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Contact tracing is an important tool to contain the spread of many airborne

diseases. We develop an approximated pairwisemodel to investigate the impact

of non-Markovian awareness process among infectious individuals represented

by pairwise endemic models. We derive the basic reproduction number and the

final epidemic size, which are dependent on the tracing rate and the distribution

of awareness process. The model analysis provides the threshold of contact

tracing rate. When the contact tracing rate is greater than the threshold, the

basic reproduction number will be less than one, then the epidemic will

eventually die out. The analysis further shows that, higher variance in the

awareness process generates smaller basic reproduction number, lower

tracing threshold, and larger final epidemic size, when the mean awareness

period is fixed. Extensive numerical analysis show the comprehensive effects of

tracing rates and non-Markovian awareness processes on human behavior and

the transmissibility ability of epidemic. It turns out that large tracing rates and

high variances in awareness process lead to obvious reductions in contacts

between susceptible and infectious individuals, so as to curb the transmission of

infectious diseases. Moreover, contact tracing is more effective in reducing the

number of infected individuals and the contacts between susceptible and

infected individuals when the awareness process has a larger variance.
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1 Introduction

Mutual contacts among individuals exist in the real world. It is necessary to

incorporate the interaction among infectious and susceptible individuals when

studying the epidemic spread. Many approaches (based on nodes, pairwise, edges and

so on) have been established and used to investigate the interaction of individuals in the

network [1–5]. Contact tracing is a useful strategy in epidemic surveillance [6, 7]. The

close contacts of an infected individual can be identified by contact tracing and have the

chance to be infected. Screening and isolating these individuals is an effective way of

identifying potentially infected individuals. By tracing the contacts of infected individuals,
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the identified infected individuals can be isolated and treated, and

the transmission chains of epidemic can be detected and stopped

so as to mitigate the spread of the epidemic.

Many mathematical models are developed to investigate the

effect of contact tracing in controlling the spread of infectious

diseases from the individual-based models (IBMs) to the

ordinary differential equations (ODEs) at the population level.

Kretzschmar et al. (1996) used IBMs to study the spread of two

sexually transmitted diseases through simulations and found that

contact tracing for targeting the highly sexually active core group

is very effective in reducing the prevalence [8]. Kasaie et al. (2014)

investigated the impact of household contact tracing for

tuberculosis in a moderate-burden setting [9]. Peak et al.

(2017) used IBMs to compare the effectiveness of contact

tracing for Ebola, influenza, and SARS in simulations [10]. To

obtain more analytic results on contact tracing, mean-field and

pairwise approximation models are developed [11–13]. Eames

(2007) utilized pairwise models on networks to compare the

effects of recursive tracing and one-step tracing [14]. Heijne et al.

(2010) applied pair approximation models to predict the impact

of contact tracing on chlamydia prevalence [15]. Barlow (2020)

studied the effect of contact tracing from the view of branching

processes and phenomenological approaches [16].

In addition, the awareness of infection among infected

individuals plays a key role in the spread of slowly progressive

diseases. Many researchers focused on studying the roles of the

public awareness among susceptible individuals in the spreading of

diseases, and showed that raising awareness of protection among

susceptible individuals can effectively contain epidemic spread

[17–21]. However, to examine the effects of the infection

awareness among infected individuals on the epidemic

theoretically is still a great challenge. Some previous studies

indicated that asymptomatic or mild infections are likely to

cause outbreaks and rapid transmission in communities

[22–24]. Even rapid contact tracing and antigen testing are

effective in control the spread of infectious diseases and can be

widely used, large numbers of infected individuals are unaware of

their infection so that the epidemic spread is uncertain [25–27].

Considering the complexity of awareness process, we define the

awareness process of infectious status, which starts from being

infected to the time when realizing being infected, as a non-

Markovian process in this study. The reason is that recent

empirical observations show that non-Markovian transmission

process, which refers to the spreading processes with non-

exponential distributions, is more realistic [28–30]. Kiss et al.

(2015) presented pairwise network models with non-Markovian

recovery period to provide links between non-Markovian

dynamics and pairwise delay differential systems [31].

Sherborne et al. analyzed the characteristics of an edge-based

model with arbitrary transmission and recovery process [32]. Li

et al. (2018) considered the fixed infectious period in an SIR

pairwisemodel [33]. The existence of non-exponential distribution

shows richer dynamics of epidemic spread [34–38], where the

epidemic curves are different when the infectious periods have

different distributions even with the same mean [39, 40].

In this work, we incorporate the non-Markovian process into

pairwise models to consider the impacts of contact tracing and

the awareness of infection status on the epidemic spread. Our

work has following contributions. First, we derive the basic

reproduction number and the contact tracing threshold for

the non-Markovian pairwise model, and prove that the basic

reproduction number will be less than one when the contact

tracing rate is larger than the threshold. Second, we investigate

the impacts of contact tracing and the awareness of infectious

status on epidemic spreading. The work is organized as follows.

We develop pairwise models incorporating contact tracing and

non-Markovian awareness process for epidemic networks in

Section 2. In Section 3, we analyze the positive invariance of

the model, derive the basic reproduction number, and obtain the

final epidemic size relation by rigorous analysis. Section 4

provides the theoretical results on the threshold of effective

tracing rate and the effects of non-Markovian awareness

processes. Numerical simulations are given in Section 5.

Discussion is presented in Section 6.

2 Model description

We develop a pairwise network model with continuous non-

Markovian awareness process to investigate the impacts of contact

tracing on epidemics. Five classes are included in this model, namely,

susceptible individuals (S), infected individuals (I), traced infected

individuals (Qc), infected individuals who are aware of their own

infectious status and treated (Qa), and recovered individuals (R). The

susceptible individuals become infectious when they are infected. The

infected individuals can be divided into three groups, that is, those

who will be traced at the rate, τ, those who recover naturally at the

rate, α, and those who are aware of infection and go to the hospital

initiatively in a non-Markovian process. We consider the transition

process from the state I to the state Qa as the awareness process of

infection among infected individuals, which can be described by a

random variable, X. The probability density function of X is f(s). The

corresponding cumulative function is F(s) and the survival function is

ξ(s) = 1 − F(s). ϕ(s) represents the density of nodes from state I to

state Qa with respect to the age of s at the initial time.

Furthermore, all individuals in classes Qc and Qa will be

quarantined and treated. The infected individuals who are

successfully treated will enter the recovered class at the rate, γ.

The total number of individuals is N, i.e., [S] + [I] + [Qc] +

[Qa] + [R] = N, where [A] is the number of individuals in state

A. We use the notation [AB] to represent the expected number

of links that connect a node in state A and a node in state B. Let

m be the average degree in this network model.

The schematic diagram is depicted in Figure 1. Let i(t, a) be

the density of the infected nodes with infection age a at time t,

then the total number of infected nodes at time t is
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[I](t) � ∫∞
0
i(t, a)da. Due to the McKendrick-von Foerster

equation [41], the changes of i(t, a) can be given by the

following partial differential equation

zi t, a( )
zt

+ zi t, a( )
za

� − τ + α + h a( )( )i t, a( ), (1)

in which h(a) = −ξ′(a)/ξ(a) = f(a)/ξ(a), i(t, 0) = β[SI](t), and i(0,

a) = ϕ(a). Here, we assume that lima→∞ϕ(a) = 0 according to the

biological feasibility. From Eq. 1 and the boundary conditions of

i(t, a), we deduce the representation of i(t, a) according to the

work in [37] as follows.

i t, a( ) � β SI[ ] t − a( )e−∫t

t−a
τ+α( )ds

e
−∫a

0
h b( )db

, if t> a.

ϕ a − t( )e−∫t

0
τ+α( )ds

e
−∫a

a−t
h b( )db

, if t≤ a.

⎧⎪⎨⎪⎩ (2)

Then, using the properties of h(a), we obtain that

d

dt
I[ ] t( )�∫∞

0

z

zt
i t,b( )db�∫∞

0
−τi t,b( )−αi t,b( )(

−h b( )i t,b( )− z

zt
i t,b( ))db

�β SI[ ] t( )− τ+α( ) I[ ] t( )−∫∞

0
h b( )i t,b( )db

�β SI[ ] t( )− τ+α( ) I[ ] t( )

−∫t

0

β SI[ ] t−s( )f s( )
e τ+α( )s ds−∫∞

t

ϕ s−t( )f s( )
e τ+α( )tξ s−t( )ds.

(3)
Similarly, the expected number of links between S and I at time t

is [SI](t) � ∫∞
0
Si(t, a)da. Considering the removal of S-I links,

we describe the deviation of Si(t, a) by the following partial

differential equation.

zSi t, a( )
zt

+ zSi t, a( )
za

� −βISi t, a( ) − β + τ + α + h a( )( )Si t, a( ),
(4)

where Si(t, 0) = β[SSI](t) and Si(0, a) ≈ m
N [S](0)ϕ(a). To break

higher order moments, we use the closure approximation

formula [AXB](t) � m−1
m

[AX](t)[XB](t)
[X](t) in [42]. Because

d
dt [SI](t) � ∫∞

0
Si(t, a)da, we find

d

dt
SI[ ] t( )

� −∫∞

0
β
m − 1
m

SI t( )[ ]
S[ ] t( ) + β + τ + α + h a( )( )Si t, a( )da

− ∫∞

0

z

za
Si t, a( )da

� β
1 −m

m

SI[ ]2 t( )
S[ ] t( ) − β + τ + α( ) SI[ ] t( ) − ∫∞

0
h a( )Si t, a( )da

+ β
m − 1
m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) .

(5)

Solving the Eq. 4, we obtain the representation of Si(t, a)

according to the work in [37].

Si t, a( ) �

β
m − 1
m

SS[ ] t − a( ) SI[ ] t − a( )
S[ ] t − a( )

e
−∫t

t−a
βm−1

m
SI[ ] s( )
S[ ] s( ) +β+τ+α( )ds

e
−∫a

0
h b( )db

, if t> a;

m

N
S[ ] 0( )ϕ a − t( )e−∫t

0
βm−1

m
SI[ ] s( )
S[ ] s( ) +β+τ+α( )ds

e
−∫a

a−t
h b( )db

, if t≤ a.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Applying the Eqs 5, 6, we have

d

dt
SI[ ] t( ) � β

m − 1
m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) − β

m − 1
m

SI[ ] t( ) SI[ ] t( )
S[ ] t( )

− β + τ + α( ) SI[ ] t( )
−∫t

0

β m − 1( ) SS[ ] t − s( ) SI[ ] t − s( )f s( )
m S[ ] t − s( )e∫t

t−s
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du ds

−∫∞

t

m S[ ] 0( )ϕ s − t( )f s( )
Ne∫− t

0
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du

ξ s − t( )
ds. (7)

Therefore, the resulting pairwise model can be constructed with

integro-differential terms in Model (8) as follows

d

dt
S[ ] t( ) � −β SI[ ] t( ),

d

dt
I[ ] t( ) � β SI[ ] t( ) − τ + α( ) I[ ] t( ) − ∫t

0

β SI[ ] t − s( )f s( )
e τ+α( )s ds

−∫∞

t

ϕ s − t( )f s( )
e τ+α( )tξ s − t( ) ds,

d

dt
SS[ ] t( ) � −2βm − 1

m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) ,

d

dt
SI[ ] t( ) � β

m − 1
m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) − β

m − 1
m

SI[ ] t( ) SI[ ] t( )
S[ ] t( )

− β + τ + α( ) SI[ ] t( ) − ∫t

0

β m − 1( ) SS[ ] t − s( ) SI[ ] t − s( )f s( )
m S[ ] t − s( )e∫t

t−s
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du ds

−∫∞

t

m S[ ] 0( )ϕ s − t( )f s( )
Ne∫t

0
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du

ξ s − t( )
ds,

d

dt
Qc[ ] t( ) � τ I[ ] t( ) − γ Qc[ ] t( )

d

dt
Qa[ ] t( ) � ∫t

0
β SI[ ] t − s( ) f s( )

e τ+α( )s ds

+∫∞

t

ϕ s − t( )f s( )
e τ+α( )sξ s − t( ) ds − γ Qa[ ] t( ),

d

dt
R[ ] t( ) � α I[ ] t( ) + γ Qc[ ] t( ) + Qa[ ] t( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

In Model (8), the spread of the disease relates to the number of

contacts between susceptible and infected individuals. Therefore,

we use Model (9), a simplified form of Model (8), to study the

dynamics of the spreading process.
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d

dt
S[ ] t( ) � −β SI[ ] t( ),

d

dt
I[ ] t( ) � β SI[ ] t( ) − τ + α( ) I[ ] t( ) − ∫t

0
β SI[ ] t − s( ) f s( )

e τ+α( )s ds

−∫∞

t

f s( )ϕ s − t( )
ξ s − t( )e τ+α( )t ds,

d

dt
SS[ ] t( ) � −2βm − 1

m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) ,

d

dt
SI[ ] t( ) � β

m − 1
m

SS[ ] t( ) SI[ ] t( )
S[ ] t( ) − β

m − 1
m

SI[ ] t( ) SI[ ] t( )
S[ ] t( )

− β + τ + α( ) SI[ ] t( )
−∫t

0
β
m − 1
m

SS[ ] t − s( ) SI[ ] t − s( )
S[ ] t − s( )e∫t

t−s
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du f s( )ds

−∫∞

t

m S[ ] 0( )ϕ s − t( )f s( )
Nξ s − t( )e∫t

0
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du ds.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

3 Mathematical analysis

In this section, we determine the feasible solution region,

calculate the basic reproduction number, and derive the final

epidemic size of Model (9).

3.1 Feasible solution region

We study the feasible solution region of Model (9), and the

following proposition holds.

Theorem 3.1. The set Ω � {([S], [I], [SS], [SI]) ∈ R4
+|0≤ [S],

[I]≤N, 0≤ [SS], [SI]≤mN, 0≤ [S] + [I]≤N, 0≤ [SS] + 2[SI]≤
mN} is the feasible region of Model (9).

Proof. To derive the expression of [SS](t), we solve the third

equation of Model (9) and obtain that [SS](t) �
[SS](0)e−2βm−1

m ∫t

0

[SI](s)
[S](s) ds. Since e

−2βm−1
m ∫t

0

[SI](s)
[S](s) ds is positive and

[SS](0) ≥ 0, [SS](t) is non-negative when t ≥ 0.

For[S](t),weobtaintherelationbetween[SS](t)and[S](t)bythe

first and third equations of Model (9) as follows: d[SS]d[S] � 2m−1
m

[SS]
[S] .

Solving the differential equation, we can find [SS](t) � C[S]2m−2
m (t),

where C is a constant. According to the initial conditions,

C � [SS](0)
[S]2m−2

m (0)≥ 0. Since [SS](t)≥ 0, [S](t) is non-negative when t≥ 0.
Further, we solve the second and forth equations ofModel (9)

and obtain that

I[ ] t( ) � ∫t

0
β SI[ ] t − s( )e− τ+α( )sξ s( )ds + ∫∞

t
ϕ s − t( )e− τ+α( )t ξ s( )

ξ s − t( ) ds,

SI[ ] t( ) � ∫t

0

β m − 1( ) SS[ ] t − s( ) SI[ ] t − s( )
m S[ ] t − s( )e∫t

t−s
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du ξ s( )ds

+∫∞

t

mξ s( ) S[ ]0ϕ s − t( )
Nξ s − t( )e∫t

0
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du ds,

where S0 = [S](0) is the initial number of susceptible individuals.

Toprove thenon-negativityof [SI](t),we assume that there exists

aminimumtime t*>0suchthat[SI](t*)<0.Duetothenon-negativity
of the function ϕ(t) and [S]0, the following result is obtained.

∫t*

0
β
m − 1
m

SS[ ] t* − s( ) SI[ ] t* − s( )
S[ ] t* − s( ) e

−∫t*

t*−s
βm−1

m
SI[ ] u( )
S[ ] u( ) +β+τ+α( )du

ξ s( )ds< 0,
(10)

where [S](t−s) > 0 and [SS](t−s) > 0 when s < t. Then, there exists

s0 ∈ (0, t*) such that [SI](t* − s0) < 0, which contradicts with the

definition of t*. Therefore, [SI](t) is non-negative. Then, [I](t) is

also non-negative.

According to Model (9), we obtain that d
dt [S] + d

dt [I]≤ 0 and
d
dt [SS] + d

dt [SI]≤ 0. Hence, the values of [S](t) + [I](t) and [SS](t)

+ [SI](t) are decreasing with time t. Because the total number of

population N is constant, the inequations hold: 0 ≤ [S](t) +

[I](t) ≤ N and 0 ≤ [SS](t) + 2[SI](t) ≤ mN.

3.2 The basic reproduction number

In order to determine the expected number of infections

generated by a new infection in a fully susceptible population

[43], we derive the basic reproduction number. Note that Model

(9) has a disease-free equilibrium P0(S0, 0, mNS20, 0), where [S](0) =
S0 is the initial number of susceptible individuals.

We calculate the basic reproduction number, R0, of Model (9)

according to the method in [44]. Here, R0 is the expected lifetime

of an S-I link multiplied by the number of newly generated S-I

links per unit time [31]. In Model (9), an S-I link is removed in

four ways: (I) the identification of I nodes by contact tracing, (II)

the recovery of I nodes, (III) the infection of S nodes by I nodes,

and (IV) the awareness of I nodes for seeking treatments

initiatively. Let the random variable, Z, be the lifetime of an

infected S-I link. Assume that the infection process of S node in

the S-I link has density function fI(t) and survival probability

ξI(t), the tracing process on I node has density function fT(t) and

survival probability ξT(t), and the self-recovery process of I node

has density function fR(t) and survival probability ξR(t). Note that

f(t) and ξ(t) are the density function and the survival probability

of the awareness process from state I to state Qa, respectively.

Then, the expected lifetime of an S-I link can be described as

follows.

E Z( ) � ∫∞

0
tfI t( )ξT t( )ξR t( )ξ t( )dt + ∫∞

0
tξI t( )fT t( )ξR t( )ξ t( )dt

+∫∞

0
tξI t( )ξT t( )fR t( )ξ t( )dt + ∫∞

0
tξI t( )ξT t( )ξR t( )f t( )dt.

(11)
We assume that the infection process and the tracing process

follow Markovian processes, and the awareness process follows a

non-Markovian process throughout this work. Hence, we have

E Z( ) � ∫∞

0
t β + τ + α( )e− β+τ+α( )tξ t( ) + e− β+τ+α( )tf t( )[ ]dt

� 1 − L f[ ] β + τ + α( )
β + τ + α

, (12)

where L[f] is the Laplace transform of f and

L[f](β + τ + α) � ∫∞
0
f(t)e−(β+τ+α)tdt. Further, the number of
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newly infected nodes per unit time in the pairwise Model (9) is

β m−1
m

[SS]0
S0

� β m−1
N S0. Hence, the basic reproduction number of

the pairwise model (9) is R0 � β(m−1)(1−L[f](β+τ+α))
(β+τ+α)N S0. By taking

the derivative of R0 with respect to τ, we can obtain that the basic

reproduction number, R0, decreases as the contact tracing rate, τ.

We further illustrate the effect of τ on the basic reproduction

number in the following numerical analysis.

3.3 The final epidemic size

In this subsection, we derive the expression of final epidemic

size that can be used to calculate the total number of infections

during an epidemic. We denote [S]∞ = limt→∞[S](t) and s∞ =

[S]∞/S0. Solving the fourth equation of Model (9), we have

SI[ ] t( ) � e
−∫t

0
g1 w( )dw

SI[ ] 0( ) + ∫t

0
e
−∫t

u
g1 w( )dw

g2 u( )du, (13)

where g1(t) � β + τ + α + β m−1
m

[SI](t)
[S](t) , and

g2 t( ) � β
m − 1
N

S
2
m
0 S[ ]1− 2

m t( ) SI[ ] t( )

− ∫t

0

β m − 1( )S 2
m
0 SI[ ] t − s( ) S[ ]m−1

m t( )f s( )
N S[ ] 1m t − s( )e β+τ+α( )s ds

− ∫∞

t

mS
1
m
0 f s( )ϕ s − t( ) S[ ]m−1

m t( )
Nξ s − t( )e β+τ+α( )t ds.

(14)

Hence,

SI[ ] t( ) � SI[ ] 0( ) S[ ]m−1
m t( )

S
m−1
m
0 e β+τ+α( )t + β

m − 1
N

S
2
m
0 S[ ]1− 1

m t( )∫t

0

S[ ]− 1
m u( ) SI[ ] u( )

e β+τ+α( ) t−u( ) du

−∫t

0
∫u

0

β m − 1( ) S[ ]1− 1
m t( ) SI[ ] u − s( )f s( )

S
− 2
m

0 Ne β+τ+α( ) t−u+s( ) S[ ] 1m u − s( )
duds

−∫t

0
∫∞

u

mϕ s − u( )f s( )S 1
m
0 S[ ]m−1

m t( )
Nξ s − u( )e β+τ+α( )t duds. (15)

Substituting the above expression of [SI] into the first equation of

Model (9) and integrating it, we have

S[ ] 1m t( ) � S
1
m
0 − β

m
∫t

0
M a( )da, (16)

where

M t( ) � S
1
m−1
0 SI[ ] 0( )
e β+τ+α( )t + ∫t

0

S
2
m
0β m − 1( ) SI[ ] u( )

Ne β+τ+α( ) t−u( ) S[ ] 1m u( )
du

−∫t

0
∫u

0

β m − 1( )S 2
m
0 SI[ ] u − s( )f s( )

N S[ ] 1m u − s( )e β+τ+α( ) t−u+s( ) dsdu

−m
N
S

1
m
0∫t

0
∫∞

u

ϕ s − u( ) f s( )
ξ s − u( )

e β+τ+α( )t duds. (17)

Let t → ∞ in Eq. 16, we get

S[ ] 1m∞ � S
1
m
0 − β

m
∫∞

0
M t( )dt. (18)

For the formation of final size, we need to solve the integration,

∫∞
0
M(t)dt. Here,

∫∞

0
e− β+τ+α( )tS 1

m−1
0 SI[ ] 0( )dt � 1

β + τ + α
S

1
m−1
0 SI[ ] 0( ), (19)

∫∞

0
∫t

0

β m − 1( )S 2
m
0 SI[ ] u( )

Ne β+τ+α( ) t−u( ) S[ ] 1m u( )dudt �
mS

2
m
0 S[ ]1− 1

m
0 − S[ ]1− 1

m∞( )
β + τ + α( )N ,

(20)
and

∫∞

0
∫t

0
∫u

0

β m − 1( )S 2
m
0 SI[ ] u − s( )f s( )

Ne β+τ+α( ) t−u+s( ) S[ ] 1m u − s( ) dsdudt

�
mS

2
m
0 S[ ]1− 1

m
0 − S[ ]1− 1

m∞( )
β + τ + α( )N ∫∞

0

f t( )
e β+τ+α( )t dt. (21)

Moreover,

FIGURE 1
The schematic diagram of Model (8).
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∫∞

0

∫t

0
∫∞

0

mS
1
m
0ϕ s − u( )f s( )

Ne β+τ+α( )tξ s − u( ) dudsdt

� mS
1
m
0

β + τ + α( )N∫∞

0
∫∞

u

ϕ s − u( )f s( )
e β+τ+α( )uξ s − u( )dsdu. (22)

Because the number of initial infected individuals is small relative

to the numbers of initial susceptible individuals and total

population, we can assume that ϕ(a)/N ≈ 0 and [SI](0)/S0 ≈ 0.

Denote s∞ = [S]∞/S0. Substituting the integrations (19), (20),

(21) and (22) into Eq. 18, we obtain that

s
1
m∞ � 1 + R0

m − 1
s1−

1
m∞ − 1( )

� 1 + βS0 1 − L f[ ] β + τ + α( )( )
β + τ + α( )N s1−

1
m∞ − 1( ). (23)

It is easy to prove that the equation x1/m � 1 + R0
m−1 (x1−1/m − 1)

has a unique root in x ∈ (0, 1) when 1 < R0 < m−1.

4 Case study

In this section, we apply the pairwise network model to

determine the threshold of contact tracing rate and the effects of

non-Markovian awareness process on epidemics theoretically.

4.1 Threshold of effective contact tracing
rate

To investigate the minimum value of the effective contact

tracing rate, we rewrite the basic reproductive number, R0, as the

function of τ, i.e.

R0 τ( ) � m − 1( )βS0
N

g β + τ + α( ), (24)

where g(u) � 1
u (1 − L[f](u)). We assume that the basic

reproduction number of epidemic without contact tracing

strategies is larger than one, i.e., R0(0) > 1. The contact

tracing strategy with the rate, τ, is effective in reducing the

basic reproduction number if R0(τ) < 1. Here, a threshold of

effective contact tracing rate is introduced.

Theorem 4.1. Suppose that R0(0) > 1, there exists a unique

threshold τ* � g−1( N
(m−1)βS0) − β − α> 0 such that Rp

0(τ)< 1
when the contact tracing rate τ is larger than τ*.

Proof. Due to the definition of Rp
0(τ) in Eq.24, we can obtain

that (m−1)βS0
N g(β + α)> 1 and (m−1)βS0

N g(β + α + τ)< 1. It is easy

to prove that g(u) is a decreasing function when u ≥ 0. Hence,

there exists a unique τ* ∈ (0,+∞) satisfying that
(m−1)βS0

N g(β + α + τ*) � 1. Then, the threshold value of τ is

FIGURE 2
Effects of different contact tracing rates and awareness distributions on the basic reproduction number, R0. (A–C) Contours of R0 as the
function of tracing rates and distribution parameters. (D) The trend of R0 as the function of tracing rate when the awareness processes have different
distributions but the same mean. In which, the variances of E(10), U(0, 20), and Gamma(10, 1) are 100, 100/3, and 10, respectively.
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τ* � g−1( N
(m−1)βS0) − β − α, such that R0(τ*) = 1 and R0(τ) < 1

when τ > τ*, where g−1 is the inverse function of g.

The threshold of contact tracing rate, τ*, provides the

minimum critical value of effective tracing rate to reduce the

basic reproduction number to be less than one.

4.2 Impacts of the variance of awareness
process on the epidemic

The awareness process of infection among infectious

individuals can be affected by many random factors, such

as the propaganda for preventing the epidemic, the awareness

level on the risks of disease and the immunity of an

individual.

Here, we provide some conditions which insure that higher

variance in the awareness process induces smaller basic

reproduction number, larger final epidemic size, and smaller

threshold of contact tracing rate. Let the random variable X be

the transition time of awareness process with probability density

function f(t) and cumulative distribution function F(t). Denote

F(t) � ∫t

0
F(s)ds. According to [39], we first refer to Lemma

4.2 and derive Theorem 4.3 and Theorem 4.4.

Lemma 4.2. Consider two non-negative random variables X1 and

X2 such that (a1) the expected values of X1 and X2 are the same,

i.e,. E(X1) = E(X2) < ∞; (a2) limt→∞t3fi(t) = 0, i = 1, 2; (a3)

F 1(t) ≠ F 2(t) for all t > 0. IfVar(X1) <Var(X2) <∞, the Laplace

transforms satisfy that L[f1](t)<L[f2](t) for all t > 0. Here,

fi(t) and Fi(t) are the probability density function and the

probability distribution function of random variable Xi,

respectively. Moreover, F i(t) � ∫t

0
Fi(s)ds, where i = 1, 2.

Theorem 4.3. If Var(X1) < Var(X2) < ∞, there exists t0 > 0 such

that the distributions F1(t) < F2(t) for all t < t0. Here, Xi satisfies

the conditions (a1)-(a3) in Lemma 4.2, and Fi(t) is the probability

distribution function of Xi, i = 1, 2.

Proof. Define F i(t) � ∫t

0
Fi(s)ds, i = 1,2. According to [39],

limt→∞(F 1(t) − F 2(t)) � 0 and F 1(t)<F 2(t) for all t > 0.

Note that F 1(0) � F 2(0). Then, there exists t0 > 0 such that
d
dtF 1(t)< d

dtF 2(t) when t < t0. Therefore, F1(t) < F2(t)

when t < t0.

Theorem 4.3 indicates that when the awareness process of

infection has a fixed mean and a larger variance, more infectious

individuals are aware and seek treatment soon after being

infected. Next, we derive the following impacts of the variance

of awareness process on the threshold of effective contact tracing

FIGURE 3
Effects of different contact tracing rates and awareness distributions on the final epidemic size, s∞. (A–C) Contours of s∞ as the function of
contact tracing rates and distribution parameters. (D) The trend of s∞ as the function of tracing rate when the awareness processes have different
distributions but the same mean. Here, the variances of E(10), U(0, 20), and Gamma(10, 1) are 100, 100/3, and 10, respectively.
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rate, the basic reproduction number and the final epidemic size

for Model (9).

Theorem 4.4. Let two random variables X1 and X2 be the random

transition times corresponding to the awareness process satisfying

the conditions (a1)-(a3) in Lemma 4.2. IfVar(X1) <Var(X2) <∞,

then τ1* > τ2*, R0,1 > R0,2, and s∞,1 < s∞,2, where τi* is the threshold

of effective contact tracing rate, R0,i is the basic reproduction

number, and s∞,i is the final epidemic size when the transition

time of awareness process is Xi (i = 1,2).

Proof. First, let τi* be the threshold of effective contact tracing rate

when the transition time of awareness process is Xi and

ui* � β + α + τi* (i � 1, 2). Denote gi(u1*) � 1
ui*
(1 − L[fi](ui*))

(i � 1, 2), then g1(u1*) � g2(u2*) � N
β(m−1)S0. Due to Lemma 4.2,

L[f1](t)<L[f2](t) when Var(X1) < Var(X2). Then,

g1 u1*( ) � 1 − L f2[ ] u2*( )( )/u2* < 1 − L f1[ ] u2*( )( )/u2*

� g1 u2*( ). (25)

Because g1(u) is decreasing when u is increasing, we can obtain

that u1* > u2*, then τ1* > τ2*.
Next, it is easy to prove that R0,1 > R0,2 by the definition of R0

and Lemma 4.2.

Finally, according to Eq. 23, we obtain that

R0 � (m − 1) s1/m∞ −1
s1−1/m∞ −1. We consider the monotony of y � f(x) �

x1/m−1
x1−1/m−1 when x ∈ (0, 1) by calculating the derivative of y with

respect to x as follows.

d

dx
f x( ) � m − 1

m x1−1/m − 1( )2 2 −m − x1/m−1 + m − 1( )x−1/m( ).
(26)

Let h(x) = 2 −m−x1/m−1+(m−1)x−1/m. We can obtain that h(1) = 0,

and d
dx h(x) � m−1

m (x1/m−2 − x−1/m−1)> 0 when x ∈ (0, 1) and m ≥
2. Then, h(x) < 0 and d

dx f(x)< 0 when x ∈ (0, 1). Thus, f(x) is

decreasing when x increases within (0,1). Therefore, s∞,1 < s∞,2

when R0,1 > R0,2.

5 Numerical simulations

To illustrate the accuracy of the analytical results, we

compare the effects of different contact tracing rates and non-

Markovian awareness processes by numerical simulations. The

numerical simulations are performed with N = 1000, β = 0.1, α =

1/20, γ = 1/3, and m = 10. The initial conditions are [S](0) = 999,

[I](0) = 1, [Qc](0) = [Qa](0) = [R](0) = 0, [SS](0) � m
NS

2(0) and
[SI](0) = m[S](0)[I](0)/N. According to [44], we assume the

initial distribution of awareness process is ϕ(s) � [Qa]0δ(s),
where δ(s) is the Dirac delta function. Then,

FIGURE 4
Effects of different contact tracing rates and awareness processes on the infection proportion. The awareness process follows the distribution
E(10) in (A), U(0, 20) in (B), Gamma(10, 1) in (C) and Gamma(5, 2) in (D), respectively. Here, E(10), U(0, 20), Gamma(10, 1) and Gamma(5, 2) have the
same mean but different variances.
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∫∞
t
ϕ(s − t)e−(α+τ)s f(s)

ξ(s−t)ds � [Qa]0f(t)e−(α+τ)t. The awareness

process of infection among infectious individuals is assumed

to follow Gamma or Uniform distribution. Here, Gamma

distribution is widely used in the epidemiology literature to

approximate empirically observed transition periods [29]. For

Gamma distribution Gamma(a, b), a is the shape parameter and

b is the scale parameter. The probability density function is

f(x) � xa−1e−x/b
Γ(a)ba , when x > 0, where the function Γ(x) is Gamma

function. The expected value is ab and the variance is ab2. Note

that Gamma(1, λ) is Exponential distribution E(λ). Further, U(a,

b) is a uniform distribution in the interval [a, b] with a ≥ 0 and

a < b. The probability density function is f(x) � 1
b−a when x ∈ [a,

b], and the expected value and the variance are (a+b)/2 and (b−a)2/12,

respectively.

First, we focus on the effects of different contact tracing rates

and awareness processes on the epidemic spreading.

Figure 2 shows the impacts of parameters on the basic

reproduction number, R0. The contours of R0 as the function

of the contact tracing rate and distribution parameters of

awareness process are provided in Figure 2A, Figure 2B and

Figure 2C. These simulations indicate that the basic reproduction

number decreases as the contact tracing rate, τ, increases and the

mean of awareness process decreases. Besides, the reduction in R0

that achieved by increasing τ is smaller when τ is larger. This

means that it is relatively difficult to reduce the basic

reproduction number by increasing the contact tracing rate

when the contact tracing rate is larger. In Figure 2D, the basic

reproduction numbers are compared when awareness processes

have the same mean but different variances. We can observe that

when the mean of awareness process is fixed, higher variance in

the awareness process leads to smaller basic reproduction

number and larger threshold of contact tracing rate. The

simulation results in Figure 2 are consistent with the results of

our theoretical analysis.

Figure 3 shows the impacts of parameters on the final

epidemic size. In Figure 3A, Figure 3B and Figure 3C, the

contours of the final epidemic size are depicted as the function

of contact tracing rate and distribution parameters of

awareness process. We find that the trends of these

contours are similar, that is, the final epidemic size

increases when the contact tracing rate increases and the

mean awareness period decreases. Besides, the increase in

the final epidemic size by increasing τ is greater when τ is

larger. This indicates that it is relatively easy to increase the

final epidemic size by increasing the contact tracing rate when

the contact tracing rate is large. In Figure 3D, the awareness

processes have the same mean but different variances. The

results indicate that larger variance in awareness process

contributes to larger final epidemic size when the tracing

rate and the mean of awareness process are fixed.

FIGURE 5
The contacts between susceptible and infected individuals under different tracing rates and awareness processes. In (A) and (C), the awareness
process follows the uniform distribution U(0, 20). In (B) and (D), the awareness process follows the gamma distribution Gamma(10, 1).
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The proportions of infection in the total population are

shown in Figure 4 for different contact tracing rates and

different distributions of the awareness process all having the

same mean. Two observations can be obtained. First, larger

contact tracing rate leads to a smaller and later peak of the

proportion of infected individuals. Second, obvious differences

exist in proportions of infected individuals despite the mean

length of awareness periods is the same. In particular, when the

contact tracing rate is fixed, the exponential distribution has the

largest variance and leads to the lowest and latest peak in

infection proportion.

Further, we are interested in the dynamics of contact

behavior and awareness behavior of humans under different

contact tracing rates and awareness processes. Here, we consider

two non-Markovian distributions of awareness processes, U(0,

20) and Gamma(10, 1), which have the same mean but different

variances. Note that the variance of U(0, 20) is larger than that of

Gamma(10, 1).

The number of contacts between susceptible and infected

individuals can be reduced by increasing contact tracing rates

and the variance of awareness processes. In particular, Figure 5A

and Figure 5B show that the number of S-I links has a lower and

later peak when the contact tracing rate and the variance of

awareness process are larger. The average number of contacts per

susceptible individual with infectious individuals has similar

characteristics, which is shown in Figure 5C and Figure 5D,

respectively. The results indicate that a susceptible individual has

less contacts with infectious individuals when the tracing rate is

larger or the awareness process has a fixed mean but a larger

variance.

FIGURE 6
The cumulative proportions of aware and traced individuals under different tracing rates and awareness processes. In (A), (C) and (E), the
awareness process follows the uniform distribution,U(0, 20). In (B), (D) and (F), the awareness process follows the gamma distribution,Gamma(10, 1).
Treated individuals refer to aware individuals and traced individuals.
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Considering the variation of human awareness, we

investigate the impacts of parameters on the proportions of

aware individuals and traced individuals in Figure 6. Here, the

proportion of aware individuals is the ratio of the cumulative

number of aware individuals to the cumulative number of

infected individuals, and the proportion of traced individuals

is the ratio of the cumulative number of traced individuals to the

cumulative number of infected individuals. We find that the

proportion of aware individuals is larger when the awareness

process has a fixed mean but a larger variance. However, the

proportion of aware individuals is lower when the contact tracing

is larger, which is possible because more infected individuals are

traced in this case.

Finally, we investigate the performance of different contact

tracing rates and awareness processes in containing epidemic

spread in Table 1. Here, five characteristics of the epidemic,

namely, the peak value of infected individuals, the total number

of the infected individuals, the peak value of [SI], the total

number of S-I links, and the peak value of [SI]/[S], are

considered. The results indicate that larger reductions can be

obtained by using larger contact tracing rates when the awareness

process has a larger variance and a fixed mean, which is the

combined effects of contact tracing and awareness process on the

epidemic. Hence, enhancing contact tracing is more effective in

reducing the number of infected individuals and the contacts

between susceptible and infected individuals, when the awareness

process has larger variance and a fixed mean.

6 Discussion

The objective of this work is to determine the impacts of

contact tracing strategy and awareness behavior among

infectious individuals on the epidemic. Due to the

complexity of human behavior, the non-Markovian

awareness process is incorporated into the pairwise model

in this work.

Through analyzing the SIR pairwise network model

theoretically, we derive the basic reproduction number and an

expression of final epidemic size. Moreover, we present the

threshold for effective contact tracing rate, such that the basic

reproduction number is less than one if the contact tracing rate is

larger than the threshold. We prove that when the mean

awareness period is fixed, a larger variance in awareness

process contributes to a smaller basic reproduction number, a

larger final epidemic size and a greater threshold of effective

contact tracing rate. Further, two common non-Markovian

distributions (Gamma and Uniform) are considered in

numerical simulations to verify the analytic results.

We find that the enforcement of contact tracing has great

impacts on the transmission of airborne diseases. Increasing

the contact tracing rate can decrease the basic reproduction

number, increase the final epidemic size, reduce the number

of infections, thereby control the spread of disease. When the

contact tracing rate is large, increasing contact tracing rate

can greatly enlarge the final epidemic size. When the contact

tracing rate is small, increasing tracing rate can reduce the

basic reproduction number by a larger scale. To reduce the

basic reproduction number to be less than one and finally

curb the epidemic spread, an effective tracing rate that is

larger than the threshold can be employed. Moreover, we

find that susceptible individuals reduce their contacts with

infectious individuals and more infectious individuals are

traced when the contact tracing rate is larger. Hence,

effective tracing strategies contribute to contain epidemic

spread and reduce the contacts of susceptible individuals

with infectious individuals, while the efficiencies of contact

tracing vary.

TABLE 1 Impacts of contact tracing and awareness of infection.

Index Distribution of awareness
process

τ � 1
7 τ � 1

5 τ � 1
3 Reduction (τ � 1

5 relative
to τ � 1

7)
Reduction (τ � 1

3 relative
to τ � 1

7)

Peak value of [I] U(0, 20) 349 269 132 22.9% 62.2%

Gamma(10, 1) 435 342 180 21.4% 58.6%

Total number
of [I]

U(0, 20) 36641 29106 17220 20.6% 53%

Gamma(10, 1) 41758 33715 20758 19.3% 50.3%

Peak value of [SI] U(0, 20) 1263 1067 641 15.5% 49.2%

Gamma(10, 1) 1458 1257 813 13.8% 44.2%

Total number
of [SI]

U(0, 20) 95103 91087 76036 4.2% 20.0%

Gamma(10, 1) 97082 94325 82700 2.8% 14.8%

Peak value of [SI]
[S] U(0, 20) 3.1 2.3 1.1 25.8% 64.5%

Gamma(10, 1) 3.9 3.0 1.5 23.1% 61.5%
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The awareness on the state of infection among infected

individuals is another important factor that affects the

efficiency of disease control. When the mean awareness

period is fixed, larger variance in the awareness process

indicates that more infected individuals are aware of their

infection in a shorter time. In this case, larger variance in the

awareness process leads to smaller basic reproduction

number, lower threshold of effective contact tracing rate,

and larger treated (aware and traced) proportion of the

infected population. Our study suggests that the public

health authorities should improve the availability of rapid

antigen testing and raise awareness of infectious status, so that

more infected individuals are aware of their infected states and

seek treatment in a short time. In particular, when the

awareness process of infectious status has a larger variance

and a fixed mean, contact tracing strategies have better

performances in mitigating the spread of disease.

Our study incorporates contact tracing and the non-

Markovian awareness process in a pairwise model. The

analytical and simulation results help us understand the

roles of contact tracing and awareness of humans in

controlling the spread of disease. Since the economic costs

of implementing contact tracing strategies are high especially

when there are a large number of contacts with infected and

treated people, public health authorities should also educate

the population to maintain awareness about the infection.

Rational allocation of resources for implementing contact

tracing and awareness education can lead to rapid

identification of infections and relieve the financial burden

on the health authorities. In addition, our work can be

extended by incorporating the non-Markovian infection

process and recovery process into the epidemic model,

which makes the model more realistic. Furthermore, the

homogeneous network in our work is an approximation of

the actual contact network. Hence, modelling heterogenous

networks to investigate the role of contact tracing and

awareness education in controlling the epidemic of

infectious diseases will also be studied in our future work.
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