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With the rapid increase of Electric vehicle (EV) penetration, EV charging network

become an important infrastructure. This paper studies the configuration of EV

charging network from a safety perspective. It is found that cascading failures

may happen if one charging station is out of work and its load has to be

redistributed to its neighboring stations. The cascading failure model borrowed

from network science area is used in the study, and the results show the effects

of system parameters on the network robustness. The results indicate that in

order to achieve a good performance, it is better to assign extra load based on

neighbors’ degree when a node is overloaded. On the other hand, the extra load

redistribution should not consider the distance between the overloaded node

and its neighbors.
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1 Introduction

Electric vehicle (EV) has received much attention in the past years due to its

environment-friendly feature [1]. Indeed, the industrialization all over the world

results in wide fossil fuel applications and more and more greenhouse gas emission.

Among them, the emission from automotive vehicles becomes one of the main reasons for

air pollution, especially in big cities. It was shown that all kinds of transportation uses

about 49% of oil consumption [2]. Comparing to the traditional gas-powered vehicles,

EVs has higher efficiency which can reduce the dependence on fossil fuel greatly. Due to

its advantage, many governments encourage people to change from gas-powered vehicles

to EV.

However, the limited battery limits the usage of EV and causes the so-called mileage

anxiety. To solve the problem, it is important to develop the charging or swapping

infrastructures [3]. Currently, the electric vehicle charging mainly relies on charging

facilities located at home or work place. It is also important to develop public EV charging

networks, especially for long-range travellers.

There has been quite lots of research on the EV charging technology, mainly focusing

on the location and capacity of charging facilities. Some research has been carried out on

the planning of electric vehicle charging stations, mainly from the perspective of traffic

flow [4, 5] and the temporal and spatial distribution of EV charging load [6–9], and the

site selection of EV charging stations. In Ref. [10], from the operator’s point of view, the

profits of charging stations are studied and the limitations of the grid are taken into
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account. Reference [11] used the multi-objective optimization

algorithm to minimize the costs due to the investment and

operating. Reference [12] gives the planning of charging

stations by using an optimization problem with the goal to

minimize the total time and cost of charging operations. The

proposed model was tested to provide a realistic and flexible bus

service in Luxembourg. Reference [13] used the Bayesian game

and considered the power grids and transportation networks

together. Reference [14] considered the strategic and competitive

charging behavior of EV drivers. Reference [15] take into account

the service radius of charging stations, and find the optimal

location of stations by a two-step screening method. Reference

[16] used block chain technology in the EV incentive system.

All the above research assumed that the EV charging network

works in a normal status. That is, each and every charging station

works effectively. However, since there are many charging

stations in the charging network, it is highly possible that one

or several charging stations are out of work for some reason.

When it happens, the EVs which used to charge in the failed

stations have to find other stations to charging. This will enhance

the burden of these working stations. If too many EVs are

concentrated in one charging station and exceed its capacity,

then the EVs have to find other stations again, as the waiting time

is too long. This may increase the load of other charging stations.

If this cascade effect keeps going, then the whole charging

network may be affected. We call it as the cascading failures

in EV charging network.

The cascading failures have been well studied in network

science. There are different kinds of cascading failure models.

The first kind of cascading failures consider the load transmitted

from source node to destination node [17–20]. Usually, the

transmission follows the shortest path length between source

and destination. In this way, a node handles the traffic load not

only generated by itself but also transmitted through it due to

other source-destination pairs. When a node is attacked or failed,

shortest paths which used to go through this node have to

change. Then, the traffic load of other nodes will change

accordingly. The addition of traffic load on some nodes may

exceed their capacities so that the overloaded nodes are out of

work. The failure of these nodes will change the load distribution

and causes another round of overloading. The process keeps

going and cascading failures occur. This cascading failure model

is suitable for the transmission process such as the

telecommunication or power transfer. The second kind of

cascading [21, 22] also considers the load. However, different

from the first kind, here the load is more about the burden the

node has to afford. Once a node is failed or attacked, its burden

will be distributed to its neighbors. That is, the load (or burden)

of its neighbors increases. If the load of a node exceeds its

capacity, then the overloaded node fails and redistributes its

load to its neighbors. The process keeps going and cascading

failures occurs. Comparing the first kind of cascading failures, the

second kind of cascading failures is local, i.e., a failure of node

only influence its neighbors. Instead, in the first kind of cascading

failures, the failure of one node may have direct effect on some

nodes far away from it. The third kind of cascading failures do

not consider the traffic load. Instead, it is based on the structure.

For example, Watts [23] proposed a cascading failure model to

show the influence from neighbors. In this model, there are two

states for nodes, say, 0 or 1. Once more than a pre-defined

threshold of its neighbors are at state 1, then this node will be at

state 1, otherwise it will be at state 0. At the initial time, a

proportion of nodes are set as state 1. Then based on the basic

rule, the state of nodes evolves cascadingly. Obviously, there is no

load on nodes, and nodes’ states change in a cascading manner.

This kind of cascading failures can be used to study how people’s

opinion is influenced by acquaintance. Comparing three kinds of

cascading failures, obviously the second kind is more suitable for

our study.

In this paper, we consider the EV charging network as a

complex network and study how the cascading failures affect the

network performance. Different from previous study on the

cascading failures in complex networks, we not only consider

the attributes of node, but also consider the role of link attributes

in the load redistribution process.

The rest of this paper is organized as follows. In Section 2 we

give the network model and the cascading failure model for EV

charging network. In Section 3 the simulation results are shown.

Section 4 summarizes the paper.

2 Network model

The EV charging network is modeled as a complex network.

In this network, the charging stations are modeled as nodes and

the paths between them are modeled as the links. Moreover, each

node has a location, and each link has a length. Therefore, this

network is a spatial network. To model the network in practice,

the most often used model is the random geometric graph

(RGG). It is described as follows.

1) Before the generation process, set parameters including the

number of node N and the connection radius r.

2)N nodes are distributed in a 1 × 1 square.

3) For each node, calculate the distance from it to other nodes.

The distance from node i to node j can be calculated by

dij �
�������������������(xi − xj)2 + (yi − yj)2

√
(1)

where (xi, yi) is the location of node i. Then connect two nodes if
their distance is smaller than r, as shown in Figure 1.

4) Repeat step 3 until all nodes are considered.

From above description, the RGG model is quite simple.

However, when using the RGG model, the connection radius r
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has to be set to be small. Otherwise, the number of connections

will be quite large. This restricts the usage of the model.

Therefore, we use the Improved random geometric graph

(IRGG) as the model in this paper. IRGG network is built

based on the following rules [24].

1) Before the generation process, set parameters including the

number of node N, the connection radius r and the

connection probability p.

2)N nodes are distributed in a 1 × 1 square.

3) For each node, calculate the distance from it to other nodes.

The distance from node i to node j can be calculated by Eq.

1. Then connect two nodes with the probability p if their

distance is smaller than r, as shown in Figure 2.

4) Repeat step 3 until all nodes are considered.

From the above description, the difference between RGG and

IRGG is only at the connection probability p. When p = 1, IRGG

becomes identical to RGG. Therefore, RGG is a special case of

IRGG, and IRGG has higher flexibility to control the number of

links by using different value of p.

By using the IRGG model, the information about links is also

easily available. Since all the nodes are allocated in a 1 × 1 square, the

average number of nodes within node i’ s connection radius is πr2N.

Then, the average number of links for node i is πr2NP. In network

science, the number of links for node i is usually denoted by ki, called

the node degree. The average degree, i.e., the average number of links

for node, is denoted by < k> . Then, in IRGG network,

< k> � πr2NP (2)

3 Cascading failures model

In the charging network, the load at charging stations is EVs

coming for charging. Without loss of generality, we assume that

FIGURE 1
Building connections by using RGG model. All nodes within node i’ s connection radius are connected to i.

FIGURE 2
Building connections by using IRGG model. Nodes within node i’s connection radius are connected to i with a probability p.
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each EV increases identical load to the station, i.e., the more EVs

at a charging station, the higher load this station has to burden.

On the other hand, each charging station has a capacity, which

limits the number of EVs it can serve (which is the load of

station). If too many EVs come at the same time, the station

cannot afford such a high load and EVs will prefer to go to other

charging stations. Then, the redistribution of load may cause the

overloading of other charging station, and finally the cascading

failures may occur. This is the case when one charging station is

out of work. A robust structure of charging station.

To model the above phenomenon, we build the following

cascading failures model.

First, the initial load of node i is defined as [25]

Li � kαi (3)

where α is a tunable parameter. This setting represents the fact that

a node with a higher degree usually is more popular to attract load.

The node capacity is set to be proportional to its initial

load, i.e.,

Ci � TLi (4)

where T> 1 shows the redundancy level of node. That is, at the

initial state, all nodes work well without any overloading.

When a node i is removed from the network, its load is

redistributed to its neighbor nodes. Here we consider two

effects. On one hand, the neighbor node with higher

redundancy should receive more load from the failed node.

According Eq. 4, the redundancy is proportional to the initial

load; and according to Eq. 3, the load is related to the node

degree. Then, a neighbor node with higher degree should

receive more load from the failed node i. On the other hand,

back to the practical charging network, after charging station i is

out of work, the EV wait here has to go to another charging

station. At this time, the driver may prefer to find a charging

station close to the current one. That is, the shorter distance

between the neighbor node and node i, more load should be

redistributed to that neighbor node. In summary, when

determining the load redistribution, we should consider two

aspects, one is the degree of neighbor nodes, and the other is the

distance from node i to its neighbor nodes.

Unfortunately, the above two aspects have different units and

it is impossible to combine them directly. To consider them both,

we first normalize them.

~ki � ki −min(k)
max(k) −min(k) (5)

where ki is the degree of node i, min(k)/max(k) is the minimal/

maximal degree in all nodes. And

~lij � lij −min(l)
max(l) −min(l) (6)

where lij is the distance between nodes i and j, min(l)/ max(l) is
the minimal/maximal value of distance. In this way, the

normalized degree and normalized distance have no unit any

more, and both of them are in the range [0,1]. Therefore, we can

simply add them to have both effects.

As we discussed before, when a node i is removed, its load

should be redistributed to its neighbors, and the neighbor node j

should receive the extra load proportional to its degree and

distance to node i. That is,

ΔLi→j � Li

~kj
α + ~lijβ∑m∈Vi
(~kmα + ~lim

β) (7)

where Vi is the set of neighbor nodes of node i.

The capacity is the maximal load a node can handle. So after

receiving extra load from node i, the neighbor node j should

check the relation between its current load and its capacity. If

Cj ≥ lj + ΔLi→j, then node j can handle all the load and works

well. Otherwise, if Cj < lj + ΔLi→j, then node j is overloaded and

its load should be redistributed to its neighbor nodes. This

cascading failure process keeps going until no more node is

overloaded. When the cascading failure process stops, count the

number of failed nodes, denoted asCFi, where i is the node which

is removed initially.

In the above cascading failure process, the selection of

initially removed node directly affects the cascading failure

scale. In other words, CFi shows the robustness of charging

network after removing node i. To show the more general

robustness, we get the robustness of charging network after

removing each and every node, and calculate the average as

CFN � ∑iCFi

N(N − 1) (8)

Since 0≤CFi ≤N − 1, CFN will be in the range [0, 1]. It

shows the robustness of network if a randomly selected node is

removed. We will use it as the index to measure the network

performance.

4 Simulations

4.1 Settings

In our simulation, the IRGG model is used to generate the

spatial network. The number of nodes is N � 1000. The

connection radius is r � 0.1. The connection probability p is

set so that the average node degree is < k> � 10.

4.2 Simulation results

In the cascading failuremodel, themost important thing is how

to redistribute the load when a node is removed. Based on Eq. 7, the

load redistribution considers two aspects. One is the degree of
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neighbor and the other is the distance from the removed node to its

neighbor. These two aspects are controlled by tunable parameters α

and β, respectively. Figure 3 and Figure 4 show the effects of α and β

on the network robustness due to cascading failures. It is quite

interesting that no matter how the redundancy parameter T

changes, we can find the optimal values α � 1 and β � 0. That

FIGURE 3
Effect of parameter α on the cascading failures performance. β � 1 in the simulations.

FIGURE 4
Effect of parameter β on the cascading failures performance. α � 1 in the simulations.
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is to say, the best strategy is that the neighbor receives the load

proportional to the degree of neighbor. The optimal value α � 1 is

also found in Ref. [25], which studied the cascading failures in

Barabasi-Albert scale-free networks. Therefore, our finding in

spatial networks indicates that this optimal value is universal.

On the other hand, optimal value β � 0 indicates that when

facing the cascading failures, it is the better not to consider the

distance during the load redistribution. Of course, if the

FIGURE 5
Effect of redundancy parameter T on the cascading failures performance, with different values of β. α � 1 in the simulations.

FIGURE 6
Effect of parameter T on the cascading failures performance, with different values of α. β � 1 in the simulations.
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redundancy is large enough, the performance is almost unchanged

for a positive value of β.

Next, we show how the redundancy parameter T affects

the robustness performance. Figure 5 and Figure 6 show the

results.

In Figure 5, when T is small, CFN is almost 1. This is the

case that the network is extremely fragile. Actually, when T is

small, each node has very limited redundancy to handle extra

load from failed neighbors. So, when the extra load is received,

it is highly possible the node is overloaded. In this case, no

matter where is initial removed node, the network will

collapse. When T becomes large, nodes have more and

more redundancy to handle extra load from failed

neighbors. Therefore, CFN drops, and the robustness is

enhanced. Even though, the value of β influences the

robustness. The influence of β can be divided into two

categories. When β< 0, changing its value has distinct effect

on the robustness. But when β> 0, changing its value has

almost no effect on the robustness, which is consistent with

Figure 4. Comparing all values of β, we can easily find that

CFN is the lowest when β � 0.

In Figure 6, the robustness performance drops with

redundancy parameter T. Comparing to the effect of β shown

in Figure 5, here the effect of α is quite limited. No matter α is

positive or negative, the curves are quite close to each other.

Finally, we consider the network with different average

number of links, and show the robustness performance in

Figure 7. It can be seen that the average number of links plays

little role in the result. Indeed, when the average number of links is

small, an overloaded node will redistribute its load to these small

number of neighbors, then each neighbors will receive a relatively

high extra load. On the other hand, however, also due to the small

average number of links, a node will receive extra load from fewer

neighbors. Putting these two aspects together, the total effect is

almost the same. That is why the curves in Figure 7 are so closed.

5 Conclusion

In summary, this paper studies the robustness of the EV

charging network. It is found that the load redistribution rule

plays an important role in determine the network robustness. To

achieve a good performance, the load should be transmitted to the

neighbors based on neighbors’ degree. That is, neighbor with higher

degree should receive more extra load and neighbor with lower

degree should receive less extra load. On the other hand, to improve

the performance, the distance should not be taken into account. Of

course, when the load redundancy is large enough, the decision

positively related to the distance has little effect on the network

robustness.

FIGURE 7
Effect of redundancy parameter T on the cascading failures performance, with different values of <k>. α � 1, β � 1 in the simulations.
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