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Machine reading comprehension aims to train machines to comprehend a

given context and then answer a series of questions according to their

understanding of the context. It is the cornerstone of conversational reading

comprehension and question answering tasks. Recently, researches of Machine

reading comprehension have experienced considerable development with

more and more semantic features being incorporated into end-to-end

neural network models, such as pre-trained word embedding features,

syntactic features, context and question interaction features, and so on.

However, these methods neglect the understanding of the question itself

and the information sought by the question. In this paper, we design an

auxiliary question-and-answer matching task to learn the features of

different types of questions and then integrate these learned features into a

classical Machine reading comprehension model architecture to improve its

ability to comprehend the questions. Our auxiliary task relies on a simple

Question-Answer Pairs dataset generated by ourselves. And we incorporate

the learned question-type information into the Machine reading

comprehension model by prior attention mechanism. The model we

proposed is named PrA-MRC (Prior Attention on Machine reading

comprehension). Empirical results show that our approach is effective and

interpretable. Our Question-Answer Pairs model achieves an accuracy of 84%

and our PrA-MRC model outperforms the baseline model by +0.7 EM and

+1.1 F1 on the SQuAD dataset.
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1 Introduction

Natural language understanding is a significant but also challenging direction of

natural language processing (NLP), which refers to making machines be capable of

understanding the semantic of natural language as humans do. To achieve this,

researchers imitate process of language learning of humans and design a variety of

unique tasks to train neural networks in the expectation that this model can learn specific

information. Machine reading comprehension (MRC) is one of these tasks that mimic the

OPEN ACCESS

EDITED BY

Jiang Zhu,
Netskope Inc., United States

REVIEWED BY

Junsong Fu,
Beijing University of Posts and
Telecommunications (BUPT), China
Yanping Fu,
Capital University of Economics and
Business, China
Wenyu Zhang,
University of Science and Technology
Beijing, China

*CORRESPONDENCE

Bo Shen,
bshen@bjtu.edu.cn

SPECIALTY SECTION

This article was submitted
to Social Physics,
a section of the journal
Frontiers in Physics

RECEIVED 31 October 2022
ACCEPTED 02 December 2022
PUBLISHED 22 December 2022

CITATION

Zhang Y, Shen B and Cao X (2022), Learn
a prior question-aware feature for
machine reading comprehension.
Front. Phys. 10:1085102.
doi: 10.3389/fphy.2022.1085102

COPYRIGHT

© 2022 Zhang, Shen and Cao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 22 December 2022
DOI 10.3389/fphy.2022.1085102

https://www.frontiersin.org/articles/10.3389/fphy.2022.1085102/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1085102/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1085102/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1085102&domain=pdf&date_stamp=2022-12-22
mailto:bshen@bjtu.edu.cn
mailto:bshen@bjtu.edu.cn
https://doi.org/10.3389/fphy.2022.1085102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1085102


humans leaning process. Since humans leverage various forms of

questions to assess how well language learners have mastered the

language, MRC also generates various types of tasks to evaluate

the machine’s understanding level of the article [1], such as

reading comprehension with multiple choice [2], cloze test [3],

span extraction [4, 5], free answering [6], etc. Although the form

of the answer varies, any type of MRC model must fully

understand the question to find a more appropriate answer.

However, the existing MRC models represent questions in the

same way as representing background context which cannot

enhance the MRC model’s ability to comprehend the questions.

In this paper, we focus on the information naturally contained in

questions for seeking answers. And we are inspired by questions

and answers linking problem in students’ examination.

Questions and answers linking problem is to match questions

and answers without any background context, as shown in

Figure 1. Different kinds of questions seek for different

information, so we can infer the answer type by the

interrogative pronoun in question without context. We believe

that question and answer pairs contain rich information that can

guide questions to find answers in the passage, so we will mine

this information for guiding span-based machine reading

comprehension tasks. Span-based MRC tasks train the model

to identify the suitable answer span from the given passage,

which has received growing interest these years since its

extractive answer balances the understanding and evaluability

of the model.

Many existing MRC models take advantage of external

knowledge to enrich semantic features, especially models

based on flourishing pre-trained language models such as

ELMo [7], GPT [8], Bert [9] are equivalent to incorporating

global semantic knowledge to represent each word. The MRC

models using character embedding can be regarded as

incorporating features of uncommon words. And the MRC

models based on bidirectional attention integrate the

interactive features between context and question. Some other

MRC models incorporate features of common sense relying on a

manually annotated knowledge base. However, there are few

models considering the characteristics of different types of

questions in the reading comprehension task. It is obvious

that interrogative pronoun in a question indicates the type of

information to be sought in this question. Zhang et al. [10]

explicitly encoded the type of the first word in a question to an

11-dimensional one-hot vector but the model only considers the

type of question itself and remains unaware of the type of

information sought by the question. Tayyar et al. [11] created

an entity identification method to extract entities belonging to

different classes of questions in their manual taxonomy, which

required pre-defining all the question type. In this article, we

learn the information and answer way of different question types

in a simple and automatic method. And then we integrate this

features in MRC model to enhance its question understanding

ability.

We regard the information of different kinds of questions

seek as a general question embedding model, which is inspired by

[12]. Conneau et al. trained universal sentence representations on

the supervised data of Stanford Natural Language Inference

dataset (SNLI) [13]. They hypothesize natural language

inference (NLI) task is a high-level understanding task that

involves reasoning about the semantic relationships between

premise and hypothesis. The experiment shows their sentence

embeddings reach the best results in the transfer tasks. In this

paper, we focus on questions and answers in machine reading

comprehension tasks, so we train a question embedding which

involves the information sought by this question for MRC

models. Specifically, we generate a simple Question-Answer

Pairs (QApairs) dataset to train the question representations

instead of universal sentence representations trained on SNLI

FIGURE 1
An example of questions and answers linking problem in students’ examination.
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dataset. After that, we enroll the learned question representations

containing rich information into the baseline MRC model

through the prior attention mechanism [14]. Empirical results

show that our PrA-MRC (Prior Attention on MRC) model

achieves competitive performance in span-based machine

reading comprehension task and visualized analysis show that

our separate question representations involve additional question

type information indeed.

To sum up, the main contributions of this paper are as

follows:

1) We propose a new simple task QApairs to learn the implicit

interaction features between all kinds of questions and

answers for subsequent MRC task.

2) We encode questions inmachine reading comprehension task

by fixed sentence encoder which is trained on the QApairs

dataset. And we use the question embedding as prior

question-aware features to train the baseline MRC model.

3) We demonstrate the effectiveness of our method through a

series of experiments. And we analyze the experimental

results in detail for future research.

This article is organized as follows. We first expound the

related works in machine reading comprehension and transfer

learning which are closed to this research, then we describe the

proposed dataset QApairs and the sentence encoder based on the

QApairs. Subsequently, we present the architecture of PrA-MRC

model and the basic design choices of the model. Finally, we

visualize and analyze our results in SQuAD dataset and draw

some conclusions for future work.

2 Related works

2.1 MRC models

The neural MRC models have flourished in recent years,

which is mainly benefit from the improvement in two aspects. On

the one hand, the rise of computing power led to data-driven

models and large pre-trained language models. Specifically,

Devlin et al. [9], proposed the pre-trained model BERT and it

obtain remarkable results on 11 natural language processing

tasks including MRC task. Yang er al. [15] improved XLnet

to overcome the limitations of BERT by its autoregressive

formulation and make a further progress. All those pre-

trained models demonstrate the benefits of large amounts of

data. However, the disadvantage of these models requiring more

computing resources and time is also obvious. Moreover, BERT-

based models connect the question and context using ‘SEP’ and

then inputs them together, and there is no deeper interaction

between question and context except the global semantic

information contained by each word. On the other hand, the

expansion of semantic and syntactic features enhanced MRC

models’ performance by well-designed neural models. Seo et al.

[16] fused the semantic interactive information of question and

context through a two-way attention mechanism, and this paper

also laid a structural framework for inputting question and

context. Huang et al. [17] proposed a fully-aware multi-level

attention mechanism to capture the entire information from the

lowest word-level embedding up to the highest semantic-level

representation [18]. Proposed using syntactic dependency parse

tree to obtain better representations of context words by

incorporating explicit syntactic constraints into attention

mechanism. In this paper, we integrate prior question-aware

semantic information learned without context into the MRC

model to strengthen its understanding ability.

2.2 Multi-turn MRC models

Multi-turn machine reading comprehension is also referred

to as conversational machine reading comprehension, which

can be seen as incorporating historical information features

into the MRC model. In this article, we use two multi-turn

machine reading comprehension datasets to train our sentence

encoder. For multi-turn MRC, the simplest end-to-end

neural model is to add the historical dialogue turns to current

question and feed them to the original MRC model. Others

integrate the historical semantic information or historical

answers’ position information. For example, Huang et al. [19],

defined Flow operation that uses entire hidden representations

generated by intermediate process when answering previous

question to feeds the MRC model. The specific operation is

to concatenate the representation of each original context

word and the representation of each context word in the

inference stage. Yeh et al. [20] extended the conception of

Flow and proposed an approach named Flow-Delta to

model information gain in Flow by subtracting two

representations. Qu et al. [21] appended a history answer

embedding which denotes whether a context token is a part

of history answers or not to the three embeddings of BERT.

And Qu et al. [22] expanded on the previous work with a history

attention module to choose whether to consider a question

turn. All those models integrate historical information on

the basic framework of MRC models, and most of models

uses concatenate of vector or attention mechanism to fuse the

historical information.

2.3 Transfer learning

Transfer learning [23] is designed to improve the

performance of target task by transferring the knowledge

learned from related source tasks. This approach can reduce

the dependence of target task on large amounts of data, and it also

benefit task domain applicability, so it has been successfully
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applied to plentiful tasks in deep learning. The most classic

example is that features trained on ImageNet [24] can be

transferred to many other computer vision tasks such as face

recognition [25] and visual question answering [26]. There are

numerous attempts to apply transfer leaning in machine reading

comprehension and some achievements have been made. Jiang

et al. [27] improved multi-choice reading comprehension by

transferring the experience of single-choice decision. Conneau et

al. [12] trained universal sentence representations and transefer it

to a wide range of NLP tasks including but not limited tomachine

reading comprehension. Kundu S et al. [28] learned to identify

follow-up questions through an auxiliary task and the simple

dataset they generated for multi-turn machine reading

comprehension. Inspired by all this applications of transfer

leaning, and considering the question answer pairs inherently

informative, we genarate a simple question and answer pairs

dataset and transfer the learned knowledge on this dataset to

MRC models.

3 QA pairs dataset

This section we are going to analyze the source datasets

used to prepare our QApairs dataset and describe the process

of preparing it, and then we will introduce how to use the

QApairs dataset to train a sentence encoder that can capture

the implicit information sought by different types of

questions.

3.1 Question aware dataset analysis

QApairs dataset relies on three source datasets, namely

SQuAD [4], QuAC [29], CoQA [6]. SQuAD is the first large

scale span-basedMRC dataset, and it can be regard as a milestone

of machine reading comprehension task. SQuAD dataset

contains 536 articles and more than 100 K questions from

WiKipedia. For each article, the crowd-workers should ask

five questions and mark the text spans in given passage as

answers. QuAC is a multi-turn question answering dataset

which contains 100 K questions. This dataset is generated by a

student asking some open-ended questions for seeking more

information based on the section’s title or first paragraph only

and a teacher answering the questions based on the full section.

Similar to QuAC, CoQA is a conversational question answering

dataset, which is generated by two annotators having

conversation about a passage, both questioner and answerer

can see the full context and history conversation that

happened until now. But unlike QuAC, the answers in CoQA

dataset are free-form texts.

We perform a visual comparison of these three datasets as

shown in Figure 2. The Rose chart represents the distribution of

first word in questions, and radius of each slice represents the

average length of answers to questions in that category. It is

obvious to see that nearly half of questions in SQuAD and QuAC

are dominated by what questions. And the distribution of

question type in CoQA is more uniform. We can also see the

intuitive phenomenon that the answers to why questions are

distinct longer because why answers are usually explanatory. In

addition, the answers of QuAC are distributed between

15–20 words, while the answers of the other two datasets are

distributed between two to eight words.

All types of questions in three datasets are shown in Table 1.

For the key word do also includes its past tense did and third

person does, so does words is, have. All the question-answer

examples are selected from the above three QA datasets. We also

found else questions have key words, however, the key words are

put at the end of the questions. Different types of questions need

to be answered in different ways according to the information

sought by those questions. To be specific, when the interrogative

pronoun of a question iswhen, the answer to this question should

be time related words (except cannot answer question). It should

FIGURE 2
A visual analysis of SQuAD, QuAC and CoQA datasets. Each sector in a rose chart represents the proportion of one kind of questions, and the
radius represents the average length of the answers to such kind of questions.
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be noted that a general question is usually answered with either

yes or no, which is indeed in CoQA. But in SQuAD and QuAC,

since the answer is a span selected from a paragraph, the answer

to a general question is a piece of reasoning text which supports

yes or no answer.

We aim to learn the information contained in plenty of

question-answer pairs without any background context. Our

motivation is that a question semantic embedding and its

matching answer semantic embedding obtained by our

sentence encoder are closer in some semantic vector space.

Thus, our model receives a sentence pair and estimate

whether the sentence pair matches, which is a

classification task.

3.2 Generate QApairs

We introduce the generation process of QApairs dataset as

follows.

1) First, we extract question and answer pairs from three source

datasets as examples. Each question-answer pair is numbered

so that matching question and answer have the same ID.

2) Whether or not a question is answerable depends on the

relevant passage. Since our goal is to learn representations

through the question-answer pairs only, we remove examples

where the answer is ‘Can not answer’.

3) All question-answer pairs are added as positive examples and

labeled with ‘match’.

4) Randomly select question and answer separately, and if their

IDs are different, the question-answer pair is added as a

negative example and labeled with ‘not match’. The ratio of

positive examples and negative examples is kept in 1:1.

5) Shuffle all the question-answers pairs.

6) Divide all the examples into training set and validation set

with a ratio of 8:2.

Notice that the pairs with question type as else are not removed.

On the one hand, there are still keywords in such question sentences,

TABLE 1 Different kinds of examples in SQuAD, QuAC and CoQA datasets.

Question type Key words Example

Description What Q: What movie did Beyonce act in 2006?

A: The Pink Panther

Time When Q: When did Beyonce begin her second world tour?

A: March 2009

Person Who, Whom, Whose Q: Who beat out Beyonce for Best Female Video?

A: Taylor Swift

Reason Why Q: Why does genocide often go unpunished?

A: genocide is more often than not committed by the officials in power

Place Where Q: Where is Topshop located?

A: London

Way How Q: How much more that the budget did the film gross?

A: 60 million

Choice Which Q: Which singer did Beyonce portray in Cadillac Records?

A: Etta James

Supplement Any, Anything, Anyone, Anymore Q: Anything else you found interesting?

A: referred to Monroe as the “father” of bluegrass

General Do, Is, Have, Can, Could, Should, Would Q: Does he choose one?

A: They select Louise de la Valliere for this part

Q: Did she live alone? (CoQA)

A: no

Else After, In, Besides Q: Ag3Cu is one intermetallic that tin forms; what’s the other one?

A: Cu5Sn6
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which does not affect the implicit information we aim to learn. On

the other hand, we expect the learned model to be more robust by

enhancing confusion of the dataset.

Moreover, we keep four QApairs datasets from different

sources: QApairs-I from CoQA only, which consists of 233 k

sentence pairs, QApairs-II from QuAC only, which consists of

190 k sentence pairs, QApairs-III from SQuAD only, which

consists of 244 k sentence pairs and QApairs-IV from all

three dataset, which consists of 668 k sentence pairs.

3.3 QApairs classification model

QApairs classification model is a simple binary classification

model which inputs the question-answer pairs and determines

whether the question-answer pairs match. Considering that the

information we are going to learn about the question would be

applied to subsequent machine reading comprehension task, we

chose to encode the two sentences separately. Our QApairs

model is a typical architecture of generic sentence encoder

[12] which uses a shared sentence encoder, as illustrated in

Figure 3. First, we conduct word embedding for each word in

sentence pairs. Q and A represent the input sentences

respectively. Second, we encode the sentence pairs using a

shared sentence encoder to generate sentence representations

m and n. Then we fusion these two representations by

concatenating m and n, the absolute element-wise difference

of m and n and the element-wise product of m and n, which can

be describe as [m; n; m − n; m*n]. The resulting vector, which

captured the joint sematic information from both question and

answer, is fed into a fully connection layer to extract features and

finally to a SoftMax layer for binary classification.

3.4 Sentence encoder

Sentence encoder, which can also be regarded as feature

extraction, is used to encode each token in a sentence into a

fixed size vector representation with contextual information.

At present, common neural network architectures for

sentence encoding can be classified into three categories:

Recurrent Neural Networks (RNN), Convolutional Neural

Networks (CNN) and Transformer. RNNs such as long

short-term memory (LSTM) and Gate Recurrent Unit

(GRU) networks can capture context dependencies of

different lengths of sentences. Convolutional Neural

Networks runs faster due to its parallelism. Transformer

combines both effective and efficient cause it based solely

on attention mechanisms. Here, we choose Bi-directional

LSTMs for our QApairs classification model cause the

input sentences are not very long and it is transferable for

subsequent MRC model.

The input of our sentence encoder is two sentences, question

Q � q1, q2, . . . qJ{ } and answer A � a1, a2, . . . aE{ } that

have J and E words respectively. The output are the semantic

representations of the two sentences. We obtain a set of vectors

{ ht � [ht→; ht
←] } , which is the concatenation of the output of

a forward LSTM and a backward LSTM for each word in the

input sentences. And then we combine the varying numbers of ht
to compose a fixed-size representation for each sentence by max

FIGURE 3
QApairs classification model architecture. On the left is the overall structure of the QApairs classification model and on the right is the detail of
the sentence encoder.
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pooling operation, which selecting the maximum value from

each dimension of the hidden units. Finally, we obtain the

sentence representation m, m ∈ R2d for question Q and

representation n, n ∈ R2d for answer A by the shared sentence

encoder.

4 PrA-MRC: Prior attention to MRC

After training individual QApairs model, we return to

our primary MRC task with the learned implicit features by

QApairs. The goal of span-based MRC task is to understand

a given question and context, looking for a contiguous text

span within the given context as an answer. We introduce a

PrA-MRC model which fuses the learned prior attention

into the classical MRC model Bi-DAF [16]. Our model

consists of five fundamental blocks: embedding layer,

contextual coding layer, dual-query and context

interaction layer, modeling layer and output layer. The

overall PrA-MRC model is illustrated in Figure 4.

4.1 Embedding layer

Embedding layer, including word embedding and character

embedding, maps each word in sentences to a high-dimensional

vector space. Following [30], we conduct character embedding

using Convolutional Neural Networks (CNN) and word

embedding using pre-trained word vectors Glove [31]. Let C �
c1, c2, . . . cI{ } and Q � q1, q2, . . . qJ{ } (same with Q in QApairs

FIGURE 4
PrA-MRC model architecture. The bottom half of the picture is the detail attention between context and Dual-query (basal query and type-
information-aware query).
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model) represent the sentences of the input context and query,

respectively. The vectors obtained from character embedding

and word embedding are concatenated and passed through a

Highway Network [32] to get the final vector representation of

each sentence word. Hence, the output of embedding layer is two

matrices C ∈ Rd×I and Q ∈ Rd×J, where d is the dimension of

each word vector representation, and I and J are the length of

context sentence and query sentence respectively.

4.2 Contextual encoding layer

Contextual encoding layer is re-encoding vectors of words to

make them infuse contextual information. A Bidirectional Long

Short-Term Memory Networks (Bi-LSTMs) is added to the top

of the embedding layer for context awareness. Then we obtain

two matrixes: X ∈ R2d×I for the context word embeddings C and

U ∈ R2d×J for the query word embeddings Q, where I and J are

still the length of sentences in input context and query

respectively. While the dimension of each word becomes 2d

because we concatenate the output of the forward LSTM and the

backward LSTM, each with dimension d, to obtain the context

awareness in both directions.

Besides, we encoder the question Q by the fixed sentence

encoder trained by QApairs model. This sentence encoder has

same structure and hidden units with contextual encoding layer,

so we get the type-information-aware query representation

U ′ ∈ R2d×J.

4.3 Dual-query and context interaction
layer

The interaction layer in original BiDAF links and fuses

information between the context and query and thus

generates a series of query-aware feature vectors for every

word in given context. On this basis, we carry out interactive

calculation between context and the query with prior type

information produced by QApairs model and generates a

series of query-type-information-aware feature vectors for

every word in given context either. Then, we aggregate query-

aware feature vectors and query-type-information-aware feature

vectors for each context word.

The inputs of this layer are the context representation X, the
basal query representation U and the type-information-aware

query representation U ′, ( X ∈ R2d×I, U , U ′ ∈ R2d×J). We

compute the interaction among these vectors by attention

mechanism: from context to both queries as well as from both

queries to context. And those attentions are derived from two

similarity matrices that are calculated in the same way. The

similarity matrices S, S′ between the context representation X
and the dual query representation U , U ′ is computed by

Sij � z X: i,U: j( ) ∈ R (1)
z x, u( ) � linear x( ) + linear u( ) + linear x+u( ) (2)

Sij
′ � z X: i, U:j

′( ) ∈ R (3)
z x, u′( ) � linear x( ) + linear u′( ) + linear x+u′( ) (4)

where X: i is i-th column vector of context representation X
and can be regard as i-th word in context. U: j is j-th column

vector of query representation U and can be regard as j-th

word in query. So Sij indicates the similarity between i-th

word in context and j-th word in query. linear () is a linear

layer that maps a 2d vector to one dimension. z(x, u) is the
similarity calculation method which is the sum of context

word representation mapping, query word representation

mapping and elementwise multiplication between these two

representations. Another similarity matrix between context

representation X and query with type information

representation U ′ is computed in the same way, which is

described by formula (3) and (4). Then we use S and S′
(S, Sij′ ∈ RI×J) to obtain query-aware context representations

and query-type-information-aware context representations.

4.3.1 Query-aware context representation
Query-aware context representation is generated by two

directions attention, context-to-query attention as well as

query-to-context attention.

Context-to-query attention represents the importance of

each query word to context. We obtain query attention weight

αi for i-th context word by normalizing i-th column in similarity

matrix S (Formula 5), subsequently the i-th context word

representation that fused query, ~Ui, is the product of αi and

the query representation U (Formula 6). Hence, we obtain
~U∈ R2d×I for all context words.

αi � softmax Si:( ) ∈ RJ , ∑j�J
j�0

αij � 1 (5)

~Ui � Uαi ∈ R2d (6)

Query-to-context attention expresses which context words are

most relevant to each query word. It is important because the most

relevant words are likely to be the answer words. We perform

maximum function across the column of S and execute softmax on

its result to obtain the context attention weight b (Formula 7). Then

the attended context vector x̃i can be calculated by Formula 8. The

vector x̃i indicates the weighted sum of the most relevant words in

the context with respect to the query. Finally, we repeat x̃i for I times

to get ~X∈ R2d×I for all context words.

b � softmax maxcol S( )( ) ∈ RI (7)
x̃i � Xb ∈ R2d (8)

Now we obtain two attended context representations in same

shape R2d×I, and they are combined with original contextual
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embeddings to yield query-aware representations P ∈ R8d×I. We

define P: i by

P: i � X: i; ~U: i; X: i+ ~X: i; X: i+ ~U: i[ ] ∈ R8d (9)

where P: i is the i-th column vector which is corresponding to

each word in the context. The symbol ; represents vector

concatenation, and + represents elementwise multiplication.

4.3.2 Query-type-information-aware context
representation

Query-type-information-aware context representation is

computed in the same way as query-aware context representation

except the query with type information representation U ′ is used

instead of that original query representation U . Query-type-

information-aware context representation P′ ∈ R8d×I is computed

as follows.

α′i � softmax Si:
′( ) ∈ RJ,∑j�J

j�0
αij
′ � 1 (10)

~U
′
i � U ′α′i ∈ R2d (11)

b′ � softmax maxcol S′( )( ) ∈ RI (12)
x̃i′ � Xb′ ∈ R2d (13)

P :i
′ � X:i; ~U:i

′ ; X:i+ ~X:i
′ ; X:i+ ~U:i

′[ ] ∈ R8d (14)

Considering that we have two context representations now,

one is query-aware context representation P � p1, p2,/, pI{ },
the other is query-type-information-aware context

representation P′ � p1
′, p2

′,/, p′
I{ }. Formally, the final output

representation �P � �p1, �p2,/, �pI{ } of the interaction layer is

computed by a hyper-parameter γ ∈ (0, 1) as follow.
�pi � γpi + 1 − γ( )p′

i (15)

4.4 Model encoding layer

Model encoding layer is similar to the contextual encoding layer

in that it adopts bi-directional LSTMs to capture the interactions

among context representations. However, the input �P of the model

encoding layer already encoded the query-aware and query-type-

information-aware representations in context words, which is

different from independent input X and U of contextual

encoding layer. We use two layers of Bi-LSTMs to encode the

dual-query context representations, each direction of LSTM with

dimension d. Therefore, we obtain the output matrix M ∈ R2d×I.

The output of this layer is expected to contain all the information for

answering the current question.

4.5 Answer span prediction layer

Since our task is to select the starting and ending position

of the answer span in given context. We can regard answer

span prediction as a soft classification task, predicting the

probability of each context word being the starting word or

ending word. Hence, it is appropriate to use softmax to

generate probabilities across all context words. We follow

the method of BiDAF to construct this layer. The probability

distribution of the start positions Ps over all context words

calculated by

Ps � softmax linear �P;M[ ]( )( ) (16)

where linear () maps a 10d (�P∈ R8d×I andM ∈ R2d×I) vector to

one dimension. Then we passM to another Bi-LSTMs module

and get M′ ∈ R2d×I, which, in our opinion, fuses the start

position information and can be used for predicting the end

position. And then we use M′ and �P to calculate the

probability distribution of the end position Pe. The formula

is donated by

Pe � softmax linear �P;M′[ ]( )( ) (17)

4.6 Loss function

We use the sum of the negative log likelihood of the truly

start and end positions by the predicted distributions, and

the sum is averaged over all instances. The formula is

donated by

L θ( ) � − 1
N

∑N
1

is log ps
i( ) +∑N

1

ie log pe
i( )⎛⎝ ⎞⎠ (18)

where L is training loss, a function of all trainable weights θ in the

model.N is the number of instances in dataset. is is one when i is

the truly start index and ie is one when e is the truly end index,

otherwise they will be 0. The training loss will be minimized.

TABLE 2 Comparison in performance of four QApairs datasets.

Dataset Description Q/A pairs Acc

QApairs-I CoQA only 233 k 0.78

QApairs-II QuAC only 190 k 0.71

QApairs-III SQuAD only 244 k 0.69

QApairs-IV All 668 k 0.84
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5 Experiments and analysis

5.1 Implementation details

Our twomodels are trained independently. For QApairs model,

Adam optimizer is used with a learning rate of 1e-3. A dropout [33]

is used for the linear layer and LSTM layers with a rate of 0.2.We use

open-source 300-dim Glove [31] vectors pre-trained on Common

Crawl 840 B as fixed input word embeddings and all the hidden

layers have 100 units which is same as BiDAF for fusing the prior

attention information. A minibatch size of 128 for 15 epochs are

adapted for training, and it takes approximately 4 h on a single Tesla

V100 GPU.

For PrA-MRCmodel, we keep parameters setting same as the

baseline (Bi-DAF) model to prove the effectiveness of

information extracted from question-answer pairs. Since the

extra task does not perform well on the first three datasets

and this may cause incorrect propagation, (see Table 2), we

only append QApairs IV dataset for the PrA-MRC model. Word

embedding is 300-dim Glove vectors and Char embedding is

100-dim. The final word representation is 200-dim. The

hidden size d of LSTM layers is 100. AdaDelta [34]

optimizer is used with an initial learning rate of 0.5. A

dropout is used for CNN layers, LSTM layers and the

linear layer before the final softmax layer with a rate of 0.2.

The hyper-parameter γ combined the two context

representations is 0.5. A minibatch size of 50 for 15 epochs

are adapted on a single Tesla V100 GPU for training, and the

training process takes approximately 7 h.

5.2 Results and analysis

Results and analysis will revolve around three questions. 1)

How is the performance of auxiliary QApairs task? 2) Whether

the auxiliary task is effective when added to reading

comprehension task? 3) Whether the auxiliary task learn the

prior question-type features we aim to learn?

5.2.1 QApairs study
This section reports performance of our QApairs model.

All four datasets are divided into training set and test set, and

only the accuracy result acc on the test set is reported. Acc

refers to the proportion of correctly classified QA pairs to all

QA pairs, as shown in Table 2. It can be seen from the table

that a good result can be obtained by simple Bi-LSTM +Maxpooling

structure, and the accuracy becomes better when all three source

datasets are appended. It is worth noting that themodel performswell

on CoQA only dataset, likely because that answers in CoQA dataset

are free-formed texts and thus there are greater correlations between

questions and answers.

We also analyzed the matching accuracy of different kinds of

questions in QApairs-IV dataset as shown in Figure 5, which fits

FIGURE 5
QApairs results for different kinds of questions on QApairs IV.

FIGURE 6
QApairs results for different lengths of answers on QApairs IV.

FIGURE 7
Comprision of F1-score between BiDAF and PrA-MRC for
different kinds of questions on SQuAD.
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human intuition that the matching accuracy is higher for specific

questions (such as when, where, and who) than for descriptive

questions (such as why, any). The best-performing which-

question and where-question achieve more than 90% accurate.

And yet any-question performs significantly worse than the

others, which we suspect is reasoning required to answer any-

question. For instance, to answer question ‘any other charity

works?’ (From QuAC dataset) must exclude the charity work

mentioned before.

Another analysis is about the accuracy of different lengths

of answers as show in Figure 6. At the beginning, accuracy

decreases with the increase of answer length, then accuracy

keeps around 0.78 when lengths of answers in range (13, 40).

When the answer length is greater than 40, accuracy oscillates

FIGURE 8
Attention matrices for dual-query and context tuples in two visual examples. In each figure, the Attention matrices (each column is a context word, each
row is a questionword) are shown in themiddle palette. The darker the bar, the higher the value of attention. Above themiddle palette is the attentionmatrix of
the original question and context, below themiddle palette is the attentionmatrix of the questionwith prior knowledge and context. The left passage shows the
given context with correct answer in red, and the right texts show the top five context words with higher attention points for each question word.
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because there are few instances with the answer length greater

than 40. For example, there are only four instances with the

answer length of 47 and five instances with the answer length

of 50, and they all match correctly.

5.2.2 PrA-MRC study
Table 3 reports our PrA-MRC model performance on

SQuAD dataset. Following all MRC tasks, we use answer

exactly match (EM) and macro-average F1 score of answer

overlap as our evaluation metric. For a relatively fair

comparison, we don’t adopt the comparison models based

on BERT or other large scale pretrained model. And an

illustration is that we directly use the results from original

paper for five models above, but we use the results of BiDAF

model by our re-implementation. It can be found that PrA-

MRC is effective especially PrA-MRC with QApairs-all yields

substantial improvement over the baseline BiDAF (EM+0.7,

F1+1.1), showing the effectiveness of implicit information

captured by QApairs. However, PrA-MRC with QApairs-I

performs worse than the original BiDAF due to the accuracy of

the upstream QApairs-I being only 0.69, which mislead in

answering the current questions.

We directly used the bert-base-uncased model on Hugging

Face to conduct the sentence coding without fine tuning in place

of the sentence coding performed by BiLSTM. The results show

that the large-scale pre-training model is effective for reading

comprehension tasks. Meanwhile, the question comprehension

introduced by QAPairs also enhances the performance of the

original bert.

We also visualize the performance of the BiDAF and our

PrA-MRC on each question category in Figure 7. The result

shows our model outperforms the BiDAF in all categories of

questions except do question. We consider the reason is that the

dataset of upstream QApairs task contains CoQA. The answer to

do question in CoQA is yes/no, rather than the span extraction in

SQuAD, and thus damages the performance of the model.

However, it also demonstrates that the knowledge learned in

the upstream task is transferred to the MRC model. For simple

question like when, who, which, both models perform well, and

our model also improve a little. For the why question, the

performance of our model has improved a lot which indicates

our QApairs model learned useful information for descriptive

questions.

5.2.3 Case visualization study
We analyze several question cases that how the BiDAF

model and our PrA-MRC model capture the most attended

words in context as the answer to current question. The

visualization of attention matrices for dual-query and

context tuples in dual-query and context interaction layer

is shown in Figure 8. For the question ‘Which team won Super

Bowl 50?‘, BiDAF captures the attended words for each word

in question independently, with team matching Denver, won

matching champion, super matching super, bowl matching

bowl. However, PrA-MRC capture a global attention on

which team, so all the words in question match nfl teams

like Denver, Panthers. For another example, “Where did the

Normans and Byzantines sign the peace treaty?“, BiDAF still

focus on words that are closed to the individual word in

question, but PrA-MRC generates prior and global attention

for where and captures most of place nouns in the article like

Gllavenica, Deabolis, Kanina and Petrela. Therefore, our

model fuses the prior question-type information into the

MRC model through a pretrained specific model which

enhances the focus of traditional MRC models on question

related text.

6 Conclusion

In this article, we develop a simple dataset, namely

QApairs, which is derived from the previous released

SQuAD, QuAC and CoQA datasets. We present a new

question and answer matching task on QApairs for

learning the implicit information sought by different kinds

of questions without given context. And we integrate the prior

information learned by QApairs to a span-based machine

reading comprehension model BiDAF to improve the

performance. We use two bi-attention flows mechanism

between context and dual query to obtain query-aware and

prior query-aware context representations. The experimental

evaluations in Stanford Question Answering Dataset

(SQuAD) show that our model has an improvement over

the baseline model and our model show a certain

TABLE 3 Comparison in performance of the baseline approaches and our
model on SQuAD.

Model EM F1

Dynamic Chunk Reader [35] 62.4 70.9

Fine-Grained Gating [36] 62.4 73.3

Match-LSTM with Bi-Ans-Ptr [37] 64.7 73.7

Dynamic Coattention Networks [38] 66.2 75.8

FABIR [39] 67.7 77.6

BiDAF [16] 66.1 76.3

PrA-MRC (with QApairs-I) 66.2 77.1

PrA-MRC (with QApairs-II) 66.6 76.9

PrA-MRC (with QApairs-III) 65.9 76.3

PrA-MRC (with QApairs-IV) 66.8 77.4

BiDAF (with Bert) 75.0 83.6

PrA-MRC (with QApairs-IV and Bert) 76.4 85.1
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interpretability. The visualizations and discussions show that

our dual query learned a suitable representation and is capable

for answering many types of question. We insist that question

answering task would be greatly improved if there were more

elaborate question and answer pairs to provide more reliable

prior knowledge.
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