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In recent years, with the abnormal global climate change, the problem of

desertification has become more and more serious. The vegetation pattern is

accompanied by desertification, and thus, the study of the vegetation pattern is

helpful to better understand the causes of desertification. In this work, we reveal

the influences of hydrotropism on the vegetation pattern based on a

vegetation–water system in the form of reaction–diffusion equations.

Parameter ranges for the steady-state mode obtained by analyzing the

system show the dynamic behavior near the bifurcation point. Furthermore,

we found that vegetation hydrotropism not only induces spatial pattern

generation but also promotes the growth of vegetation itself in this area.

Therefore, through the study of vegetation patterns, we can take

corresponding preventive measures to effectively prevent land

desertification and improve the stability of the ecosystem in the region.
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1 Introduction

Vegetation is an important part of nature and plays a leading role in the ecosystem,

known as the “Ecological Engineer” [1, 2]. As a producer, vegetation can convert carbon

dioxide into carbohydrates through photosynthesis and release oxygen and store energy.

Moreover, vegetation coverage on the ground can not only reduce water and soil loss and

protect slope land but also prevent wind and sand fixation and prevent desertification [3,

4]. In nature, the growth of vegetation will be affected by climatic conditions, geographical

environment, and human activities. Nowadays, with the rapid development of

irrationality in the human society and global climate change, the vegetation ecosystem

has been seriously damaged, and the problem of land desertification is becoming more

and more serious [5–7].

In particular, in dry and semi-dry areas, because of its climatic characteristics, the

problem of land desertification is particularly prominent. In the process of land

desertification, vegetation distribution is uneven, but there are certain rules. We call

this uneven and regular spatial distribution of vegetation as the vegetation pattern [8–10].

In addition, different vegetation pattern structures have different significances to the

function of the ecosystem, such as the strip pattern can be used as a sign of semi-desert
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[11]. For the study of vegetation spatial patterns in these areas,

many scholars established a series of a dynamic system. Based on

ecologically realistic assumptions, Klausmeier established a

model with vegetation and water in 1999 and gave suitable

parameters, and two pattern types can be found by numerical

simulations (regular patterns and irregular patterns). This model

helps us understand how rainfall and grazing affect vegetation in

semi-arid regions and demonstrates the importance of non-

linear mechanisms to the spatial structure of plant community

[12]. In 2001, Von Hardenberg proposed a new vegetation–water

system, which simulates the competition of vegetation roots for

water resources [13]. In 2007, Gilad constructed a mathematical

system for the study of the woody plant ecosystem in arid areas

and captured various feedback mechanisms between biomass

and water resources through this system [14]. Water diffuses

freely in soil, and the original Klausmeier system does not

consider the diffusion of water. Therefore, Vander Stelt took

the diffusion of water into account on the basis of Klausmeier’s

system in 2012 [15]. In 2015, Zelnik simplified Gilad’s model and

combined with empirical data to study the dynamics of

Namibia’s Andromeda ecosystem. The research showed that

the pattern trend changes gradually in the spatially expanded

ecosystem [16]. Moreover, other scholars have also established

relevant systems to study vegetation patterns [17–25].

It is known to all that water is the source of life. Vegetation

needs water for photosynthesis and respiration to obtain

nutrients needed for vegetation growth. Moreover, when

transpiration takes away a lot of heat, water can maintain the

normal temperature of vegetation to maintain life activities [26,

27]. Vegetation absorbs water from the soil mainly through the

root system to provide water necessary for life activities. In

response to a moisture gradient, the roots of vegetation will

show the characteristics of hydrotropism [28–31]. In dry and

semi-dry areas, soil water distribution is uneven because of less

and concentrated rainfall [32, 33]. Therefore, the vegetation root

system will absorb the water in other humid areas through the

extension of the root system to meet its own growth and

development in these areas. At present, it is not clear how the

hydrotropism effect of vegetation roots affects the growth and

distribution of vegetation. Therefore, to reveal the influence of

hydrotropism of vegetation roots on vegetation growth and

distribution, we build a spatial system with root hydrotropism

effects based on the system of Klausmeier in this paper [34–36].

The following is the content arrangement of this article. In

the first place, we propose a reaction–diffusion system with

hydrotropism effects and analyze the existence and stability

FIGURE 1
Schematic chart of hydrotropism of vegetation roots and the arrow direction indicates that the soil moisture is getting higher and higher. The
roots of vegetation grow in areas to obtain more water resources.

FIGURE 2
Bifurcation diagram of system (2.3) in the parameter space
spanned by d and a. Among them, the red line represents the Hopf
branch line, and the blue line represents the Turing branch line.
The Turing area is marked with T. The parameter values are
m = 1.5, d1 = 1, and d2 = 1.8.
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about the equilibrium point. In the next section, we derive the

amplitude equation and its coefficients through the method of

multi-scale analysis. In the fourth section, on the basis of the

theoretical results obtained in the previous section, we conduct a

numerical simulation to obtain the dynamic behavior and show

the hydrotropism of vegetation’s impact on the vegetation

pattern. Finally, the last section gives conclusions and

discussions on the effect of hydrotropism on vegetation

growth and distribution.

2 Mathematical model and analysis

2.1 Mathematical model

In dry and semi-dry regions, soil water replenishment was

mainly derived from rainfall due to their geographical

environment. After the rainfall reaches the ground, one part

of the rainfall penetrates into the soil and becomes groundwater

or surface runoff, and the other part is lost to the atmosphere

through the transpiration of vegetation and evaporation of the

ground. These areas receive less rainfall because of their climatic

conditions. Therefore, soil water distribution in these areas is

uneven, forming a moisture gradient. In response to a moisture

gradient, the roots of vegetation will show the characteristics of

hydrotropism to get more water for basic life activities (Figure 1).

The spatial motion of hydrotropism of vegetation roots is to

absorb more water. In this sense, it is assumed that the diffusion

rate of vegetation hydrotropism is proportional to the diffusion

speed of water. Consequently, based on the Klausmeier system

[12], we establish a system with water diffusion and vegetation

hydrotropism effects as follows:

zP

zT
� RJWP2 −MP +D1ΔP +DΔW,

zW

zT
� A − RWP2 − LW + ξ

zW

zX
+D2ΔW,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.1)

where P is the vegetation biomass andW is the soil water volume;

parameters A, M, L, D1, D2 represent rainfall, plant mortality,

evaporation rate, vegetation diffusion rate, and water diffusivity,

respectively. The term ξ zW
zX describes the surface runoff which is

proportional to the slope of terrain, where ξ is a constant

downhill runoff flow velocity, and the term RWP2 indicates

the absorption of soil moisture by the roots of vegetation,

reflecting the mechanism of long-distance inhibition and

short-distance promotion [37]. D is the hydrotropism rate of

the vegetation.

For the convenience of mathematical analysis, we reduce the

numbers of parameters by dimensionless transformation on the

system (2.1) and obtain the following system:

zp

zt
� wp2 −mp + d1Δp + dΔw,

zw

zt
� a − w 1 + p2( ) + ξ

zw

zx
+ d2Δw.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.2)

In this paper, we mainly study the flat ground without

considering the slope’s influence on the formation of the

pattern structure. Therefore, our system is finally simplified as

follows:

FIGURE 3
Dispersion relation of system (2.3): (I) d = 1, (II) d = 1.2, (III) d =
1.4, (IV) d = 1.6, and (V) d = 1.8. The other parameter values are a =
3.25, m = 1.5, d1 = 1, and d2 = 1.8.

TABLE 1 Equation of different orders of ε.

Order Corresponding equation

ε
LT

p1

w1
( ) � 0

ε2
LT

p2

w2
( ) � z

zT1

p1

w1
( ) − a1M

p1

w1
( ) − h2

ε3
LT

p3

w3
( ) � z

zT1

p2

w2
( ) + z

zT2

p1

w1
( ) − a1M

p2

w2
( ) − a2M

p1

w1
( ) − h3
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zp

zt
� wp2 −mp + d1Δp + dΔw,

zw

zt
� a − w 1 + p2( ) + d2Δw.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.3)

2.2 Mathematical analysis of the model

System (2.3) without considering diffusion is as follows:

dp
dt

� wp2 −mp,

dw
dt

� a − w 1 + p2( ).
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.4)

Make the right end of Eq. 2.4 equal to 0, and calculate the

equilibrium point. System (2.3) has three equilibrium points,

including a semi trivial steady-state solution and two non-trivial

steady-state solutions:

(1) E0 = (p0, w0) = (0, a), which corresponds to no vegetation.

(2) E1 � (p1, w1) � ( 2m
a+ 






a2−4m2
√ , a+







a2−4m2

√
2 ).

(3) E2 � (p2, w2) � ( 2m
a− 






a2−4m2
√ , a−







a2−4m2

√
2 ).

Because the equilibrium point E1 is always unstable when

diffusion is not considered, we will only study the equilibrium

point E2 given in the following section. First, linearize system

(2.3) at E2 to obtain

zp

zt
� a11p + a12w + d1Δp + dΔw,

zw

zt
� a21p + a22w + d2Δw,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.5)

where

a11 � m, a12 � a+ 





a2−4m2

√
a− 






a2−4m2
√ , a21 � −2m, anda22 � −2a

a− 





a2−4m2

√ .

We set a perturbation to the uniform stationary solution (p2,

w2) and expand it in Fourier space:

p
w

( ) � p2

w2
( ) +∑

k

c1k
c2k

( )exp λt + ikr( ). (2.6)

Substituting Eq. 2.6 variables into Eq. 2.5, one can obtain its

following characteristic equation:

a11 − d1k
2 − λ a12 − dk2

a21 a22 − d2k
2 − λ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ � 0. (2.7)

It is equivalent to the following equation:

λ2 + Tkλ +△k � 0, (2.8)

TABLE 2 Equation of different orders of ε.

Pattern form Expression Existence interval Stability

Homogeneous state β1 = β2 = β3 Arbitrary range μ < μ2; stable

μ > μ2; unstable

Dot pattern β+ � |h|+











h2+4μ(g1+2g2 )

√
2(g1+2g2)

H0: h > 0 μ < μ2; stable

β+ � |h|−











h2+4μ(g1+2g2 )

√
2(g1+2g2)

Hπ: h < 0 μ > μ2; unstable

μ > μ1

Strip pattern β1 �



μ
g1

√
≠ 0 μ > 0 μ > μ3; stable

β2 = β3 = 0 μ < μ3; unstable

Mixed pattern β1 � |h|
g2−g1 μ > μ3 unstable

β2 � β3 �






μ−g1β

2
1

g1+g2

√

TABLE 3 Different values of parameters.

Serial number a m d d1 d2 h μ Range of μ

1 4.5 1.5 4.34 1 1.5 1.12855309 0.00332226 (μ2, μ3)

2 3.25 1.5 2.32 1 1 0.28523932 0.10270569 (μ3, μ4)

3 3.25 1.5 3.00 0.6 1 −0.50772901 0.19634026 (μ4, + ∝)
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△k = a11a22−a21a12+(a21d−(a11d2+a22d1))k2+d1d2k4.

Tk = (d1+d2)k
2−(a11 + a22).

The characteristic value of system (2.3) is as follows:

λk,1 � −Tk+






T2
k−4△k

√
2 , λk,2 � −Tk−







T2
k−4△k

√
2 .

Then, necessary conditions for system (2.3) to generate

bifurcation behavior are as follows:
a11 + a22 � 0. (2.9)

a11a22 − a12a21 − a11d2 + a22d1 − a21d( )2
4d1d2

< 0. (2.10)

According to the necessary conditions of Hopf bifurcation

(2.9) and Turing bifurcation (2.10), we select a as the control

variable, and the system branch diagram of system (2.3) can be

drawn, as shown in Figure 2. At the same time, the dispersion

relationship of system (2.3) is demonstrated in Figure 3.

Obviously, Figure 3 shows that within an appropriate

parameter range, as the parameter d increases, the real part of

the eigenvalue gradually increases and the Turing patterns

appear.

3 Amplitude equations

Generally, the pattern structure is influenced by the most

active mode of the system. The amplitude equation can describe

the system’s dynamic behavior around the most active mode

[10]. Therefore, we can use the amplitude equation to research

the system’s dynamic behavior around the Turing bifurcation

point. The pattern structure is represented by three pairs of

resonance modes (]j, − ]j), which are 120° angles. For this paper,

FIGURE 4
For different pattern structures, the parameter values are shown in Table 3. (a1)-(c1) is the water pattern, and (a2)-(c2) is the vegetation pattern.
Among them, (a1) and (a2) are spot patterns, (b1) and (b2) are mixed patterns, and (c1) and (c2) are strip patterns.

Frontiers in Physics frontiersin.org05

Li et al. 10.3389/fphy.2022.1084142

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1084142


FIGURE 5
Different values of the parameter d2 correspond to different vegetation patterns, (A) d2 = 7.80, (B) d2 = 8.21, (C) d2 = 9.00, (D) d2 = 10.20, (E) d2 =
12.80, and (F) d2 = 15.48. The other parameter values are a = 3.25, m = 1.50, and d1 = 1.00.

FIGURE 6
Different values of the parameter d correspond to different vegetation patterns, (A) d = 1.52, (B) d = 2.34, (C) d = 3.81, (D) d = 5.86, (E) d = 7.23,
and (F) d = 9.56. The other parameter values are a = 3.25, m = 1.5, d1 = 1, and d2 = 1.
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FIGURE 7
Vegetation structure observed in the nature and pattern structure obtained by numerical simulation. Fig (a1-d1) shows realistic vegetation
pattern structures: (a1) Zambia, spot vegetation structure [4]; (b1) Niger, mixed vegetation structure [27]; (c1) Niamey and Niger, stripe vegetation
structure [12]; and (d1) SW Niger, gap vegetation structure [4]. Fig (a2-d2) shows corresponding numerical simulation patterns.
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through the method of multi-scale analysis, the amplitude

equation of system (2.3) and its coefficients are derived.

3.1 Multi-scale analysis

First, rewrite system (2.3) at the equilibrium point E2 as

follows:

zp

zt
� a11p + a12w +N1 p,w( ) + d1△p + d△w,

zw

zt
� a21p + a22w +N2 p,w( ) + d2△w.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3.1)

Near a = aT, the solution can be written in the following form:

p
w

( ) � ∑3
j�1

Ap
j

Aw
j

( )exp i]jr( ) + c.c. (3.2)

Making c � p
w

( ), N � N1

N2
( ), system (3.1) can be written

as follows:

zc

zt
� Lc +N, (3.3)

where

L � a11 + d1Δ a12 + dΔ
a21 a22 + d2Δ( ),

N �
a − 









a2 − 4m2
√

2
p2 + 4m

a − 








a2 − 4m2

√ pw + p2w

−a −









a2 − 4m2

√
2

p2 − 4m

a − 








a2 − 4m2

√ pw − p2w

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Expand a, c, L, N as follows:

aT − a � εa1 + ε2a2 +/ ,

c � p
w

( ) � ε
p1

w1
( ) + ε2

p2

w2
( ) + ε3

p3

w3
( ) + o ε4( ),

L � LT + a − aT( )b,
N � ε2h2 + ε3h3 + o ε4( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3.4)

LT, b, h
2, h3 are as follows:

LT � a11* + d1Δ a12* + dΔ
a21* a22* + d2Δ( ), b � b11 b12

b21 b22
( ),

h2 �
(a −










a2 − 4m2

√
2

)p2
1 +

4m

a −









a2 − 4m2

√ p1w1

−(a −









a2 − 4m2

√
2

)p2
1 −

4m

a −









a2 − 4m2

√ p1w1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

h3 �
(a −










a2 − 4m2

√
)p1p2 + 4m

a −









a2 − 4m2

√ (p1w2 + p2w1) + p2
1w1

−(a −









a2 − 4m2

√
)p1p2 − 4m

a −









a2 − 4m2

√ (p1w2 + p2w1) − p2
1w1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Decompose the time scale (T = t, T1 = εt, T2 = ε2t), then the

derivative of the amplitude A with respect to time is

zA

zt
� ε

zA

zT1
+ ε2

zA

zT2
+/ . (3.5)

Substituting (3.4) into formula (3.3), we get the equation of

different order of ε (see Table 1).

For the order of ε,

p1

w1
( )LT � 0, (3.6)

where LT is the model’s linear operator at the critical point, and

p1

w1
( ) is a linear combination of the eigenvectors corresponding

to zero eigenvalues of the linear operator LT. The solution of

equation is

p1

w1
( ) � ∑3

j�1

l
1

( )Wj exp i]jr( ) + o.o, (3.7)

with l � −a22* d1 − a11* d2 + a21* d

2a21* d1
, |]j| � |]T|, ]2T � a22* d1+a11* d2−a21* d

2d1d2
.

For the order of ε2,

LT
p2

w2
( ) � z

zT1

p1

w1
( ) − a1b

p1

w1
( ) − h2 � Fp

Fw
( ). (3.8)

According to the solvability condition of Fredholm, to

guarantee the existence of equation’s non-trivial solution, the

right term of Eq. 3.8 must be the same as the L+T zero eigenvalue

conjugate.

L+
T � a11* − d1]2T a21*

a12* − d]2T a22* − d2]2T
( ).

FIGURE 8
Average density of vegetation changes with time t
corresponding to different values of the parameter d (I) d= 3.52, (II)
d = 4.52, (III) d = 5.52, (IV) d = 6.52, and (V) d = 7.52. The other
parameter values are a = 3.25, m = 1.50, d1 = 1.00, and
d2 = 1.00.
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The zero characteristic value of L+T is

1

−d1

d2
l

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ei]jr + o.o.

Use Fj
p and Fj

w to represent the coefficients corresponding to

ei]jr in Fp and Fw.

F1
p

F1
w

⎛⎝ ⎞⎠ �
l
zW1

zT1

zW1

zT1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

a − 








a2 − 4m2

√( )l2 + 8m

a − 








a2 − 4m2

√ l[ ] �W3
�W2

− a − 








a2 − 4m2

√( )l2 − 8m

a − 








a2 − 4m2

√ l[ ] �W3
�W2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−a1
lb11W1 + b12W1

lb21W1 + b22W1

⎛⎝ ⎞⎠,

F2
p

F2
w

⎛⎝ ⎞⎠ �
l
zW2

zT1

zW2

zT1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

a − 








a2 − 4m2

√( )l2 + 8m

a − 








a2 − 4m2

√ l[ ] �W1
�W3

− a − 








a2 − 4m2

√( )l2 − 8m

a − 








a2 − 4m2

√ l[ ] �W1
�W3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−a1
lb11W2 + b12W2

lb21W2 + b22W2

⎛⎝ ⎞⎠,

F3
p

F3
w

⎛⎝ ⎞⎠ �
l
zW1

zT3

zW1

zT3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

a − 








a2 − 4m2

√( )l2 + 8m

a − 








a2 − 4m2

√ l[ ] �W1
�W2

− a − 








a2 − 4m2

√( )l2 − 8m

a − 








a2 − 4m2

√ l[ ] �W1
�W2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−a1
lb11W3 + b12W3

lb21W3 + b22W3

⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.9)

where l � −a22* d1−a11* d2+a21* d
2a21* d1

. According to the conjugation

condition,

1, −d1

d2
l( ) Fj

p

Fj
w

( ) � 0.

Then,

1 − d1

d2
( )l zW1

zT1
� a1 lb11 + b12 − d1

d2
l lb21 + b22( )[ ]W1 + 1 + d1

d2
( )

a − 








a2 − 4m2

√( )l2 + 8ml

a − 








a2 − 4m2

√[ ] �W3 �W2 ,

1 − d1

d2
( )l zW2

zT1
� a1 lb11 + b12 − d1

d2
l lb21 + b22( )[ ]W2 + 1 + d1

d2
( )

a − 








a2 − 4m2

√( )l2 + 8ml

a − 








a2 − 4m2

√[ ] �W1
�W3 ,

1 − d1

d2
( )l zW3

zT1
� a1 lb11 + b12 − d1

d2
l lb21 + b22( )[ ]W3 + 1 + d1

d2
( )

a − 








a2 − 4m2

√( )l2 + 8ml

a − 








a2 − 4m2

√[ ] �W1
�W2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3.10)

It can be found that the second-order term’s coefficient

value is more than 0 from all the aforementioned

equations, which will cause the amplitude of Wj to

diverge, and higher-order terms need to be introduced to

saturate it. Therefore, the solution of Equation 3.8 is written

in the following form:

p2

w2
( ) � P0

W0
( ) +∑3

j�1

Pj

Wj
( )ei]jr +∑3

j�1

Pjj

Wjj
( )ei2]jr

+ P12

W12
( )eir ]1−]2( ) + P23

W23
( )eir ]2−]3( )

+ P31

W31
( )eir ]3−]1( ) + o.o. j � 1, 2, 3( ). (3.11)

Substituting formula (3.11) into Eq. 3.8, we get

P0

W0
( ) � p0

w0
( )∑3

i�1|Wi|2, Pi = lWi,

Pjj

Wjj
( ) � p11

w11
( )W2

j ,
Pjk

Wjk
( ) � p*

w*
( )Wj �Wk,

J � (a − 








a2 − 4m2

√ )l2 + 8ml
a− 






a2−4m2
√ ,

p0 � 1
a11* a22* −a12* a21*

[(a12* + a22* )J],
w0 � 1

a11* a22* −a12* a21*
[−(a11* + a21* )J],

p11 � 1
(a11* −4d1]2T)(a22* −4d2]2T)−a21* (a12−4d]2T) [−

1
2 (4d]2T + 4d2]2T − a12* − a22* )J],

w11 � 1
(a11* −4d1]2T)(a22* −4d2]2T)−a21* (a12* −4d]2T) [−

1
2 (a21* + a11* − 4d1]2T)J],

p* � 1
(a11* −3d1]2T)(a22* −3d2]2T)−a21* (a12−3d]2T) [−(3d]

2
T + 3d2]2T − a12* − a22* )J],

w* � 1
(a11* −3d1]2T)(a22* −3d2]2T)−a21* (a12* −3d]2T) [−(a21* + a11* − 3d1]2T)J].

For the order of ε3,

LT
p3

w3
( ) � z

zT1

p2

w2
( ) + z

zT2

p1

w1
( ) − a1b

p2

w2
( ) − a2b

p1

w1
( )

− h3

� Hp

Hw
( ).

(3.12)
Similarly, use Hj

p and Hj
w to represent the coefficients

corresponding to ei]jr in Hp and Hw.

H1
p

H1
w

( ) �
l
zV1

zT1

zV1

zT1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
l
zW1

zT2

zW1

zT2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − a2
lb11W1 + b12w1

lb21W1 + b22w1
( ) − a1

lb11V1 + b12V1

lb21V1 + b22V1
( )

− −K|W1|2 − L |W2|2 − |W3 |2( )
K|W1|2 + L |W2|2 − |W3|2( )( )W1

+
− a − 









a2 − 4m2
√( )l2 − 4ml

a − 








a2 − 4m2

√

a − 








a2 − 4m2

√( )l2 + 4ml

a − 








a2 − 4m2

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �W2
�V3 + �V2

�W3( ),
(3.13)

where

K � −(a − 








a2 − 4m2

√
l(p11 + p0)) − 4m

a− 





a2−4m2

√ (l(w11 +w0)+
(p11 + p0)) − 3l2 and

L � −(a − 








a2 − 4m2

√
l (p

*
+ p0)) − 4m

a− 





a2−4m2

√ (l(w* + w0)+
(p

*
+ p0)) − 6l2.

According to the solvability condition of Fredholm,

we get
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l 1 − d1

d2
( ) zW1

zT2
+ zV1

zT1
( ) � a1V1 + a2W1( )

× lb11 + b12 − l
d1

d2
lb21 + b22( )[ ]

−W1 ∑2
i�1

Gi|Wi|2 −W1|W3|2

+ 1 + d1

d2
( )P �W2

�V3 + �W3
�V2( ),

(3.14)
where G1 � (1 + d1

d2
)K and G2 � (1 + d1

d2
)L.

Change the subscript to get the other equation. Then, the

amplitude Mi can be expressed as follows:

Mi � εWi + ε2Ui + o ε3( ). (3.15)

Combine Eqs 3.10, 3.14, 3.15 to get the following amplitude

equation:

ϵ0
zM1

zTt
� μM1 + h �M2

�M3 − g2M1|M2|2 − g2M1|M3|2

− g1M1|M1|2, (3.16)

where

μ � aT − a

aT
,

ϵ0 �
l(1 − d1

d2
)

aT[lb11 + b12 − l d1d2 (lb21 + b22)]
,

g1 � G1

aT[lb11 + b12 − l d1d2 (lb21 + b22)]
,

g2 � G2

aT[lb11 + b12 − l d1d2 (lb21 + b22)]
, and

h � ((a − 








a2 − 4m2

√ )l2 + 8ml
a− 






a2−4m2
√ )(1 + l d1d2)

aT[lb11 + b12 − l d1d2 (lb21 + b22)]
.

Change the subscript to get the other equation. Then, the

amplitude equation of system (2.3) is

ϵ0
zM1

zTt
� μM1 + h �M2

�M3 − g2M1|M2|2 − g2M1 |M3|2 − g1M1|M1|2 ,

ϵ0
zM2

zTt
� μM2 + h �M1

�M3 − g2M2|M1|2 − g2M2 |M3|2 − g1M2|M2|2 ,

ϵ0
zM3

zTt
� μM3 + h �M1

�M2 − g2M3|M1|2 − g2M3 |M2|2 − g1M3|M3|2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.17)

3.2 Stability analysis

Each amplitude equation can be expressed into the product

of its mode βi = |Mi| and its corresponding phase angle ψi, which

is Mi = βi exp (iψi). Substituting it into the amplitude Eq. 3.17,

we get

ϵ0
zβ1
zTt

� μβ1 + hβ2β3 cosψ − g2 β22 + β23( )β1 − g1β
3
1,

ϵ0
zβ2
zTt

� μβ2 + hβ1β3 cosψ − g2 β21 + β23( )β2 − g1β
3
2,

ϵ0
zβ3
zTt

� μβ3 + hβ1β2 cosψ − g2 β21 + β22( )β3 − g1β
3
3,

ϵ0
zψ

zTt
� −h β

2
1β

2
2 + β21β

2
3 + β22β

2
3

β1β2β3
sinψ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.18)

where ψ = ψ1+ψ2+ψ3.

The aforementioned system has four solutions,

corresponding to four different pattern structures. Table 2

summarizes the stability of the four pattern structures.

μ1 � −h2
4(g1+2g2), μ2 = 0, μ3 � h2g1

(g2−g1)2, and μ4 � 2g1+g2
(g2−2g1)2h

2.

4 Main results

For the study of the spatial model, we cannot use analytical

methods to obtain its dynamic behavior. Therefore, in this section,

we simulate system (2.3) using the method of numerical

simulation and reveal the influence of vegetation hydrotropism

on vegetation growth and distribution. The selected area isM × N,

where M = N = 100. Its boundary conditions meet Neumann

boundary conditions, that is, the study area is not connected with

its surrounding environment. We set the time zone to [0,10000],

time step to Δt = 0.1, and spatial step to Δh = 1. The initial value is

the random disturbance at the equilibrium point E2.

4.1 Basic pattern structures

In this part, the theoretical analysis of the third part is verified by

numerical simulation. Choose the values of different parameters a,m,

d, d1, and d2.We can calculate the values of h, g1, g2, μ1, μ2, μ3, and μ4,

according to the expression of the amplitude equation coefficients in

section 3. In order to observe the simulation results, we have selected

three sets of parameter values in Table 3, and the corresponding

results are shown in Figure 4; among them, Figure 4 (a1)-(c1) is a

water pattern and Figure 4 (a2)-(c2) is a vegetation pattern.When the

first set of parameters is selected, the value of μ is between μ2 and μ3,

and system (2.3) has a dot pattern, as shown in Figure 4 (a1) and

Figure 4 (a2); when the second set of parameters is selected, the value

of μ is between μ3 and μ4, and system (2.3) has a mixed pattern, as

shown in Figure 4 (b1) and Figure 4 (b2); when the third set of

parameters is selected, the value of μ is greater than μ4, and system

(2.3) has a stripe pattern, as shown in Figure 4 (c1) and Figure 4 (c2).
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4.2. Pattern phase transition induced by
soil water diffusion

In this section, we will study the influence of soil water diffusion

on vegetation in dry and semi-dry places. In these areas, the lack of

water resources causes the diffusion of soil water mainly caused by

concentration differences, that is, absorption water feedback. For

different vegetation, the ability to absorb water is different, which will

lead to the concentration difference of soil water. It is reflected in the

parameter d2 in ourmodel; the greater the concentration difference of

soil water, the greater is the parameter d2. In order to better reveal the

effects of different water diffusion intensities on the vegetation

pattern, we do not consider the hydrotropism of vegetation and

fix the parameters d = 0 and d1 = 1; then, we can change the

parameter d2 to reflect different water diffusion intensities.

Figure 5 shows the change in the corresponding vegetation

pattern with the change in the parameter d2. With the increase in d2,

the vegetation pattern structures change in the following sequence,

gap pattern, mixed pattern, strip pattern, and spot pattern.

Moreover, we also find that when d2 ≤ d1, no vegetation pattern

is generated; when d2 > d1, with the increase in the parameter d2, the

gap between the pattern becomes larger and larger. In fact, the

difference in the soil water concentration reflects the difference in

the water absorption capacity among vegetation. The greater the

diffusion intensity of the water beside the vegetation, the stronger is

the absorption capacity of the vegetation for water, which will

promote its own growth more. Conversely, as the intensity of

diffusion of water next to the vegetation increases, more water

will flow to its location, which will suppress the growth of the nearby

vegetation. It shows that the vegetation pattern is formed through

the long-range competition and short-range promotionmechanism.

4.3 Influence of hydrotropism on the
vegetation pattern

Due to the climatic conditions and geographical environment

in dry and semi-dry regions, the soil water resource distribution is

uneven, and a water gradient is formed. Because of the presence of

the moisture gradient, roots exhibit hydrotropism characteristics.

For different vegetation, the intensity of the hydrotropism of the

vegetation root is different. Some vegetation roots are sensitive to

soil moisture, but some vegetation roots are relatively weak.

Therefore, in this section, we study the influence of different

vegetation growth abilities of water on the vegetation in the

area. In our spatial model, we fixed other diffusion parameters,

that is, d1 = 1, d2 = 1, and observed the influence of hydrotropism

on the vegetation pattern structures by changing the parameter d.

Figure 6 shows the pattern structures of vegetation under different

root hydrotropism intensities. Through theoretical analysis and

numerical simulation, we know that when we do not consider the

hydrotropism of vegetation roots in ourmodel, let d1 = d2, in which

no vegetation pattern will be generated. Therefore, the

hydrotropism of vegetation roots can induce the generation of

vegetation patterns.

In Figure 6, we show the influence of the parameter d on the

vegetation pattern structures.When the parameter d is small, the gap

pattern appears (Figure 6A).When the parameter d increases slightly,

the gap pattern begins to disappear, the strip pattern appears, and the

vegetation pattern structure becomes mixed gap and strip pattern

structures (Figure 6B). When the parameter d continues to increase,

the gap pattern completely disappears, showing the strip pattern

structure (Figure 6C). Subsequently, with the increase in the d

parameter, the spot pattern gradually appears (Figures 6D,F). To

sum up, gradually enhance the hydrotropism effect of roots, then the

vegetation pattern’s structure changes in the following sequence: the

gap pattern, mixed pattern, strip pattern, and spot pattern. In

Figure 7, we show the realistic vegetation distribution

corresponding to numerical simulation pattern structures.

Moreover, in Figure 8, we show the relationship between the

root hydrotropism effect and average vegetation biomass. We can

find that with the increasing intensity of the hydrotropism of the

vegetation root, the average density of vegetation increases.

However, as the intensity of vegetation to grow toward water

increases, the interval of plants also becomes larger, which means

that the stability of the ecosystem in the region is also reduced.

Owing to the fact that water at the location of the vegetation

itself is not enough to meet the needs of its own growth, the

vegetation has to extend to the humid area to obtain water

resources through the roots, which makes the root system of the

vegetation exhibit hydrotropism. For different vegetation, the

degree of development of the root system is different. When the

root system of vegetation is developed, vegetation has higher

hydrotropism effects, which means it can absorb more water and

other vegetation cannot obtain enough water resources because

of limited water resources in these dry regions. A large amount of

vegetation died due to the lack of water, resulting in vegetation

degradation. In other words, increasing the intensity of the

hydrotropism of roots in a range can increase the average

biomass of vegetation. However, excessively increasing the

intensity of the hydrotropism of roots will lead to desertification.

5 Conclusion

In our paper, we mainly analyze spatial dynamics with

hydrotropism effects. First, on the basis of Klausmeier’s

system, a spatial system is established considering the

hydrophilic effect. Then, the existence and stability of the

system equilibrium point are analyzed. Second, through the

method of multi-scale analysis, the amplitude equation of the

system and its coefficients are derived [38–40]. Finally, we

numerically simulated the system to show the influence of

vegetation root hydrotropism on vegetation growth distribution.

Bases on the numerical results, we find that the hydrotropism

of vegetation roots can induce pattern generation. Furthermore,
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with the enhancement of the root hydrotropism effect, pattern

structures change as follows: the spot pattern, mixed pattern,

strip pattern, and gap pattern. Moreover, we also study the

relationship between the root hydrotropism effects and

average vegetation biomass. We find that increasing the

intensity of the hydrotropism of roots in a range can increase

the average vegetation biomass which is consistent with the

results in [35, 41]. However, excessively increasing the

strength of root hydrotropism, the spacing between the

vegetation pattern also increases, which means that the

ecosystem stability is reduced and prone to land desertification.

We all know that many factors will affect vegetation

distribution in the real world, including climatic conditions

(such as temperature, light, and carbon dioxide

concentration), topographic conditions (such as mountains

and plains), and human activities (such as deforestation and

grazing) [41–50]. However, in our system, we only consider

rainfall and vegetation root hydrotropism effects. Therefore, in

order to better protect vegetation, prevent land desertification,

and improve the stability of the ecosystem, we hope to establish a

more realistic vegetation dynamic system, including climatic

conditions, internal growth mechanism of vegetation, human

activities, and other factors, to better study the dynamic

mechanism of spatial vegetation and reveal relevant factors

affecting the structure of the vegetation pattern.
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