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In this paper, the lateral Schottky barrier diodes (SBDs) with small capacitance

and low turn-on voltage (Von) were fabricated on n-GaN and AlGaN/GaN

heterostructure. The capacitances of lateral n-GaN SBD and lateral AlGaN/

GaN SBD are 1.35 pF/mm and 0.70 pF/mm, respectively. Compared with the

planar SBDs, the capacitances of lateral SBDs are reduced by about two orders

of magnitude without sacrificing the performance of on-resistance (Ron) and

reverse leakage current. For the planar and lateral n-GaN SBDs, the value of the

Von is similar. However, compared with the planar AlGaN/GaN SBD, the Von of

lateral AlGaN/GaN SBD is reduced from 1.64 V to 0.87 V owing to the anode

metal directly contacting the two-dimensional electron gas. According to

temperature-dependent I-V results, the barrier inhomogeneity of the lateral

SBD is more intensive than the planar SBD, which is attributed to etching

damage. The withstand voltage of SBD is a very important parameter for power

electronic applications. Compared with the breakdown voltage of 73 V in the

lateral n-GaN SBD, the lateral AlGaN/GaN SBDs exhibit a breakdown voltage of

2322 V. In addition, we found that Schottky contact introduces anode

resistance (RA) by analysing the Ron distribution of lateral SBDs. The

experimental results also show that the RA of lateral n-GaN SBD and lateral

AlGaN/GaN SBD are 10.5Ωmm and 9.2Ωmm respectively, which are much

larger than the ohmic contact resistance due to worsening anode contact by

metal-induced gap states.
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Introduction

GaN-based Schottky barrier diodes (SBDs) exhibit outstanding

power handling capabilities in power electronic applications [1, 2]

and multipliers [3] due to the physical properties of wide bandgap

and high breakdown electric field [4–6]. In particular, AlGaN/GaN

SBDs exhibit excellent characteristics of high electron mobility and

high electron density due to the 2D electron gas (2DEG) [7, 8],

offering wide applications for high-frequency and high-power

devices [9, 10]. SBD is one of the most essential components in

microwave power transmission systems [3, 10–12]. However, the

high-frequency performance of SBD requires low turn-on voltage

(Von) to reduce conduction loss, and high cut-off frequency to

improve operating frequency. In addition, the cut-off frequency of

SBD is limited by the product of capacitance and the on-resistance

(Ron), hence reducing the anode size cannot effectively improve the

cut-off frequency. Conventional planar AlGaN/GaN SBDs have

undesirable high Von and large capacitance. The metals (TiN,

Mo, and W) of the low Schottky barrier can reduce Von, which

are accompanied by a higher reverse leakage current (Jr) [13–15].

The recessed anode structure is an effective solution to avoid these

two shortages because the 2DEG directly contacts the anode metal

[16, 17]. Even so, this design still has a large capacitance due to the

parallel plate capacitor caused by the anode field plate (FP) and

2DEG [18, 19]. Compared with the SBD of the recessed anode

structure, the capacitance of the lateral SBD can be further reduced.

Moreover, the lateral GaN-based SBDs also have low Von because

the carriers directly contact the anode metal. Many researchers have

reported studies about the transport mechanism [16, 20, 21],

Schottky barrier heights (SBHs) [22, 23], metal-induced gap

states (MIGS) [24–26], and barrier inhomogeneity [27–30] on

planar n-GaN SBDs or AlGaN/GaN recessed-SBDs. Nevertheless,

the electrical properties in lateral GaN-based SBDs are rarely

reported.

In this paper, the strategy of lateral GaN-based SBDs was

used to eliminate the FP capacitance and reduce Von without

sacrificing the performance of Ron and reverse leakage. The

simulated results show the characteristics of the energy band

and carrier distribution. The analysis of electrical properties in

lateral GaN-based SBDs was described by current-voltage (I-V)

and capacitance-voltage (C-V) characteristics. According to the

results of temperature-dependent I-V measurements, the barrier

inhomogeneity of the lateral SBDs is more intensive than that of

planar SBDs, which is attributed to etching damage. In addition,

anode resistance (RA) was present, which is possibly due to the

worsening anode contacts by MIGS.

Experimental details

The lateral GaN-based SBDs in this study were fabricated

on n-GaN and AlGaN/GaN heterostructure and were shown

in Figure 1A. The wafers were grown by metal-organic

chemical vapor deposition (MOCVD) on 2-inch c-sapphire

substrates. The epitaxial layers consist of a ~40 nm-thick AlN,

a 4 μm-thick high resistive (HR) GaN buffer layer, and a

300 nm-thick i-GaN. Based on this template, the n-GaN

and AlGaN/GaN heterostructure continued to grow

500 nm-thick n-GaN and 24/0.7 nm-thick Al0.25Ga0.75N/

AlN, respectively. The electron mobility, electron density,

and channel thickness of n-GaN and AlGaN/GaN are

summarized in Table 1. The ring cathode metals (Ti/Al/Ni/

Au = 20/150/50/80 nm) were deposited on the wafer surface

by E-beam evaporation and annealed at 850°C for 30 s in N2

ambient. Using the transfer length method (TLM), the ohmic

contact resistances (RC) of n-GaN and AlGaN/GaN are

0.65 Ωmm and 1.13 Ωmm, respectively. The anode metals

(Ni/Au = 50/80 nm) were deposited on the wafer surface.

Figure 1B shows the cross-sectional schematic of the

fabricated planar SBD. For lateral SBD, the anode region

was etched to the HR GaN buffer layer by inductively

coupled plasma (ICP), followed by direct deposition of

anode metal to the sidewall, as shown in Figure 1C. The

diameter of the circular anode metal was 200 µm. The

distance between the anode metal and the ring cathode

metal was 40 µm. The I-V and C-V characteristics were

measured by the Agilent B1500A at room temperature.

Results and discussion

According to the n-GaN and AlGaN/GaN SBDs structures,

the characteristics of the energy band and carrier distribution are

FIGURE 1
(A) Schematic illustrations of n-GaN and AlGaN/GaN SBDs
with epitaxial information. The schematic cross-section of (B)
planar and (C) lateral SBDs.
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simulated by Synopsys’ Sentaurus technology computer-aided

design (TCAD), and the results are shown in Figure 2. The

depletion directions of the planar and lateral SBDs are

perpendicular and parallel to the (0,001) plane, respectively.

The energy band and carrier distribution are very similar

between planar and lateral n-GaN SBDs because both are Ni/

n-GaN contacts. The simulation results show that the sample

with SBH of about 1.18 eV has a depletion width of about

44.5 nm for n-GaN with doping concentration of

3.4×1017 cm−3, as shown in Figures 2A,B. However, the energy

band structures of the planar and lateral AlGaN/GaN SBDs are

very different, as shown in Figures 2C,D. The energy band

structure of the planar AlGaN/GaN SBD displays that anode

metal cannot deplete the 2DEG channel at 0 V, and its SBH is

1.60 eV. The 2DEG is distributed in the i-GaN layer of the

AlGaN/GaN heterostructure, which is only a ~2.8 nm-thick

sheet channel. The simulation results of the energy band and

carrier distribution of the lateral AlGaN/GaN SBD are shown in

Figure 2D. For lateral AlGaN/GaN SBD, the lateral contact of Ni-

2DEG can be treated as SBD of a heavily doped n+-GaN sheet

channel. The Ni-2DEG forms a SBH of 1.08 eV, which only

depletes 4.5 nm 2DEG.

As shown in Figures 3A–H, we measured the I-V and C-V

characteristics of each SBD at different temperatures from 298 to

504 K. The I-V and C-V curves conform to traditional SBD

depletion characteristics for planar n-GaN SBD, lateral n-GaN

SBD, and lateral AlGaN/GaN SBD. However, the I-V and C-V

curves of the planar AlGaN/GaN SBD are different from the

characteristics of traditional SBD depletion. Because anode metal

and 2DEG channel are separated by AlGaN barrier layer. TheVon

of the planar AlGaN/GaN SBD is as high as 1.64 V since the

device conduction requires electrons to pass through the AlGaN

barrier layer, while the other three devices show very low Von

because electrons only need to overcome the barriers to flow to

the anode. The Jr of the planar AlGaN/GaN SBD reaches

saturation at pinch-off voltage (-4.2 V) due to 2DEG

depletion, as shown in Figure 3C. The capacitance

characteristic of planar AlGaN/GaN SBD is fitted to the

parallel plate capacitor model of the anode metal and 2DEG

[18]. At lower reverse bias voltage, the planar AlGaN/GaN SBD

TABLE 1 The key material parameters of n-GaN and AlGaN/GaN.

Electron density (cm−3) Electron mobility (cm2/Vs.) Channel thickness (nm) Rsh (Ω/□)

n-GaN 3.4×1017 448 500 786

AlGaN/GaN 3.4×1019 1969 ~2.8 306

FIGURE 2
The energy band and carrier distribution of (A) planar n-GaN SBD, (B) lateral n-GaN SBD, (C) planar AlGaN/GaN SBD, and (D) lateral AlGaN/GaN
SBD at 0 V.
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maintains a stable capacitance value due to the characteristics of

parallel plate capacitors. With increasing reverse bias voltage, the

2DEG is gradually depleted, which causes the capacitance to drop

rapidly due to the disappearance of the plate capacitor. At higher

reverse bias voltage, the capacitance tends to zero, the 2DEG is

completely depleted, as shown in Figure 3G. The capacitance

approaching zero also shows the HR characteristics of the buffer

layer. The n-GaN and AlGaN/GaN SBDs of different FP widths

are measured, the values of zero bias capacitance are linear with

the area of the FP, so the lateral SBD without FP can effectively

eliminate the FP capacitance. Compared with the planar SBDs,

the capacitances of the lateral SBDs are reduced by two orders of

magnitude without sacrificing the performance of the Ron and Jr.

This is attributed to two characteristics of lateral SBDs: the small

anode area and the elimination of spreading resistance under the

anode metal. The capacitances of lateral n-GaN SBD and lateral

AlGaN/GaN SBD are 1.35 pF/mm and 0.70 pF/mm, respectively.

In order to extract the SBH ΦB, the ideality factor n, and

the Ron from the I-V curve, the thermionic emission (TE) can

be described as the major forward current contribution

[28, 31],

I � AA*T2 exp(−qΦB

kT
){exp[q(V − IRon)

nkT
] − 1} (1)

where A is the area of the anode metal, A* is the effective

Richardson constant (226.4 Acm−2K−2), k is the Boltzmann

constant, and T is the temperature. From the I-V and C-V

curves at room temperature, the device parameters of each

SBD are summarized in Table 2. The SBHs extracted by the

I-V characteristics are lower than the simulation results, which

may be due to electron tunneling and inhomogeneity SBHs

[27–29]. The ideality factors of each SBD are larger than 1,

which indicates that in addition to TE, other transport

mechanisms include thermionic field emission (TFE) and field

emission (FE) [32, 33]. For planar AlGaN/GaN SBD, the ideality

factor of ~2 illustrates the existence of various transport types

other than TE, such as trap-assisted tunneling (TAT) and

recombination [34].

The ideality factors of each SBD are extracted from the I-V

curve at different temperatures and shown in Figure 4A, which

are larger than 1. Hence, the transport mechanism includes other

mechanisms other than TE. What’s more, TE is more sensitive to

temperature, and the ideality factors are positively related to

1,000/T due to the domination of the TE mechanism at high

temperatures.

Figure 4B shows SBHs for each SBD at temperatures ranging

from 298 to 504 K. The SBHs of each SBD were extracted from

the forward I-V curves by Eq. 1. The SBHs decrease with

increasing 1,000/T due to the inhomogeneous nature of the

barrier. The electrons only overcome lower barriers at lower

temperatures. With increasing temperature, the energy of the

electrons increases to overcome the higher barriers at the Ni/GaN

interface, where the higher SBHs were exhibited. The

inhomogeneous SBHs can be expressed as a Gaussian

FIGURE 3
The I-V (A–D) and C-V (E–H) characteristics of planar n-GaN SBD, lateral n-GaN SBD, planar AlGaN/GaN SBD, and lateral AlGaN/GaN SBD at
temperatures of 504 K, 474 K, 429 K, 399 K, 364 K, 324 K and 298 K.
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distribution with a mean barrier height ΦB0 and a standard

deviation σ, as shown in Eq. 2 [30].

ΦB(T) � ΦB0 − σ2

2kT
(2)

In GaN-based SBDs, inhomogeneous SBHs are attributed to

multiple factors such as material defects, interface dipole layers,

morphological features, and surface Fermi level pinning [27–30,

35]. According to the linear fits of the SBHs vs 1,000/T curve, the

values of σ were estimated to be 145, 199, 200 and 239 meV for

planar n-GaN SBD, lateral n-GaN SBD, planar AlGaN/GaN SBD

and lateral AlGaN/GaN SBD, respectively. Compared to the

planar SBDs, the lateral SBDs exhibit larger σ may be due to

the etching damage caused by ICP. The lateral AlGaN/GaN SBD

has the largest σ value, which is attributed to the higher trap

concentration at the contact of anode metal and 2DEG. Thermal

annealing is an effective step to reduce the damages induced by

ICP etching, and wet treatment methods are used to further treat

etching damage, such as hydroxide (KOH) and (NH4)2S [36, 37].

At the voltage of -15 V, the Jr vs 1,000/T (Jr-T) characteristics

are shown in Figure 4C, which appears linear on the Arrhenius

plot. This suggests that the thermal activation mechanism has a

dependence on the exp (−EA/kT) function, where EA is the

activation energy. Therefore, a possible reverse leakage

mechanism is defined as TAT, which is associated with

thermally activated current [38]. The values of EA were

estimated to be 215, 214, 387 and 156 meV for planar n-GaN

SBD, lateral n-GaN SBD, planar AlGaN/GaN SBD, and lateral

AlGaN/GaN SBD, respectively, according to linear fitting Jr-T

data. In addition, the Jr is related to the trap concentration on the

interface of anode metal and semiconductor.

The withstand voltage of SBD is a very important parameter

for power electronic applications. The reverse breakdown

voltages of these SBDs are shown in Figure 5. The planar

n-GaN SBD has no breakdown phenomenon at -28.5 V. The

lateral n-GaN SBD shows a relatively low leakage current, which

is breakdown at -73 V. Compared with n-GaN SBD, the AlGaN/

GaN SBDs exhibit a breakdown voltage of more than 2300 V,

which is mainly attributed to the undoped AlGaN/GaN

materials.

For planar and lateral SBDs, the Ron consists of the RC,

channel resistance (Rchannel) and anode resistance (RA). Using the

TLM, we calculated the RC and Rchannel for each SBD. Unitized

Ron distributions of each SBD are summarized in Figure 6A. The

experimental results show that the RA of lateral n-GaN SBD and

lateral AlGaN/GaN SBD are 10.5Ωmm and 9.2 Ωmm,

respectively. The RA are much larger than the RC in each

SBD, which is probably due to the worsening anode contacts

by MIGS. The energy diagram of n-GaN SBD with MIGS is

displayed in Figure 6B. The planar AlGaN/GaN SBD exhibits

TABLE 2 The electrical characteristics of n-GaN SBDs and AlGaN/GaN SBDs at room temperature.

n-GaN AlGaN/GaN

Planar SBD Lateral SBD Planar SBD Lateral SBD

Von (V) 0.72 0.83 1.64 0.87

Capacitance at 0 V (pF) 65.89 0.85 104.24 0.44

Leakage current at -15 V (A) 4.79 × 10−5 8.54 × 10−7 2.88 × 10−8 2.27 × 10−7

SBH(I-V) (eV) 0.83 0.91 1.15 0.84

SBH(simulated) (eV) 1.19 1.16 1.60 1.08

Ideality factor 1.21 1.34 1.99 1.58

Ron (Ω) 55.1 32.9 62.4 59.5

RA (Ω·mm) 12.3 10.5 23.1 9.16

FIGURE 4
(A) Ideality factor, (B) barrier height, and (C) Jr as a
dependence of 1,000/T for each SBD device.
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larger RA due to the electrons passing through the AlGaN barrier

layer under the anode metal [39].

Conclusion

In summary, the lateral SBDs based on n-GaN and AlGaN/

GaN heterostructure were fabricated, and the temperature-

dependent I-V and C-V characteristics were used to evaluate

the electrical properties, such as transport mechanisms of the

forward and reverse current, SBHs, Ron distribution, MIGS,

inhomogeneous SBHs, etc. For the planar and lateral n-GaN

SBDs, the values of the Von are similar. However, compared with

conventional planar AlGaN/GaN SBD, the Von of lateral AlGaN/

GaN SBD is reduced from 1.64 V to 0.87 V. The capacitances of

lateral n-GaN SBD and lateral AlGaN/GaN SBD are 1.35 pF/mm

and 0.70 pF/mm, respectively, which are much smaller than the

capacitance of planar SBDs. According to the analysis of

inhomogeneous SBHs, etching damage degrades the

uniformity of SBHs. Compared with the breakdown voltage of

73 V in the lateral n-GaN SBD, the lateral AlGaN/GaN SBDs

exhibit a breakdown voltage of 2322 V. In addition, the RA is

much greater than the RC due to worsening anode contact by

MIGS from the analysis of the Ron distributions of each SBD.
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