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The spread of rumors does great harm to society. It will not only disrupt the social
order but also damage public interests and even cause public safety and social shock.
With the development of social platforms, it has become a fertile ground for rumors
to breed and spread. The WeChat group as a very popular social platform is an
important medium of rumor spreading with accurate and fast characteristics. In this
paper, in order to describe the dynamic characteristics of rumors spread in WeChat
groups, a susceptible–infected–removed rumor propagation model with an
interaction mechanism and population dynamics on WeChat groups is proposed.
In order to analyze the dynamic characteristics of the system, the next-generation
matrix method is used to calculate the basic reproduction number of the proposed
model. Then, the stability of a disease-free equilibrium point and a positive
equilibrium point of the system is analyzed in detail. Finally, the accuracy of the
analysis results is verified by numerical simulation. The research results are of great
significance for controlling the rumors spread in WeChat groups.
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1 Introduction

With the rapid development of Internet technology, it provides a broad space for
information exchange among people. However, a large number of online rumors are
generated without foundation or malice at the same time. These rumors not only seriously
pollute the network environment and disrupt the public order but also seriously affect social
stability and endanger national security [1–3]. If the public inadvertently become the audience
of online rumors, it will gradually lose the right judgment and rational discrimination. In the
long run, these audiences may believe these rumors and spread them widely on social networks
[4]; [5].

The earliest research on the rumor propagation model originated in the 1960s. A large
number of the existing rumor propagation models are derived from the epidemic model [6,7].
The DK model, as a basic rumor propagation model, was first proposed. [8,9] established a
perfect mathematical theory and MK model for the rumor propagation model. However, the
topological characteristics of social networks were not considered by DK and MK and were not
suitable for the description of the rumor propagation mechanism in large-scale social networks.
A matching model of rumor propagation based on dynamic behavior was proposed [10].
[11,12] established a small-world network rumor propagation model and calculated a
propagation threshold. The dynamic mechanism of rumor propagation based on the scale-
free network model was established [13–15]. The MK model was applied to the complex
network model and described by the interactive Markov chain theory [16,17]. Furthermore, a
rumor-spreading model in the homogeneous network called 2SIH2R was studied, in which
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there are both spreader 1 (people who spread the rumor) and spreader
2 (people who spread the truth) [18]. Considering the heterogeneity of
the network, a 2SIH2R model was studied with the mechanisms of
discernment and confrontation in a heterogeneous network to
examine the dissemination of the rumor and the truth [19]. Taking
the management and control of rumors by relevant departments in
real life into account, the SIDRQ rumor-spreading model with the
forgetting mechanism, immune mechanism, and suspicion
mechanism and guides on a uniform network was established [20].
A novel susceptible–exposed–infected–recovered (SEIR)-delayed
rumor propagation model with saturation incidence on
heterogeneous networks was devoted to investigation [21].

The rumor propagation model with the forgetting mechanism on
the online social blog LiveJournal was considered [22]. The results
showed that there was an average threshold of influencing rumor
saturation in LiveJournal. A mechanism based on the thermal theory
was proposed to analyze the spread of rumors on large-scale social
networks [23]. The results showed that the initial rumormaker and the
probability of sending the rumor were greatly affected by the attraction
of the rumor. The influence of the network structure on rumor
propagation was studied [24]. The social reinforced rumor
propagation model based on two-way emotion was considered
[25]. A novel SIR susceptible–infected–removed (SIR) information
propagation model based on the characteristics of the microblog was
constructed [26]. However, in the real online social network, due to the
influence of characteristics, educational background, personal legal
awareness, and some other factors, some people cannot determine the
authenticity of rumors when they are exposed to them. So, they will
not spread immediately, which is a hesitation state. The rumor
propagation model with the characteristics of the hesitation state
was discussed, yet the conversion of hesitant nodes to immune nodes
was not considered [27]. An SEIR rumor propagation model of
heterogeneous networks was proposed and analyzed for
propagation dynamics of the microblog rumor [28]. In order to
study the influence of forcing silence on spreaders, a rumor
propagation model with a silence-forcing function in online social
networks was proposed [29]. By incorporating the dissemination of a
rumor through groups in social and mobile networks and by
considering the people’s cognitive factor (hesitate and forget), a
new model on the rumor spreading process was presented [30].

In recent years, considering the individual activity and refutation
mechanism simultaneously, a new multifactor model was proposed [31].
The structure of patches (nodes) is divided by connectivity distribution on
metapopulation networks. A lot of research results for the dynamics of the
infectious disease model among patches were invented based on the
reaction–diffusion process [32–34]. Many epidemic models with
demographic characteristics (such as birth and death) were considered
[35]. In addition, some research results also considered the prevention and
control strategies of rumor propagation [36,37].

WeChat, as a free application, is launched by Tencent to provide
instant messaging services for intelligent terminals, including public
platforms, circle of friends, message push, and other functions. As an
important and popular social form,WeChat groups are widely used by
the public. Therefore, WeChat groups have also become the hotbed of
rumor propagation, which has the characteristics of accurate infection
and rapid diffusion. Therefore, in this paper, an SIR rumor
propagation model with an interaction mechanism and population
dynamics on WeChat networks is proposed.

In Section 2, an SIR rumor propagation model with an
interaction mechanism and population dynamics on WeChat
networks is proposed. In order to analyze the dynamic
characteristics of the system, the next-generation matrix method
is used to calculate the basic reproduction number of rumor
propagation. Then, the stability of a disease-free equilibrium
point and a positive equilibrium point of the system is analyzed
in detail. In Section 3, the accuracy of the analysis results is verified
by numerical simulation. In the last section, we discuss and
conclude the results of this paper.

2 Main content

In this section, an SIR rumor propagation model with an
interaction mechanism and population dynamics on WeChat
networks will be considered. Assume that each WeChat group is
regarded as a patch (node), in which the particles (group members)
construct a fully coupled network. From the perspective of rumor
audience, we can divide particles into three categories in the patches:
ignorants (S), spreaders (I), and stiflers (R). The symbols of population
classification are shown in Table 1.

In WeChat groups, people will spread rumors from one WeChat
group to other WeChat groups through forwarding and sharing,
which forms an interactive mechanism for rumor spreading. We
use a density symbol ρ, which means the proportion of particles in
a patch. Therefore, we consider the population dynamics and
interaction mechanism among patches, the rumor dynamics in the
ith patch is given by the following expression.

dρSi t( )
dt

� B − βρSiρIi − μρSi −DSρSi +DS
i

〈k〉ρS,

dρIi t( )
dt

� βρSiρIi − μρIi − γρIiρRi −DIρIi +DI
i

〈k〉ρI,

dρRi t( )
dt

� γρIiρRi − μρRi −DRρRi +DR
i

〈k〉ρR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

TABLE 1 Description of symbols.

Symbol Description

ρSi(t) Density of ignorants with degree i in the patches at time t

ρS(t) Density of ignorants in the whole all patch network at time t, then

ρS(t) = Σi=1p(i)ρSI(t), where p(i) is the probability of the patches with

degree i

ρIi(t) Density of spreaders with degree i in the patches at time t

ρI(t) Density of spreaders in the whole all patch network at time t, then

ρI(t) = Σi=1p(i)ρIi(t), where p(i) is the probability of the patches with

degree i

ρRi(t) Density of stiflers with degree i in the patches at time t

ρR(t) Density of stiflers in the whole all patch network at time t, then

ρR(t) = Σi=1p(i)ρRi(t), where p(i) is the probability of the patches with

degree i
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where B is the rate of newly added ignorants with degree i in WeChat
groups. μ is the rate of ignorants, spreaders, and stiflers who exit from
WeChat group with degree i. β is the rate of conversion from ignorants
to spreaders. γ is the rate of conversion from spreaders to stiflers. DS is
the positive or negative interaction rate of ignorants in one WeChat
group with other WeChat groups. DI is the positive or negative
interaction rate of spreaders in one WeChat group with other
WeChat groups. DR is the positive or negative interaction rate of
stiflers in one WeChat group with other WeChat groups. 〈k〉 is the
average degree of the whole WeChat group networks.

Next, we analyze the dynamic behavior of system (2.1). According
to system (2.1), we can obtain Eq. 2 as follows:

B − βρSi* ρIi* − μρSi* −DSρSi* +DS
i

〈k〉ρS* � 0,

βρSi* ρIi* − μρIi* − γρIi* ρRi* −DIρIi* +DI
i

〈k〉ρ
p
I � 0,

γρIi* ρRi* − μρRi* −DRρRi* +DR
i

〈k〉ρR* � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

The dynamic behavior analysis of rumor spreading is closely
related to the disease-free equilibrium. Let ρIi* � 0 and ρRi* � 0,
then we obtain the equation as follows:

B − μρSi* −DS ρSi* − i

〈k〉ρS*( ) � 0. (3)

Therefore, the disease-free equilibrium of model (2.1) can be
calculated and given by the following equation:

ρSi* �
B +DS

i

〈k〉ρ
0

μ +DS
, ρIi* � 0, ρRi* � 0,

(4)

where ρ0 � ρS* + ρI* + ρR* � B
μ.

Linearizing Eq. 1 around the disease-free equilibrium (ρSi* , 0, 0), it
follows that the Jacobian matrix of Eq. 1 is a block matrix, which is
given as follows:

μ +DS( ) A − E( ) diag −βρSi*( ) O
O μ +DI + γ( ) A − E( ) + diag βρSi*( ) O
O O μ +DR( ) A − E( )

⎛⎜⎜⎝ ⎞⎟⎟⎠,

where each block is an N × Nmatrix withN being the number of
degrees in the metapopulation, O is the null matrix, E is the identity
matrix, diag(ai) denotes a diagonal matrix whose ith element is ai,
and A is the connectivity matrix. According to the eigenvalues of
matrix A, in order to ensure the stability of the disease-free
equilibrium point of system (2.1), the following inequality needs
to be satisfied:

1< 〈k〉
imaxρ0

μ +DS( ) μ + γ +DI( ) μ +DR( ) − βB

βDS
.

Then, the basic reproduction number R0 can be obtained as
follows:

R0 � imaxρ
0

〈k〉
βDS

μ +DS( ) μ + γ +DI( ) μ +DR( ) − βB
, (5)

where imax represents the max degree of the particles.

FIGURE 1
Effect of different newly added rates on the stability of rumor spreading.

Frontiers in Physics frontiersin.org03

Chang 10.3389/fphy.2022.1089536

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1089536


Theorem 2.1: If R0 < 1, system (2.1) has a unique disease-free
equilibrium, and it is globally asymptotically stable; if R0 > 1, the
disease-free equilibrium is unstable.Proof. In order to determine the
global stability of the disease-free equilibrium point, we define the
Lyapunov function V � 1

2ρ
2
Ii ([38]). We have

dV

dt
� ρIi

dρIi
dt

� iρ0

〈k〉 βDS + βB − μ +DS( ) μ + γ +DI( )( )ρ2Ii
≤

imaxρ
0

〈k〉 βDS + βB − μ +DS( )2 μ + γ +DI( )( )ρ2Ii
� R0 − 1( )ρ2Ii.

If R0 < 1, then (R0 − 1)ρ2Ii < 0.
Also, we have dV

dt ≤ 0 and dV
dt � 0 if and only if ρIi = 0. By using the

principle of the LaSalle invariant set, we can see that the disease-free
equilibrium point of system (2.1) is globally asymptotically stable
when R0 < 1. If R0 > 1, the disease-free equilibrium is
unstable.Theorem 2.2: If R0 > 1, system (2.1) has a unique endemic
equilibrium E* � {ρI1* , ρI2* , . . . , ρIn* }, where E* is globally
asymptotically stable.Proof. We define a function using the second
equation of system (2.1) as follows: f: G → G, G �
ρIi(t)|t ∈ R+, ρIi(t)≥ 0{ } yields

f ρIi t( )( ) � βρSiρIi − μρIi − γρIiρRi −DIρIi +DI
i

〈k〉ρI. (6)

By using Corollary 3.2 of [39], we know that f: G → G is a
continuous differentiable function, and Df(ρIi(t)) is irreducible for
any ρIi(t) > 0, ρIi(t) ∈ G; then, for any θ ∈ (0, 1) and ρIi(t) > 0, we have

f σρIi t( )( ) � βρSiσρIi − μσρIi − γσρIiρRi −DIσρIi +DI
i

〈k〉 σρI

� β ρNi − ρRi − σρIi( )σρIi − μσρIi − γσρIiρRi −DIσρIi +DI
i

〈k〉 σρI

≥ σβ ρNi − ρRi − ρIi( )ρIi − σγρIiρRi − σDIρIi + σDI
i

〈k〉ρI
� σf ρIi( ).

Hence, f(ρIi(t)) is sublinear. According to Lemma 2.1 and
Corollary 3.2 in (X.Q [40]), system (2.1) has a unique endemic
equilibrium E*, which is globally asymptotically stable.Theorem 2.3:
If R0 > 1, system (2.1) has a unique endemic equilibrium
E* � {ρS1* , ρS2* , . . . , ρSn* , ρI1* , ρI2* , . . . , ρIn* ρR1* , ρR2* , . . . , ρRn* }, where E*
is globally asymptotically stable.Proof. Set ϕ(t): R+ → R+; let it be a
solution semiflow of the third equation of system (2.1), and ϕ(t) is a
finite set. Assume ω is an internal propagation chain set of ϕ(t) [40].

Obviously, there are only two equilibrium points for the system, if
R0 ≤ 1, there is a disease-free equilibrium point E0. If R0 > 1, there is a
unique endemic equilibrium point E*.

Next, we prove that ω has only one endemic equilibrium, that is,
ω = {E*}.

If the aforementioned conclusion is not true, then ω = {E0}.
Therefore, there is

lim
t→∞

ρSi t( ) � B +DS
i

〈k〉ρ
0

μ +DS
, lim
t→∞

ρIi t( ) � 0, lim
t→∞

ρRi t( ) � 0. (7)

FIGURE 2
Effect of different infection rates on the stability of rumor spreading.
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If R0 > 1, the spectral radius s(M1) is defined for the eigenmatrix
FV−1 of system (2.1) at E0 [39]. Here, the expressions of F and V are
followed as

F �
βρSiρIi
O

γρIiρRi

⎛⎜⎝ ⎞⎟⎠, V �

μρIi + γρIiρRi +DIρIi −DI
i

〈k〉ρI

−B + βρSiρIi + μρSi +DSρSi −DS
i

〈k〉ρS

μρRi +DRρRi −DR
i

〈k〉ρR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Choose any one ε > 0 small enough to make s(M1+εM2) > 0, where
M2 = diag(σ1, σ2, . . . , σn). Then, there is 1 t′, for any t > t′ so that

β ρNi − ρRi − ρIi( )> βρNi* − ε, (8)
where ρNi* � B+DS

i
〈k〉ρ

0

μ+DS
. Hence, we have

dρIi t( )
dt

> β ρNi* − ε( )ρIi t( ) − μρIi − γρIiρRi −DIρIi +DI
i

〈k〉ρI. (9)

Let v be a positive eigenvector of M1+εM2 associated with
s(M1+εM2), then choose an arbitrarily small number ζ satisfying
I ≥ ζv. According to the comparison theorem, we have

ρIi t( )≥ es M1+εM2( ) t−t′( )v, t≥ t′. (10)
Therefore, if t → ∞, this is contrary to the hypothesis

limt→∞ρIi(t) = 0, then the unique positive equilibrium solution E*
of the system is globally asymptotically stable.

3 Numerical simulation

In this section, we present numerical simulations to support the
results obtained in previous sections. In order to simulate the solutions
of the system, we consider the case that the model with three patches.
Suppose that the average degree of interaction among each patch and
the other two patches is 1, 2, and 3, respectively, and the average degree
of the whole network is 10. First, the system with three patches is
considered by the following equation:

dρS1 t( )
dt

� B1 − β1ρS1ρI1 − μ1ρS1 −DS1 ρS1 −
1
10

ρS1 + ρS2 + ρS3( )( ),
dρI1 t( )
dt

� β1ρS1ρI1 − μ1ρI1 − γ1ρI1ρR1 −DI1 ρI1 −
1
10

ρI1 + ρI2 + ρI3( )( ),
dρR1 t( )

dt
� γ1ρI1ρR1 − μ1ρR1 −DR1 ρR1 −

1
10

ρR1 + ρR2 + ρR3( )( ),
dρS2 t( )

dt
� B2 − β2ρS2ρI2 − μ2ρS2 −DS2 ρS2 −

1
5

ρS1 + ρS2 + ρS3( )( ),
dρI2 t( )
dt

� β2ρS2ρI2 − μ2ρI2 − γ2ρI2ρR2 −DI2 ρI2 −
1
5

ρI1 + ρI2 + ρI3( )( ),
dρR2 t( )

dt
� γ2ρI2ρR2 − μ2ρR2 −DR2 ρR2 −

1
5

ρR1 + ρR2 + ρR3( )( ),
dρS3 t( )

dt
� B3 − β3ρS3ρI3 − μ3ρS3 −DS3 ρS3 −

3
10

ρS1 + ρS2 + ρS3( )( ),
dρI3 t( )
dt

� β3ρS3ρI3 − μ3ρI3 − γ3ρI3ρR3 −DI3 ρI3 −
3
10

ρI1 + ρI2 + ρI3( )( ),
dρR3 t( )

dt
� γ3ρI3ρR3 − μ3ρR3 −DR3 ρR3 −

3
10

ρR1 + ρR2 + ρR3( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Next, we consider the effect of different parameters on the stability
of system (3.1), which is analyzed with two different cases of the initial
values and is given as follows.

FIGURE 3
Effect of different interaction rates on the stability of rumor spreading.
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Case 1: ρS1(0), ρI1(0), ρR1(0), ρS1(0), ρI1(0), ρR1(0), ρS1(0), ρI1(0),
and ρR1(0) are, respectively, equal to 0.1, 0.02, 0.06, 0.2, 0.04, 0.08, 0.3,
0.06, and 0.14.

Case 2: ρS1(0), ρI1(0), ρR1(0), ρS1(0), ρI1(0), ρR1(0), ρS1(0), ρI1(0),
and ρR1(0) are, respectively, equal to 0.25, 0.02, 0.06, 0.25, 0.02, 0.06,
0.25, 0.02, and 0.06.

Based on the aforementioned two cases of initial values, we
consider the stability of the system with the effect of different
factors, such as the newly added rate, infection rate, interaction
rate, and recovery rate. Then, assume

DS1 � DI1 � DR1 � D1, DS2 � DI2 � DR2 � D2, DS3 � DI3 � DR3

� D3.

3.1 Different newly added rates

Here, the parameters B1 = 0.01, B2 = 0.04, B3 = 0.07, β1 = β2 = β3 =
0.5, μ1 = μ2 = μ3 = 0.02, D1 = D2 = D3 = 0.4, and γ1 = γ2 = γ3 = 0.2.
According to Eq. 5, it can be calculated by R0 = 0.9537 < 1. It can be
seen that the spread of rumors is also increasing with the growth of the
newly added rate, which is shown in Figure 1A and Figure 1B.
However, the rumor will eventually die out for a long time with
the growth of the newly added rate. When the parameters are set with
B1 = 0.3, B2 = 0.5, and B3 = 0.7, it can be calculated by R0 = 1.3636 > 1.
It can be seen that the spread of rumors formed the stable state of a

local equilibrium point with the growth of the newly added rate, which
is shown in Figure 1C and Figure 1D.

3.2 Different infection rates

Here, the parameters B1 = B2 = B3 = 0.03, β1 = 0.2, β2 = 0.5, β3 = 0.8,
μ1 = μ2 = μ3 = 0.02, D1 = D2 = D3 = 0.4, and γ1 = γ2 = γ3 = 0.2.
According to Eq. 5, it can be calculated by R0 = 0.9537 < 1. It can be
seen that the spread of rumors also increased with the increase of the
infection rate, which is shown as Figure 2A and Figure 2B. However,
because of the existence of suppressors, the rumors will eventually die
out. When the parameters are set with B1 = B2 = B3 = 0.5, β1 = 0.6, β2 =
0.5, and β3 = 0.4, it can be calculated by R0 = 1.9474 > 1. It can be seen
that the spread of rumors formed the stable state of a local equilibrium
point with the growth of the infection rate, which is shown in
Figure 2C and Figure 2D.

3.3 Different interaction rates

Here, the parameters B1 = B2 = B3 = 0.03, β1 = β2 = β3 = 0.5, μ1 = μ2 =
μ3 = 0.02,D1 = 0.4,D2 = 0.6,D3 = 0.8, and γ1 = γ2 = γ3 = 0.2. According to
Eq. 5, it can be seen that the spread of rumors also increased with the
increase of the interaction rate, which is shown in Figure 3A and
Figure 3B. However, because of the existence of suppressors, the
rumors will eventually die out. When the parameters are set with B1 =

FIGURE 4
Effect of different recovery rates on the stability of rumor spreading.
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B2 = B3 = 0.5,D1 = 0.4,D2 = 0.6, andD3 = 0.8, it can be calculated by R0 =
1.3636 > 1. It can be seen that the spread of rumors formed the stable state
of a local equilibrium point with the growth of the interaction rate, which
is shown in Figure 3C and Figure 3D.

3.4 Different recovery rates

Here, the parameters B1 = B2 = B3 = 0.03, β1 = β2 = β3 = 0.5, μ1 =
μ2 = μ3 = 0.02, D1 = D2 = D3 = 0.4, γ1 = 0.2, γ2 = 0.5, and γ3 = 0.8.
According to Eq. 5, it can be seen that the spread of rumors also
increased with the increase of the recovery rate in a short term, which
is shown in Figure 4A and Figure 4B. However, with the increasing
number of suppressors, the rumors will eventually die out quickly.
When the parameters are set with B1 = B2 = B3 = 0.5, γ1 = 0.3, γ2 = 0.5,
and γ3 = 0.7, it can be calculated by R0 = 2.160 > 1. It can be seen that
the spread of rumors formed the stable state of a local equilibrium
point with the growth of the recovery rate, which is shown in
Figure 4C and Figure 4D.

3.5 Increase in the degree of patches

Here, the parameters B1 = B2 = B3 = 0.03, β1 = β2 = β3 = 0.5, μ1 =
μ2 = μ3 = 0.02, D1 = D2 = D3 = 0.4, and γ1 = γ2 = γ3 = 0.2; it can be
seen that the spread of rumors also increased with the growth of the
degree of patches in a short term, which is shown in Figure 5A and

Figure 5B. However, with the increasing number of suppressors,
the rumors will eventually die out quickly. When the degree of
patches is increased, namely, i

〈k〉 are 0.2, 0.3, and 0.4, respectively. It
can be seen from Figure 5C and Figure 5D that the stability of
rumor spreading changes from the disease-free equilibrium to the
local equilibrium.

4 Conclusion

The WeChat group is a very popular social platform and also an
important medium for spreading rumors. Based on the classic SIR
epidemic model, in this paper, an SIR rumor propagation model with
an interaction mechanism and population dynamics on WeChat
networks was proposed. In order to analyze the dynamic
characteristics of the system, the next-generation matrix method
is used to calculate the basic reproduction number of the system
model. When R0 < 1, the disease-free equilibrium was gradually
stable. When R0 > 1, the disease-free equilibrium was unstable. Then,
the stability of a disease-free equilibrium point and a positive
equilibrium point of the system is analyzed in detail. In
numerical simulation, the influence of different parameters (the
newly added rate, infection rate, interaction rate, recovery rate,
and the degree of patches) on the stability of the system was
considered. Meanwhile the accuracy of the analysis results was
verified. The results of this study had a certain reference for
controlling rumor spreading in the WeChat group.

FIGURE 5
Effect of the degree of patches on the stability of rumor spreading.
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