self-powered IoT
system

2.1 System structure

The heterogeneous integrated self-powered IoT system

proposed in this paper is composed of an LiNbO3

piezoelectric device, voltage-doubling rectifier, and wireless

transmission unit, as shown in Figure 1. The LiNbO3 device

has two functions: one is to convert external mechanical energy

into electrical energy by rectifying and the other is to supply

power for the wireless transmission unit; in addition, as a sensor,

the output piezoelectric signal is connected to the wireless

transmission unit, and frequency tuning can be performed.

The wireless transmission unit is a ring VCO with dual-tuned

terminals, which has low power consumption compared to the

LC VCO.

FIGURE 1
Structure diagram of the heterogeneous integrated self-powered IoT system. The piezoelectric device realizes energy harvesting through the
rectifier and supplies power to the VCO, and the piezoelectric device is connected to the control terminal of the VCO to realize frequency
modulation.
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2.2 Piezoelectric device

When a pressure is applied to a piezoelectric material, the

piezoelectric effect can be described by the piezoelectric

constitutive equation:

δ
D

[ ] � SE dt

d εT
[ ] T

E
[ ], (1)

where δ is the strain, T is the stress, D is the electrical

displacement, E is the electric field strength, S is the elastic

modulus, ε is the dielectric constant, and d is the piezoelectric

coefficient.

Piezoelectric crystals grow in long-range order,

according to the crystal space lattice, and have no

symmetry center, so they have piezoelectricity. As shown

in Figure 2, the LiNbO3 crystal is a trigonal crystal system at

room temperature, which has the advantages of high Curie

temperature [28] and strong piezoelectric and ferroelectric

performances, and is widely used in the production of SAW

devices, piezoelectric filters, transducers, laser modulators,

etc. The LiNbO3 crystal is anisotropic, and the piezoelectric

effect is the strongest in the direction of 38.9°, that is, d22 is

the largest at this time [29]. The commercial LiNbO3 crystal

cutting direction close to it is 36°Y-cut. In this work,

piezoelectric devices were fabricated by depositing Ti/Au

on the surface of the 36°Y-cut LiNbO3 piezoelectric

crystal. When the piezoelectric device is pressed, positive

charge is generated on one surface of the device, and

correspondingly, a negative charge is generated on the

other surface. Since the impedance of the external circuit

is not infinite, electrons flow from one electrode to the other

through the external circuit.

2.3 Wireless transmission unit

Usually, for the VCO, the change of voltage of the power

supply and the control terminal will cause the frequency jitter.

When the power supply voltage is stable, the LC VCO shows a

sensitive frequency response to the change of the control

terminal voltage, and it has less phase noise. However, the

power consumption and area are also increased. For the self-

powered IoT system, both frequency stability and power

consumption need to be considered. Based on the low-power

design requirements of the self-powered system, the wireless

transmission unit uses a current-starved ring VCO to convert the

pressure information on the sensor into frequency information

and send it wirelessly. Current-starved ring oscillators control the

frequency of oscillation by supplying current to the oscillator by

mirroring the bias current. The delay time of a current-starved

delay element can be expressed as [30]

td � CL × VDD

K VC − VTH( )2. (2)

where CL is the load capacitance, VDD is the supply voltage, K

is the process parameters of transistors, VC is the control voltage,

and VTH is the threshold voltage.

The frequency of the ring oscillator is related to the delay

time of each inverter and the number of inverter stages, and the

oscillation frequency can be expressed by the following formula:

FIGURE 2
LiNbO3 lattice structure and diagrams of internal and surface charges under pressure and release.
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f � 1
2N × td

, (3)

where N is the number of inverter stages and td is the delay

time of each stage of the inverter. In order to reduce the power

consumption of the system, the current of the three-stage

inverter comes from the bias current source, and the

operating frequency of the oscillator is reduced as well Tran

and Dang [31]. The schematic of the oscillator is shown in

Figure 3. The oscillator has two control terminals, which realize

coarse tuning and fine tuning. The coarse-tuning terminal is used

to stabilize the output frequency at the ISM frequency band.

When the output reaches a certain threshold, the oscillator circuit

is turned on and oscillates in a specific frequency band. The fine-

tuning terminal is associated with voltage detection, which can

change the frequency of the oscillator within a specific frequency

band. Piezoelectric devices can be equivalent to a voltage source

in series with a capacitor or a charge source in parallel with the

capacitor. The gate resistance of the MOS transistor is large.

According to the piezoelectric equivalent circuit, the piezoelectric

element is connected to the gate of the transistor. At this time, the

external load impedance is large, so the conversion of the charge

signal can be realized. The stress condition can be characterized

by the frequency and the output time. The designed chip has a

low power consumption of 8.676 μW with a VDD of 1.8 V.

Figures 3C,D show the correspondence between oscillator

frequency and VDD, VCA, and VCB. From Figure 3C, it can be

concluded that the change of the output frequency is sensitive to

the change of the coarse-tuning terminal VCA. In this paper,

VCA is set to 1.67 V, and the corresponding output frequency is

about 13.56 MHz. For VCB, the frequency variation range is

13.32–13.87 MHz, which belongs to the ISM frequency band, and

the wireless sensor unit can transmit information wirelessly in

this frequency band. As analyzed previously, the delay of each

stage of the inverter is also related to VDD. As shown in

Figure 3D, when VDD varies from 1.8 to 2.2 V, the output

frequency changes from 13.44 to 14.90 MHz.

3 Results and discussion

The test environment for the electrical performance of the

piezoelectric device is shown in Figure 4A. The piezoelectric

device is subjected to pressure by a stepper motor, and the

corresponding signal is collected using an electrometer

(Keithley, 6514). The stepping motor is controlled using

special software on the computer, and the pressure can be

read out using the dynamometer (HANDPI, HP-500). The

effective area of the sensor is 0.5 cm2. Figures 4B,C show the

change of open circuit voltage and charge of piezoelectric devices

FIGURE 3
Low-power wireless information-sending unit. (A) Schematic of the current-starved delay element; (B) schematic of the low-power current-
starved ring oscillator, and the circuit has coarse- and fine-tuning functions to achieve frequency alignment and threshold judgment, respectively;
(C) simulation of the variation curve of oscillation frequency with VCA and VCB; and (D) simulation of the variation curve of oscillation frequency
with VDD.
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with time in the pressure range of 10–700 kPa. Both the output

voltage and the charge increase with pressure. It is because the

increase in pressure causes an increase in the electric dipole

moment, creating a larger potential difference between the top

and bottom electrodes. The sensor has robust output

performance, and the sensitivity of the sensor is up to

17.5 mV/kPa, which can meet the need of wireless sensing.

The PCB test board of the chip is shown in Figure 5A. For the

convenience of welding and testing, the chip is packaged in a

QFN24 case. Figure 5B shows the curve of the oscillator output

frequency as a function of VCA when VCA = 1.8 V and VDD =

1.8, 1.9, and 2.0 V. As VDD increases, the corresponding output

frequency also increases. In addition, as shown in Figure 5C, we

compared the test results and simulation results when VDD =

1.8 V and VCA = 1.8 V. Due to the existence of parasitic

capacitances such as PCB and QFN cases, the frequency of

chip testing is lower than that of simulation under the

same conditions. As shown in Figure 5D, the 2.2-μF capacitor

can be charged to 2.03 V within 50 s when pressed by the

human hand. At this time, the energy stored in the capacitor

is Eenergy = 4.53 μJ. The power consumption of the oscillator is

8.67 μW, and the start-up time is only 191 ns, so it is enough to

drive the oscillator. The results show that the heterogeneous

integrated IoT system can collect the energy of the piezoelectric

device, supply power to the chip within a certain period of time,

and realize the reading of pressure information within this

period.

4 Method for heterogeneous
integration of piezoelectric devices
and Si-based integrated circuits

In order to improve the integration of the heterogeneous

integrated IoT system, a part of the area on the LiNbO3 substrate

is reserved as the active area in this work. This area integrates the

voltage-doubling rectifier and the wireless transmission unit, and

the other area is the Ti/Au electrode, which is used to extract the

piezoelectric charge. The process and explosion diagram of the

heterogeneous integrated sensing unit are shown in Figure 6, and

FIGURE 4
(A) Test environment of the LiNbO3 piezoelectric sensor; (B) open-circuit voltage of the sensor under different pressures; and (C) open-circuit
voltage and charge of the sensor under different pressures.
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FIGURE 5
Low-power wireless transmit unit tests. (A) PCB test board for the chip; (B) test for the variation curve of oscillation frequency with VDD; (C)
comparison of simulation and test results of output frequency variation with VCA; and (D) charging of the capacitor as the device is pressed and
released by the human hand.

FIGURE 6
Method for heterogeneous integration of piezoelectric devices and Si-based integrated circuits. (A) substrate preparing; (B) photoresist coating,
exposure and development; (C) metal deposition & lift-off in acetone; (D) chip bonding and dispensing.
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the detailed steps are as follows: preparing the LiNbO3 substrate;

spin-coating the negative photoresist (AR-N 4340) on the top

surface of the LiNbO3 substrate, for which the speed and

corresponding time are 1,000 rpm for 6 s and then 6,000 rpm

for 20 s; prebaking for 2 min at 110°C; exposing for 40 s; post-

baking for 4 min at 105°C; developing for 1 min; depositing Ti/

Au electrodes for 20/200 nm on the top and bottom surfaces of

LiNbO3; and soaking in acetone to remove the photoresist. Then,

through wire bonding, reflow soldering, etc., the Si-based chip is

fixed on the surface of the wafer and coated with silica gel for

protection.

Inspired by the PCB, for the active area reserved in the

heterogeneous integrated IoT system, part of the metal on the

surface of the wafer is used as wiring by designing the pattern to

realize the interconnection of components. It is worth noting that for

the convenience of wiring, the bottom surface of the integrated unit

is considered the positive electrode of the piezoelectric device, and

the top surface is considered the negative electrode.

5 Conclusion

In conclusion, a heterogeneous integrated self-powered IoT

system based on the LiNbO3 piezoelectric material and CMOS

readout circuit is proposed in this work. An LiNbO3 piezoelectric

sensor was fabricated by vapor-depositing electrodes on the

surface of the LiNbO3 piezoelectric material. The charge that

the piezoelectric device can generate is 1,160 nC under the

pressure of 700 kPa. The sensitivity of the sensor is up to

17.5 mV/kPa, which can meet the need of wireless sensing.

Based on the CSMC 0.18 μm BCD process, a low-power VCO

circuit was designed with a power consumption of 8.67 μW and

can work in the 13.56 MHz ISM frequency band. Through

lithography and other processes, the designed low-power chip

is heterogeneously integrated with the LiNbO3 piezoelectric

material. This system can send data at regular intervals. It has

significant advantages in high integration, high anti-interference,

etc., which provides methods for the energy supply problem of an

IoT system.
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