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In many engineering challenges, the whole interaction between the structural

domain and the acoustic domain must be taken into account, particularly for

the acoustic analysis of thin structures submerged in water. The fast multipole

boundary element approach is used in this work to simulate the external

acoustic domain and the finite element method is used to describe the

structural components. To improve coupling analysis accuracy,

discontinuous higher-order boundary components are created for the

acoustic domain. The isogeometric boundary element method (IGABEM)

discretizes unknown physical fields by using CAD spline functions as basis

functions. IGABEM is inherently compatible with CAD and can perform

numerical analysis on CAD models without having to go through the time-

consuming meshing process required by traditional FEM/BEM and volume

parameterization in isogeometric finite element methods. IGABEM’s power

in tackling infinite domain issues and combining CAD and numerical analysis

is fully used when it is applied to structural form optimization of three-

dimensional external acoustic problems. The structural-acoustic design and

optimization procedures benefit from the use of structural-acoustic design

sensitivity analysis because it may provide information on how design factors

affect radiated acoustic performance. This paper provides adjoint operator-

based equations for sound power sensitivity on structural surfaces and direct

differentiation-based equations for sound power sensitivity on arbitrary closed

surfaces surrounding the radiator. Numerical illustrations are provided to show

the precision and viability of the suggested approach.
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1 Introduction

A typical issue in underwater acoustics is the analysis of the

acoustic radiation or scattering from elastic structures in fluid.

Only for basic geometric structures with simple boundary

conditions are analytical solutions to structural-acoustic

interaction issues accessible [1]. There are still no analytical

answers to real-world issues with complex geometries.

Therefore, effective numerical techniques must be created.

Due to its high adaptability and suitability for complex real-

world model challenges, the finite element method (FEM) is

frequently employed to simulate the structural components in

these issues [2]. To avoid meshing the commonly infinite or

semi-infinite acoustic domain, the sound field is modeled using

the boundary element method (BEM) [3]. Researchers have

focused a lot of their attention on the FEM/BEM coupling

techniques [4]; [5]; [6]; [7]; [8]; [9,10]; [11]; [12], where FEM

is used to discretize the structure’s components and BEM is

utilized to represent the acoustic area. BEM frequently employs

continuous linear or quadratic components. Discontinuous

elements have been researched as an alternative to them,

exhibiting a high level of precision [13]; [14]. When a

hypersingular integral is discretized, discontinuous boundary

elements are typically used because C1-continuity of the

surface at the collocation point is necessary in such situation.

Applications can be found in fracture analysis [15] and the

Navier-Stokes equation solution [16]. When collocation points

are situated at the zeros of orthogonal functions for the standard

interval, superconvergence for error dependency on the size of

discontinuous border elements has been examined by [17]; [14]

presents the error dependency of the frequency, element size, and

node placement on discontinuous elements. This study

discovered that discontinuous border elements outperform

continuous components in terms of performance. In-depth

research has also been done on how well discontinuous

boundary elements perform in acoustic analyses of rigid

structures. [18] Discussed how discontinuous boundary

elements combined with FEM perform when the interaction

between the structure and the sound field is taken into

consideration.

Conventional BEM has the well-known drawback of

generating a dense and asymmetrical coefficient matrix, which

necessitates O(N3) arithmetic operations to directly solve the

system of equations, such as by applying the Gauss elimination

technique. The integral problem has been solved more quickly

using the fast multipole method (FMM) [19]; [20]; [21]; [22].

Iterative solvers have proven to be effective in solving complex

practical issues [23]; [24]. Therefore, large-scale acoustic-

structure interaction issues may be successfully solved using

the coupling technique based on FEM and fast multipole

BEM (FMBEM) [7]; [8]. The diagonal form of the FMM and

the original FMM are both utilized to solve the Helmholtz

problem. Outside the ranges of their favored frequencies, both

kinds fail in some way. However, the aforementioned issues can

be resolved by the wideband FMM created by fusing the original

FMM and the diagonal form FMM [25]; [26]. The main use of

FMM is for discretization-based numerical analysis using

constant boundary elements. Due to the difficulty of the

computation process, there are not many articles that employ

the FMM for numerical analysis based on discontinuous high-

order boundary element discretization [18]. In this research,

FMM is employed to speed up the solution of the integral

equation using discontinuous boundary elements. Finally, the

large-scale acoustic-structure interaction issues are solved using

the coupling algorithm FEM/discontinuous wideband FMBEM.

Both conventional FEM and BEM with Lagrange polynomial

basis functions rely on polygonal meshes, which leads to time-

consuming preprocessing steps, geometric inaccuracies, and

poor field variable continuity [27]. The [28] notion of

isogeometric analysis (IGA) allows for the resolution of these

problems. The core of IGA is to discretize the unknown physical

fields while solving partial differential equations by using the

same basis functions as those in computer-aided design (CAD) to

describe the domain geometry. Geometric accuracy, adjustable

order elevation and k-refinement, high order continuous fields,

etc. are some benefits of IGA. Although IGA was first created in

the context of finite element methods (IGAFEM), there are some

situations when it is preferable to combine IGA with boundary

element methods (IGABEM) [10, 29]; [30]; [31]; [32, 33]. Several

benefits come with IGABEM:

• it can use CAD data right away without the need for

volume parameterization from geometric surfaces [34,

35], since both of them are boundary-represented [36];

[37]; [38];

• it inherits the benefits of traditional BEM for addressing

problems in infinite domains [39]; [40–42];

• IGABEM is perfect for free boundary problems like crack

growth since no volume parameterization is required

[43, 44].

As for the singularity problems, singularities and shifting

borders are well handled by IGA [43, 44]. Specialized integration

methods have been developed to tackle the weakly singular and

hypersingular integrals that arise in IGABEM [41].

Acoustic design sensitivity analysis is crucial to the acoustic

design and optimization processes because it may provide

information about the impact of geometric modifications on

the acoustic performance of structures [45]. An overview of

recent advancements in structural-acoustic optimization for

passive noise suppression was provided by [6]. Gradient-based

optimization takes a long time to do a sound power sensitivity

analysis for problems involving acoustic-structure interaction.

The global finite difference method (FDM) is frequently used in

structural-acoustic optimization because it is simple to employ,

according to [46], [47], and [48]. However, FDM performs
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poorly, especially when several design elements are taken into

account at once. The distinction between semi-analytic and

analytical sensitivity studies has been made in addition to

global finite differences. These classifications have been

debated in many studies [49]; [6,50]. Global finite differences

are significantly less accurate than analytical and semi-analytical

sensitivity studies. Additionally, the former are less expensive

computationally than the latter. In [51], coupled structural

acoustic issues were addressed using an analytical sensitivity

analysis, which has recently emerged as the direct

differentiation approach. Using the adjoint operator technique,

which has been used to solve structural acoustic problems, allows

for still further acceleration in calculation time, particularly for

issues with several design variables [52]; [53].

With regard to several design variables, this work

constructs equations for sound power sensitivity. To

eliminate geometric errors, the fundamental formulations

of IGABEM discretization are introduced for acoustic

analysis. Directly differentiating the coupled boundary

element equation with respect to design variables yields the

derivative formulation of the vectors of nodal displacement

and sound pressure on the interaction surface with respect to

design variables. The coupled boundary element equation is

created by fusing the structural equation into the acoustic

equation. Utilizing adjoint operators and direct

differentiation, respectively, we derive the derivative

formulation of the radiated sound power on the structural

surface and the derivative formulation of the radiated sound

power on any arbitrary closed surface around the radiator.

The appropriate formula needed to compute the derivative of

the radiated sound power for various design variables are

discussed in detail. The FEM/FMBEM coupling system is used

to determine the sound power sensitivity. It is shown with

numerical examples how accurate and reliable the current

method is.

2 Structural-acoustic analysis

2.1 Subdivision surfaces

Since its introduction in the 1970s, subdivision surfaces have

been extensively utilized in computer animation and graphics [54].

Additionally, they are accessible in the majority of industrial CAD

solid modeling programs (e.g., CATIA, Creo). Subdivision surfaces

are often seen in computer graphics literature as a method for

repeatedly smoothing and refining a control mesh in order to

generate smooth limit surfaces. They may also be seen from the

perspective of finite and boundary element analysis as the

generalization of splines to arbitrarily connected meshes.

The concept of subdivision schemes is to create a smooth surface

out of a rough polygon mesh. Subdivision refinement systems,

which may be categorized as interpolating or approximation

schemes, create a smooth surface by a limited process of

repetitive refinement beginning with an initial control mesh. All

control meshes produced during subdivision refinement describe

the exact same spline surface since the subdivision surfaces inherit

the refinability attribute from the splines.

In this research, the structural-acoustic coupling analysis is

conducted using a Loop subdivision technique [42].

2.2 Acoustic-structure interaction using
finite element method/boundary element
method

The BEM and FEM are used to simulate the fluid and

structural subdomains, respectively. The discretized boundary

integral formulation of the fluid solution to the Helmholtz

problem is given by [55], as shown in Equation 1:

Hp � Gq + pi, (1)

where

H andG are the frequency-dependent BEM influencingmatrices,

p is the vector containing the nodal values for pressure,

q is the vector of normal derivatives of p,

pi is the incident wave’s nodal pressure.

The continuous linear and quadratic element technique is often

used, and alternatives to discontinuous elements with good accuracy

have already been examined [14]. Discontinuous boundary elements

outperform continuous boundary elements [14]. Interpolation

nodes are positioned within discontinuous boundary elements,

and the expressions of the interpolation functions depend on the

position of the node within the element. Thus, by varying the

placements of the interpolation nodes, a numerical solution with

varied calculation accuracies may be achieved. Both discontinuous

and continuous components are employed in the numerical

computation in this study.

The steady-state response of the structure may be derived

from the frequency-response analysis when a harmonic load with

a transitory function e−iωt is applied to it. When the acoustic-

structure interaction is addressed, Equation 2 derives the linear

system of equations to compute the nodal displacements u [51].

K − ω2M + iωC( )u � fs + Csfp, (2)
Csf � ∫

Γ
NT

s nNfdΓ, (3)

where

K is the structure’s stiffness matrix,

M is the structure’s mass matrix,

C is the structure’s damping matrix,

ω is the angular frequency,

fs is the vector of the nodal structural forces,

Csfp is the acoustic load.

Γ is the coupling boundary surface,
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Ns is the global interpolation function for the structural

domain,

Nf is the global interpolation function for the fluid domain,

n is the normal vector of the surface.

The continuity condition across the interaction surface

(Fritze et al.2005) is introduced in Equation 4, as follows:
q � iωρfvf , (4)

vf � −iωS−1Cfsu, (5)
S � ∫

Γ
NT

f NfdΓ, (6)
Cfs � CT

sf , (7)

where

ρf is the density of the fluid,

vf is the normal velocity vector of the fluid.

Combing Equations 1, 2 and 4, Equation 8 gives the coupled

system of equations of an elastic structure submerged in a heavy

fluid derived.

K − ω2M + iωC −Csf

−ω2ρfGS
−1Cfs H[ ] u

p
{ } � fs

pi
{ }. (8)

On Equation 8, the application of an iterative solution (e.g.,

generalized minimum residual approach (GMRES)) results in

unsatisfactory convergence. Substituting the finite element

formulation into the boundary element equation to obtain a

simplified system equation is an appropriate strategy [51]; [44,

56, 57], as shown in Equation 9:

Hp − GWCsfp � pi + GWfs, (9)
W � ω2ρfS

−1CfsA
−1, (10)

A � K − ω2M + iωC. (11)

It takes much time to solve A−1 directly in Equation 9. In fact,

A sparse direct solver could be used to readily solve this

symmetric, frequency-dependent system of equations Ax = fs,

thus obtaining the term A−1fs in Equation 9 quickly. The iterative

solver GMRES [24] is introduced in this work to speed up the

computing of solutions to the equations for the coupled

boundary element system. There is no need to solve A−1Csf

directly on the left-hand side of Equation 9. Considering the

current iterative solution pk for vector p in Equation 9, when a

sparse direct solver is employed to solve the symmetric and

frequency-dependent system of the linear equation Ax = Csfpk,

the solution of A−1Csfpk could be achieved effectively. Based on

this, we could derive the solution of vector u by solving Eq. 9 and

inserting the solution of vector p into Equation 2.

When dealing with a problem with N unknowns, the coefficient

matricesH andG are dense and non-symmetrical, resulting inO(N2)

arithmetic operations. FMM is used to speed up the solution of the

standard boundary element system of equations and reduces the

amount of memory required. The core idea behind FMM is to

approximate the fundamental solution for BEM using spherical

Hankel functions, Legendre polynomials, and plane waves. The

coefficient matrices are divided into two portions. The first is the

near-field component, which is assessed by integration in the region

of the source point. The other is the far-field component, which

cannot be calculated directly. Using FMM on a cluster hierarchy

decreases the complexity of BEM from O(N2) to O(N log N). FMM

comes in two varieties. The original FMM (low-frequency technique)

is based on the fundamental solution’s series expansion formula,

whereas the diagonal form FMM (high-frequency method) is based

on the fundamental solution’s plane wave expansion formula. For

high-frequency problems, the original FMM is inefficient, while the

diagonal formFMMhas instability issueswhen solving low-frequency

Helmholtz equations. To circumvent these challenges, the wideband

FMMgenerated bymerging the original FMMand the diagonal form

FMM can be employed [25]; [26].

2.3 Radiated sound power expression

The radiated sound power W on an arbitrary closed surface

around the radiator may be represented as Equation 12 for

radiation into open domains:

WA ω( ) � 1
2
∫

A
R p y,ω( )vf* y,ω( ){ }dA y( ), (12)

where

A is a randomly chosen closed surface that encircles the

radiator,

p is the sound pressure,

vf* is the conjugate complex of the particle velocity vf,

R is the real part of the quantity.

The real component of complex sound power is radiated into

the acoustic far field, whereas the imaginary component only

contributes to the evanescent near field.

Using BEM to discretize Equation 12 yields a matrix equation

for sound power, which is provided by Equation 13:

WA ω( ) � 1
2
R pT

ASAvA*{ }, (13)

SA � ∫
A
NT

f NfdA y( ), (14)

where

pA is the nodal sound pressure vector on surface A,

vA is the particle velocity vector on surface A.

We may readily replace surface A for sound power

assessment with the structural surface Γ when the sound

power on the structural surface has to be evaluated. As a

result, Equation 13 is changed to Equation 15:

W ω( ) � 1
2
R pTSvf*{ }. (15)

By resolving Equations 2, 5, 9, respectively, we may obtain

the vectors p, u, and vf in turn. Finally, Equation 15 may be

solved to determine the radiated sound power W on the

structure surface.
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When surface A is not the structural surface, Equation 13

could also be used to determine the sound powerW on surface A.

The pressure and particle velocity at field point y on surface A in

Equation 13 are pA(y) and vA(y), respectively. The vectors pA and

vA may be obtained by solving pA(y) and vA(y) at each node on

surface A.

Equation 16 may be used to represent the boundary integral

equation created on the interaction surface Γ to estimate the

sound pressure pA(y) at a field point y, as follows:

pA y( ) � ∫
Γ
G x, y( )q x( )dΓ x( ) − ∫

Γ
F x, y( )p x( )dΓ x( ), (16)

G x, y( ) � eikr

4πr
, (17)

where

x is the source point,

y is the field point,

q(x) is the normal derivative of p(x),

F (x, y) is the normal derivative of G (x, y).

Using the continuity condition shown in Equation 18:

qA y( ) � −iωρvA y( ), (18)

Equation 19 is created by differentiating Equation 16 with

regard to n(y):

vA y( ) � i
ωρ

zpA y( )
zn y( )

� i
ωρ

∫
Γ

zG x, y( )
zn y( ) q x( )dΓ x( ) − i

ωρ
∫

Γ

zF x, y( )
zn y( ) p x( )dΓ x( ).

(19)
Discretizing Eqs 16, 19, we get Eqs 20, 21:

pA y( ) � gT y( )q − hT y( )p, (20)
vA y( ) � i

ωρ
gT1 y( )q − i

ωρ
hT
1 y( )p. (21)

By solving Eqs 20, 21, the nodal sound pressure pA(y) and the

particle velocity vA(y) are available at each node on surfaceA. Vectors

pA and vA on surfaceA are thus solved. Finally, Equation 13 allows for

the solution of the radiated sound power WA(ω) on surface A.

3 Sound power sensitivity analysis

3.1 Sound power sensitivity on structural
surface

Equation 8 could be expressed as Equation 22:

K − ω2M + iωC −Csf

−ω2ρfGS
−1Cfs H[ ] u

p
{ } � B

u
p

{ } � fs
pi

{ }, (22)

in which we have Equation 23:

B � K − ω2M + iωC −Csf

−ω2ρfGS
−1Cfs H[ ] � A −Csf

−ω2ρfGS
−1Cfs H[ ]. (23)

By differentiating Equation 22 with regard to the design

variable θ, we get Equation 24:

zB
zθ

u
p

{ } + B

zu
zθ

zp
zθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ �

zfs
zθ

zpi

zθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (24)

Equations 25, 26 are thus conducted:

zB
zθ

�
zA
zθ

−zCsf

zθ

−z ω2ρfGS
−1Cfs( )

zθ

zH
zθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (25)

r � r1
r2

{ } � B

zu
zθ

zp
zθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ �

zfs
zθ

zpi

zθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ − zB

zθ
u
p

{ }. (26)

In the following, several expressions of Eqs 25, 26 are found

for different kinds of design variables:

1. When the fluid density ρf is chosen to be the design variable θ,

Eqs 25, 26 are expressed as Eqs 27, 28:

zB
zθ

� 0 0
−ω2GS−1Cfs 0

[ ], (27)

r � r1
r2

{ } � 0
ω2GS−1Cfsu

{ }. (28)

2. When the material property of the structural part (e.g.,

Young’s modulus E, the structural density ρs) is chosen to

be the design variable θ, Eqs 25, 26 are expressed as Eqs

29, 30:

zB
zθ

�
zA
zθ

0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (29)

r � r1
r2

{ } � −zA
zθ

u

0

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭. (30)

3. When some parameters determining the coordinates of

structural nodes are taken as design variables, Eqs 25, 26

are expressed as Eqs 31, 32:

zB
zθ

�
zA
zθ

−zCsf

zθ

−ω2ρf
z GS−1Cfs( )

zθ

zH
zθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (31)
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r � r1
r2

{ } �
zf s
zθ

zpi

zθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ − zB

zθ
u
p

{ }

�
zfs
zθ

− zA
zθ

u + zCsf

zθ
p

zpi

zθ
+ ω2ρf

z GS−1Cfs( )
zθ

u − zH
zθ

p

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (32)

When dealing with complicated structures, the direct

differentiation approach makes it challenging to determine the

derivative of A, Csf, Cfs, S−1, H, and G. To overcome this

challenge, however, one might use the semi-analytical

derivative approach, which uses the finite difference method

to compute different coefficient matrices.

Considering the sound power sensitivity on the structure

surface Γ, Eq. 33 may be used by differentiating Eq. 15 with

regard to design variable θ:

zW

zθ
� 1
2
R

zp
zθ

( )T

w1 + iωpTzCfs

zθ
u* + wT

2

zu
zθ

( )*⎧⎨⎩ ⎫⎬⎭, (33)

where

w1 = iωCfsu*,

wT
2 = iωpTCfs.

Introducing the conjugate complex transposed ()H, we get

Eq. 34:

R wT
2

zu
zθ

( )*{ } � R wH
2

zu
zθ

{ }. (34)

Applying this to Eq. 33, E. 35 is produced to represent the

sound power sensitivity:

zW

zθ
� 1
2
R wT

1

zp
zθ

+ iωpTzCfs

zθ
u* + wH

2

zu
zθ

{ }. (35)

The sum of the first and the third terms in the right side of Eq.

35 can be rewritten as Eq. 36: We may get Eq. 36 by adding the

first and third terms of Eq. 35’s right side:

wT
1

zp
zθ

+ wH
2

zu
zθ

� dT

zu
zθ

zp
zθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � dTB−1r, (36)

where

d � w2*
w1

[ ]. (37)

We may represent the sound power sensitivity on the

structure surface as Eq. 38 by substituting Eq. 36 into Eq. 35:

zW

zθ
� 1
2
R dTB−1r + iωpTzCfs

zθ
u*{ }. (38)

Two terms make up the structural surface’s sound power

sensitivity. Eq. 38’s first term on the right side can be resolved in

one of two ways. One is to first solve B�z � r, a linear system of

equations, and then to solve dT�z. The other is to solve zB = dT, a

linear system of equations, and then zr. Eq. 26 shows that, in

contrast to d, r depends on the derivatives of specific terms with

respect to the design variable θ. Consequently,m right hand sides

r will be produced by m design variables θj with j = 1, 2, . . . , m.

The linear system of equations B�z � r must be solved m times

using the first method, which takes too much time. The linear

system of equations zB = dT only has to be solved once for various

design variables when using the second method, though.

When an iterative solver, such as GMRES, is used to solve the

adjoint equation zB = dT, the convergence is low. Eq. 39 may be

used to rewrite the adjoint equation:

zB � zs zf[ ]B � dT, (39)

wheres is the degree of freedom of the structure.f is the degree of

freedom of the fluid.Equation 40 illustrates a practical way by

splitting the adjoint equation into two reduced coupled

sensitivity equations:

zsA − ω2ρzfGS
−1Cfs � wH

2 , (40)
zfH − zsCsf � wT

1 . (41)

Equation 42 is obtained by transforming Equationg 40 into

Equationg 41 and removing the vector zs:

zfH − zfGWCsf � wT
1 + wH

2 A
−1Csf . (42)

The reduced coupled sensitivity equation mentioned above,

which is the same as solving Eq. 9, may be used to determine the

unidentified fluid vector zf. The unknown structural vector zs can

then be found using Eq. 40. The second term in Eq. 38 vanishes

when the design variable is the fluid density ρ, structural density

ρs, Poisson’s ratio v, Young’s modulus E, or structural thickness h

because zCfs
zθ � 0. However, the term zCfs

zθ does not disappear when

the structural form parameter is used as the design variable, such

as the radius of the spherical shell r. Although difficult, it is

feasible to accurately characterize the sensitivity of Cfs

analytically. However, using finite differences provides a

straightforward and practical solution to this issue.

3.2 Radiator-peripheral sound power
sensitivity on a random closed surface

Equation 43 is created by differentiating Eq. 13 with regard to

the design variable θ:

zWA ω( )
zθ

� 1
2
R

zpA

zθ
( )T

SAvA* + pT
A

zSA
zθ

vA* + pT
ASA

zvA
zθ

( )*⎧⎨⎩ ⎫⎬⎭.

(43)
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All of the items in vectors zpA
zθ and zvA

zθ can be solved using the

equations of zpA(y)
zθ and zvA(y)

zθ . Eqs 44, 45 may be obtained by

differentiating Eqs 16, 19:

zpA y( )
zθ

� ∫
Γ

zG x, y( )
zθ

q x( )dΓ x( ) + ∫
Γ
G x, y( ) zq x( )

zθ
dΓ x( )

+∫
Γ
G x, y( )q x( ) zdΓ x( )

zθ
− ∫

Γ

zF x, y( )
zθ

p x( )dΓ x( )
−∫

Γ
F x, y( ) zp x( )

zθ
dΓ x( ) − ∫

Γ
F x, y( )p x( ) zdΓ x( )

zθ
,

(44)
and

zvA y( )
zθ

� i

ωρ
∫

Γ

z2G x, y( )
zn y( )zθ q x( )dΓ x( ) + i

ωρ
∫

Γ

zG x, y( )
zn y( ) zq x( )

zθ
dΓ x( )

+ i

ωρ
∫

Γ

zG x, y( )
zn y( ) q x( ) zdΓ x( )

zθ
− i

ωρ
∫

Γ

z2F x, y( )
zn y( )zθ p x( )dΓ x( )

− i

ωρ
∫

Γ

zF x, y( )
zn y( ) zp x( )

zθ
dΓ x( ) − i

ωρ
∫

Γ

zF x, y( )
zn y( ) p x( ) zdΓ x( )

zθ

+ i

ω

zρ−1

zθ
∫

Γ

zG x, y( )
zn y( ) q x( )dΓ x( ) − i

ω

zρ−1

zθ
∫

Γ

zF x, y( )
zn y( ) p x( )dΓ x( ),

(45)

where

zG x, y( )
zθ

� − eikr

4πr2
1 − ikr( ) zr

zxi

zxi

zθ
− zyi

zθ
( ), (46)

zF x, y( )
zθ

� eikr

4πr3
3 − 3ikr − k2r2( ) zr

zn x( )
zr

zxi
− 1 − ikr( )ni x( )[ ]

×
zxi

zθ
− zyi

zθ
( ) − eikr

4πr2
1 − ikr( ) zr

zxi

zni x( )
zθ

, (47)

z2G x, y( )
zn y( )zθ � eikr

4πr3
3 − 3ikr − k2r2( ) zr

zn y( ) zr

zyi
− 1 − ikr( )ni y( )[ ]

×
zyi

zθ
− zxi

zθ
( ) − eikr

4πr2
1 − ikr( ) zr

zyi

zni y( )
zθ

, (48)
z2F x, y( )
zn y( )zθ � − eikr

4πr4
15 − 15ikr − 6k2r2 + ik3r3( ) zr

zn x( )
zr

zn y( ) zr

zyk
[

− 3 − 3ikr − k2r2( ) nk y( ) zr

zn x( ) − nk x( ) zr

zn y( ) − nj x( )nj y( ) zr

zyk
( )]

×
zyk

zθ
− zxk

zθ
( ) + eikr

4πr3
[ 3 − 3ikr − k2r2( )

×
zr

zn y( ) zr

zxi

zni x( )
zθ

+ zr

zn x( )
zr

zyj

znj y( )
zθ

( )
+ 1 − ikr( ) znj x( )

zθ
nj y( ) + nj x( ) znj y( )

zθ
( )], (49)

and

zdΓ
zθ

� z2xi

zθzxi
− z2xi

zθzxj
ni x( )nj x( )[ ]dΓ, (50)

where zxi
zθ will be determined once the design variable has been

used to fully parameterize the examined domain’s boundary.

Equations 51 and 52 may be obtained by discretizing Eqs

44, 45:

zpA y( )
zθ

� gT2 y, θ( )q + gT y( ) zq
zθ

− hT
2 y, θ( )p − hT y( ) zp

zθ
, (51)

zvA y( )
zθ

� i

ωρ
gT3 y, θ( )q + i

ωρ
gT1 y( ) zq

zθ
− i

ωρ
hT
3 y, θ( )p

− i

ωρ
hT
1 y( ) zp

zθ
+ i

ω

zρ−1

zθ
gT1 y( )q − hT

1 y( )p[ ], (52)

where g2, g3, h2, and h3 are coefficient vectors.

Equation 51’s g2 and h2 as well as Equation 52’s g3 and h3
disappear when the fluid density ρ is chosen as the

design variable. Eqs 51, 52 may be rewritten as Eqs 53, 54

as a result:

zpA y( )
zρ

� gT y( ) zq
zρ

− hT y( ) zp
zρ
, (53)

zvA y( )
zρ

� i

ωρ
gT1 y( ) zq

zρ
− i

ωρ
hT
1 y( ) zp

zρ
− i

ρ2ω
gT1 y( )q − hT

1 y( )p[ ].
(54)

The variables g2 and h2 in Equation 51 and g3 and h3 in

Equation 52 disappear when the structural parameter is chosen

as the design variable, such as the thickness of the spherical shell,

as given in the following numerical example. Eqss 51, 52 are thus

equivalent to Eqs 55, 56:

zpA y( )
zθ

� gT y( ) zq
zθ

− hT y( ) zp
zθ

, (55)
zvA y( )
zθ

� i

ωρ
gT1 y( ) zq

zθ
− i

ωρ
hT
1 y( ) zp

zθ
. (56)

g2, g3, h2, and h3 do not disappear when the structural form

parameter, such as the radius of the spherical shell, is specified as

the design variable. Eqs 51, 52 may be written as Eqs 57, 58 as a

result:

zpA y( )
zθ

� gT2 y, θ( )q + gT y( ) zq
zθ

− hT
2 y, θ( )p − hT y( ) zp

zθ
, (57)

zvA y( )
zθ

� i

ωρ
gT3 y, θ( )q + i

ωρ
gT1 y( ) zq

zθ
− i

ωρ
hT
3 y, θ( )p

− i

ωρ
hT
1 y( ) zp

zθ
. (58)

The derivatives of pA(y) and vA(y) are both shown to be

determined by p, q, and their derivatives by Eqs 51, 52.

Equations 2, 5, 9, in that order, may be used to produce

the vectors p, u, and vf. Using the continuity condition

throughout the interaction surface, the vector q may then

be found. We still need to find the solution to the unknown

vectors zp
zθ and

zq
zθ, though.

Equation 26 cannot be directly solved because the system

matrix is too enormous for problems of this kind. Equations 59

and 60 can be used to separate the system Equation 26:

A
zu
zθ

− Csf
zp
zθ

� r1, (59)

H
zp
zθ

− ω2ρGS−1Cfs
zu
zθ

� r2. (60)
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Equation 61 may be obtained by substituting Equation 59

into Equation 60:

H
zp
zθ

− GWCsf
zp
zθ

� GWr1 + r2. (61)

Equation 61 and Equation 9 are quite similar, hence the same

approach to solving both is used. Equation 59 may be used to

solve the unknown vector zu
zθ once the foregoing equation has

been solved to get the sensitivity of the nodal sound pressure on

the structural surface, denoted by the symbol zpzθ. Equation 62 is

obtained by differentiating Equation 5 with respect to the design

variable and applying the continuity condition over the

interaction surface:

zq
zθ

� iω
zρ

zθ
vf + ω2ρ

z S−1Cfs( )
zθ

u + S−1Cfs
zu
zθ

[ ]. (62)

We may find zq
zθ by using Equation 62. Equations 51 and 52

may be used to get the derivatives of pA(y) and vA(y) at each node

on surface A. Equation 63 can be used to describe the derivative

of SA on the right side of Equation 43:

zSA
zθ

� ∫
A
NT

f Nf
zdA y( )

zθ
. (63)

Once the computing surface does not change when the

design variable changes, zSA
zθ � 0 causes the second term on the

right side of Eq. 43 to disappear. Equation 43 may be used to get

the derivative of the radiated sound power on surface A after

obtaining the solutions of zpA
zθ and zvA

zθ .

4 Numerical examples

In this section, some numerical tests are run to look at the

reliability and viability of the established approach. In each

example, the acoustic analysis employs discontinuous linear

boundary element, while the finite element analysis uses shell

element. A custom Fortran 95/2003 code written in-house is used

for all the computations.

4.1 An elastic sphere excited by a unit force

The sound field of an underwater thin spherical shell

centered at position (0, 0, 0) is investigated in this illustration

FIGURE 1
The excited sphere model, radius 1.2 m, thickness 0.012 m.

FIGURE 2
Sound pressure at point (2.4, 0, 0).

FIGURE 3
Sound power on the structural shell surface.
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while accounting for a concentrated force F applied at point A (r,

0, 0), where r stands for the radius of the spherical shell, as seen in

Figure 1. The material and geometrical features employed in this

example are as follows:

radius of the shell is 1.2 m,

thickness of the shell is 0.012 m,

elasticity modulus of the shell is 2.10 × 1011 Pa.

Poisson’s ratio of the shell is 0.3,

structural density is 7.86 × 103 kg/m3,

fluid density is 1.00 × 103 kg/m3,

sound velocity in water is 1.482 × 103 m/s.

The numerical and analytical solutions, expressed in

terms of frequencies, for the sound pressure at point (2.4,

0, 0), are shown in Figure 2. The numerical and analytical

solutions, expressed in terms of frequencies, for the sound

power on the structural shell surface, are shown in Figure 3.

The linear systems are solved using the GMRES

implementation without preconditioning, and the

wideband FMM algorithm is used to speed up the solving

process. 6,144 elements make up the discretized thin-shell

model. These figures both demonstrate the good agreement

between the numerical and analytical solutions,

FIGURE 4
Sensitivity of sound pressure at point (2.4, 0, 0) to shell radius.

FIGURE 5
Sensitivity of sound pressure at point (2.4, 0, 0) to shell
thickness.

FIGURE 6
Structural surface’s sensitivity of sound power to shell radius.

FIGURE 7
Structural surface’s sensitivity of sound power to shell
thickness.
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demonstrating that the wideband FMMmethod preserves the

excellent accuracy of traditional BEM.

Figures 4, 5 depicts the structure surface’s sensitivity of sound

pressure to the sphere’s radius and its shell thickness,

respectively. Figures 6, 7 illustrates the structural surface’s

sensitivity of sound power to the sphere’s radius and its shell

thickness, respectively. These four figures show a remarkably

similar pattern. These figures show that the numerical and

analytical results accord rather well. The figures illustrate how

the sound pressure or sound power sensitivity is very modest in

the low-frequency range but substantially increases at resonance

peaks.

4.2 A BeTSSi-Sub submarine model under
incident wave

The scattering sound field of the underwater submarine model

under the influence of plane waves is the subject of this section. The

incident wave amplitude is 1.0 Pa, and the plane wave propagates

positively along the x-axis. The generic model BeTSSi-Sub presented

at theWorld Digital Simulation Conference in 2002 is adopted by the

model. The model has a 0.10 m thickness. The positive x-axis

direction is from the bow to the stern, and the origin of the

coordinate is located at the intersection of the circle that connects

the bow and the hull. For the specific geometric characteristics of the

BeTSSi-Submodel, please refer to Figure 3, 4 in [58]. Figure 8 displays

the submarine model, with a total of 27,034 elements.

The point for the computation is (40, 0, 0). Figure 9 shows the

calculation result of sound pressure at point (40, 0, 0), and Figure 10

is the sensitivity of sound pressure at point (40, 0, 0) to shell

thickness. Figures 9, 10 show that when the calculation frequency

rises, both the sound pressure and its sensitivity to thickness

gradually decline. Given that the sound pressure is significantly

higher and more sensitive to changes in structural thickness in the

lower frequency band, these two figures show that the lower

frequency band is a crucial region for the BeTSSi-Sub model

with the current material and geometrical specifications.

5 Conclusion

The simulation of acoustic-structure interaction and sensitivity

analysis is done using a coupling method based on FEM and BEM.

Modelling the problem’s structural components is done using the

FEM. The BEM is used to discretize the border of the acoustic domain,

FIGURE 8
The BeTSSi-Sub submarine model.

FIGURE 9
Sound pressure at point (40, 0, 0).

FIGURE 10
Sensitivity of sound pressure at point (40, 0, 0) to shell
thickness.
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which is the boundary of the considered structure under consideration,

in order to eliminate the necessity to mesh the acoustic domain.

Boundary element analysis uses the FMM to speed up the matrix-

vector products. Through the use of IGABEM, structural-acoustic

interaction and its sensitivity analysis may be carried out straight from

CAD models without the need for meshing, while also eradicating

geometric flaws. Equations for the radiated sound power sensitivity are

developed for fully linked structural-acoustic systems. The sensitivity of

the sound power emitted on the structure surface is calculated using an

adjoint operator technique. The sensitivity of the emitted sound power

on any closed surface around the radiator is determined using the

direct differentiation method. The formulas used to compute the

derivative of the radiated sound power for various design factors

are provided. Numerical illustrations are provided to show the

precision and viability of the suggested approach. The suggested

approach may be applied to large-scale practical situations to

quantitatively forecast the impact of various design factors on the

sound field. Future study will involve extending the created method to

real-world engineering issues and using the structural-acoustic design

sensitivity analysis to optimization challenges.
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