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As a key safety component of automobiles, automobile steering knuckles must

be subjected to strict quality control. Currently, the identification of cracks in

finished products primarily relies on manual identification of fluorescent

penetrant detection. Owing to the complex shape of the workpiece, the

interference of the displayed image and the small sample size, the accuracy

of the automatic discrimination result of the fluorescent penetrant detection

image is directly reduced. Therefore, this study proposed a data augmentation

method based on deep convolutional generative adversarial networks (DCGAN)

for crack identification in automotive steering knuckle fluorescent penetration

inspection images. An image acquisition platform was built for fluorescence

penetration detection of automobile steering knuckles, and fluorescence

display images of various parts of the workpiece were collected. Based on

the feature analysis of the displayed image, the image was preprocessed to

suppress relevant interference and extract crack candidate regions. Further,

using the original crack image to train DCGAN, several crack image samples

were generated, the ResNet network was trained with the expanded dataset,

and the extracted candidate regions were identified. Finally, the experimental

results show that the recall rate of the crack recognition method used in this

paper is 95.1%, and the accuracy rate is 90.8%, which can better identify the

crack defects in the fluorescent penetrant inspection image, comparedwith the

non-generative data enhancement method.
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1 Introduction

The steering knuckle of an automobile is an auto part that

transmits and bears the load on the front of the automobile, supports

and drives the front wheel to rotate around the king pin, and turns

the automobile. As the stability of the structure is related to the life

safety of the driver, when the finished product ismanufactured, non-

destructive testing is essential. Fluorescent penetrant testing, as form

of penetrant testing, is frequently used for defect detection of

automotive safety parts owing to its high sensitivity, simple

operation, and low cost [1]. The defects encountered in

automobile steering knuckles are primarily cracks of varied sizes

and shapes. Currently, crack identification is almost always

performed manually, which is inefficient.

Certain foreign experts and scholars have attempted to use

the traditional machine vision method to realize the automation

of fluorescent penetrant detection. Wang et al. used wavelet

denoising and edge detection to extract the defect location [2].

Tang Jianchao et al. took aero-engine turbine blades as the

research object and adopted the method of machine vision to

realize defect identification [3]. Shipway et al. used the random

forest algorithm to classify the defect-related fluorescent

penetration and false displays caused by insufficient flushing

and roughness changes on titanium alloy specimens [4]. They

successfully identified defects with varied sizes and shapes. Zheng

et al. proposed an adaptive thresholding method with Canny

edge detection and erosion-expansion-reduction operations to

segment the fluorescence penetration images of aircraft parts,

and extract features such as the center position, length and width,

area, minimum enclosing rectangle, aspect ratio, etc. [5].

Consequently, they designed a classification function to

achieve classification. Thus, the traditional machine vision

method has achieved certain results in the defect recognition

of fluorescent penetration images; however, the feature design

process is complex, and the classification effect deteriorates with

change in defect shape and size. Thus, there are several difficulties

encountered in the actual detection application.

In recent years, deep learning has developed rapidly and is widely

used in defect detection in a variety of applications [6–11]. It is

gradually replacing defect detection methods based on feature

engineering. However, the training of deep learning models

requires a considerable data, which is scarce in application areas of

fluorescence penetration, such as the inspection of aerospace

components and automotive safety components. Traditional

sample expansion methods based on linear transformation,

including random cropping, flipping, etc., are limited to

transformation on the basis of the original image, with high

repetition and single data distribution; thus, its effect is limited

[12]. Goodfellow et al. proposed generative adversarial network

(GAN), which has been widely used in image generation , image

super-resolution and data augmentation [13–18]. Pei et al. used a deep

convolutional generative adversarial network (DCGAN) to augment

the road crack image dataset, which exhibits greater detection

accuracy than conventional augmentation methods [19]. Li et al.

expanded the bubble samples to 4,000 by training a WGAN-GP

network on 67 bubble data sets, which improved the generalization of

the steel plate defect detectionmodel [20].Wang et al. proposes a true

and false data fusion algorithm to expand the scarce defect data of

solar cells by random fusion of DCGAN production pictures and real

pictures [21]. Some scholars have also applied Gan to traffic sign

recognition, and the results show that training with original images

and composite images can improve the recognition performance of

traffic signs [22]. In addition, Gan also has a large number of

applications in the field of medical image generation and data

enhancement [23–25]. Thus, extensive experiments have

confirmed that the augmentation of samples based on GAN and

its variants outperforms traditional non-generative augmentation

methods [26–29]. As a variant of gan, DCGAN model has the

advantages of high quality image generation and good training

stability in terms of defect generation. It can generate a large

FIGURE 1
(A): Dust residue (B): UV light reflection (C): Edge disturbance (D): Permeate residue (E): crack.
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FIGURE 2
Grayscale distribution of crack and interference images (A) Grayscale distribution of dust residue (B) Grayscale distribution of ultraviolet light
reflection (C) Grayscale distribution of edge disturbance (D) Grayscale distribution of permeate residue (E) Grayscale distribution of crack.

FIGURE 3
Fluorescence penetrant detection image acquisition platform.

FIGURE 4
Our method flow chart diagram.
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number of similar samples under the condition of very small image

samples to achieve the purpose of data enhancement.

With an aim to tackle the previously mentioned problems, this

study proposed amethod for identifying cracks in automobile steering

knuckle fluorescence penetration detection based on DCGAN data

enhancement. The characteristics of the fluorescence penetrant

inspection image were analyzed, followed by image preprocessing.

Then, the related interference was suppressed and the crack candidate

area was segmented. DCGANwas used to expand the crack samples.

Consequently, the crack recognition effect of the model trained with

the data set expanded by the unexpanded and non-generative

methods was compared, and the feasibility of the method to

improve the recognition accuracy was verified.

2 Methods

2.1 Principle of fluorescence penetration
detection and mage acquisition and
analysis

2.1.1 The formation principle of fluorescent
penetrant detection image

Fluorescence penetrant testing is a non-destructive testing

method based on capillary phenomenon to detect surface

defects of workpieces [30]. The fluorescent penetrant

inspection process for automobile steering knuckles is

shown in Figure 1. First, the fluorescent penetrant was

applied to the surface of the cleaned automobile steering

knuckle and left for 10 min. Through capillary action, the

penetrant penetrated into the small cracks on the surface of the

workpiece. Then, the excess penetrant was removed by

washing with water, and a developer was applied on the

surface of the part after drying. Subsequently, the penetrant

in the defect was re-adsorbed to the surface of the workpiece

under capillary action, thereby forming an enlarged defect

display. Finally, by illuminating the steering knuckle with a

black light in a dark environment, the cracks on the surface of

the steering knuckle could be clearly observed.

The collected fluorescence penetrant inspection images also

contained a part of the interference display in addition to the

display of crack defect formation. As shown In Figures 1A,C,

certain dust residues settled on the workpiece surface and edge,

and the geometric mutation of the groove caused the

accumulation of permeate to form an interference display. As

the defect observation must be conducted under the irradiation

of ultraviolet light and owing to the workpiece not being flat, in

case of an oblique shooting angle, the collected image contains

ultraviolet light reflection stripes, as shown in Figure 1B. In

addition, the residual fluorescent penetrant on the surface of the

TABLE 1 Gray value and morphological characteristics of images in different regions.

Region Gray value Morphological characteristics

Dust residue 200–255 Round or oval in shape

UV light reflection 100–255 Most of them are strips, the outer ring is purple, and the inner ring is white light

Edge disturbance 150–220 Intermittent slender line

Permeate residue 150–200 The shape is not fixed, the area is large

crack 210–255 continuous line

FIGURE 5
Fluorescence penetrant detection image preprocessing (A) The original image (B) The image after gray-scale (C)Median filtered image (D) The
image after global threshold segmentation.
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workpiece also interferes with the judgment of crack defects, as

shown in Figure 1D.

2.1.2 Crack and interference image feature
analysis

To analyze the characteristics of the interference display and

crack image that can easily occur in the fluorescence penetrant

inspection image, the gray distribution map corresponding to the

interference display and the crack image in Figure 1 was made, as

shown in Figure 2. The dust residues were observed as the

workpiece was not cleaned, causing a large amount of

permeate to accumulate at its edges. Most of the images were

circular and the gray value distribution was between 200–250.

The grayscale distribution of the ultraviolet light reflection area

transitioned from 100 to 250, and the peak value was similar to

the crack grayscale distribution. Further, the edge disturbances

appeared as noise points distributed at intervals, and were similar

in shape to the cracks. The residual area of the permeate was a

fluorescent green display with unstable morphology; however, its

gray value was lower than that at the crack. Table 1 presents the

gray value andmorphological features of the five regional images.

Based on the above analysis, we suppressed and removed certain

amount of interference through certain image preprocessing

methods, and the remaining areas that cannot be removed

were input to convolutional neural network (CNN) for

identification.

2.1.3 Fluorescence penetration image
acquisition

This study developed a fluorescence penetration image

acquisition platform comprising a camera obscura device, a

purple light lamp, a Daheng industrial camera MER-1220-

9GC, and a computer, as shown in Figure 3. According to the

process flow of fluorescent penetrant detection, first, the steering

knuckle was cleaned with water and dried. This was followed by

the even application of a fluorescent penetrant on the surface of

the workpiece, which was allowed to stand for a certain period of

time. After the effect of the fluorescent penetrant was complete,

the excess fluorescent penetrant on the surface of the workpiece

was washed off with water applied at low water pressure, and

FIGURE 6
DCGAN crack generation network structure.
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finally the developer was sprayed and dried. After completing the

pre-processing of the steering knuckle, it was into the darkroom

and turn on the black light. Owing to the large size of the steering

knuckle and uneven surfaces, a single camera cannot obtain all

the information. Therefore, three industrial cameras are used to

examine the steering knuckle from different angles. A total of

56 fluorescent penetrant detection images were captured and

286 images were obtained from related companies; thus, a total of

342 images were collected.

2.2 Crack candidate region extraction and
data enhancement

The detection method is divided into two stages: crack

candidate region acquisition and CNN recognition, including

data set enhancement, as shown in Figure 4. In the first stage, the

interference display in the image is suppressed, and the crack

candidate region is extracted by threshold segmentation to realize

the rough location of the crack. At the same time, the interference

display and crack display in the image are intercepted as the

training set and enhanced. In the second stage, the candidate

regions are patched into 224 × 224 images, and the CNN model

trained by the training set after data enhancement is input for

identification, so as to further determine whether there are cracks

and defects in the candidate regions.

2.2.1 Crack candidate region extraction
To extract the crack candidate regions and input them into

CNN identification, the acquired images must be preprocessed.

Based on the feature analysis of the image, the obtained original

image was converted into a grayscale image and a median filter

was used. The median filter can effectively suppress the

intermittent interference points on the edge of the workpiece

FIGURE 7
Crack images generated by DCGAN under different epochs (A) 0 epochs (B) 150 epochs (C) 300 epochs (D) 500 epochs (E) 600 epochs.
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and certain small noise points in the fluorescence penetrant

inspection image, as shown in Figure 5C. As the gray value at

the crack was significantly higher than the image background, a

global threshold segmentation was performed on the image. Only

cracks, ultraviolet light reflections, and certain dust interference

areas remained in the segmented image, and certain small noise

points and areas with low gray values in the image were removed,

as shown in Figure 5D. The finally extracted connected domain

corresponded to the window input CNN recognition in the

original image.

2.2.2 Data augmentation model based on
DCGAN

Data augmentation methods can be divided into two

categories based on the method of generating new samples:

non-generative data augmentation methods and generative

data augmentation methods. Non-generative data

enhancement methods mainly include geometric

transformation, color gamut transformation, noise injection,

random erasing [31], etc. These methods can simulate the

position, illumination change, and noise interference in the

real situation to a certain extent. The diversity of the dataset,

but not total exploitation of the intrinsic characteristics of the

original samples, leads to certain limitations of the trained model.

In this study, non-generative methods such as random cropping

and flipping were used to expand the samples to compare the

effect of DCGAN data enhancement.

DCGAN is a combination of convolutional neural network

(CNN) and GAN, which improves the quality of generated

images and the speed of model convergence. Similar to GAN,

DCGAN includes a generator G (Generator) and a discriminator

D (Discriminator). Figure 6 shows the DCGAN network

structure used in this study. The generator G initially receives

a random noise, and then learns the data distribution of the real

image to generate a fake image. Thereafter, the discriminator D

determined whether the input image is a real image and then

achieves the best state through continuous learning. Thus, it

checks if the quality of the generated image is sufficiently high

such that the discriminator G cannot distinguish whether it is a

real or fake image.

The network structure of generator G has a total of five layers,

including four layers of deconvolution layers and one layer of

fully connected layers. The input was a 100-dimensional random

noise that was uniformly distributed. First, a fully connected layer

realized the linear transformation of the noise, and then reshaped

it into a 4 × 4 × 1,024 three-dimensional matrix. After four layers,

the kernel size was 4 × 4, and the step size was 4 × 4. A

deconvolution layer of two yields a 64 × 64×3 image.

Compared with the GAN network, DCGAN replaces the

pooling layer with deconvolution of the corresponding stride.

Further, it uses batch normalization Batchnorm (BN layer) at

each layer except the output layer to normalize the input of each

unit to improve learning stability. Thereafter, the output and

other layers uses Tanh and ReLu as the activation functions,

respectively, to make the model learn faster to saturate and cover

the color space of the training distribution.

The network structure of the discriminator D is similar to the

convolutional neural network, and the input is the generated fake

crack image. After the fully connected layer, a probability of

judging the authenticity of the crack image is obtained. Similar to

that in the generator, batch normalization operations are used in

the discriminator. In addition, the last layer of the discriminator

uses the sigmoid function, and the other layers use the

LeakyReLU function to prevent the gradient from disappearing.

The loss function of the DCGAN network parameter update

process is expressed as follows:

minmaxDV D,G( ) � Ex~pdata x( ) logD x( )[ ]

+ Ez~pz z( ) log 1 − D G z( )( )( )[ ] (1)

where x is the real sample, z is random noise, D(x) represents
the probability that the discriminator judges the real image as

real, and G(z) is the generated image. For generators, the goal is

to make D(G(z) � 1, which minimizes Ez~pz(z)[log(1 −
D(G(z)))] . For the discriminator, when the input is x, its

purpose is to make D(x) � 1, which maximizes

Ex~pdata(x)[logD(x)]; whereas, when the input is G(z) , its

purpose is to make D(G(z) � 0 , which maximizes

Ez~pz(z)[log(1 −D(G(z)))] . During training, the generator

and discriminator are trained alternately. First, G is fixed to

train D, the parameters in D are updated, followed by the

updation of the parameters in G. This process is repeated

until the Nash equilibrium state is reached. At this time, the

discriminator cannot distinguish the real image of the input

image, the output probability stabilizes at 0.5, and the training is

complete.

2.2.3 Fluorescence penetration inspection crack
image generation

Among the 342 collected images, 200 of them were gridded

and the crack areas were selected with a size of 64 × 64 pixels

which formed 281 crack area samples. 190 of the 281 samples

TABLE 2 Distribution of fluorescent penetrant detection datasets.

Datasets Category Training set Test set

Unenhanced Crack 190 91

Non-cracked 190 91

Non-generative augmentation Crack 809 91

Non-cracked 809 91

DCGAN enhancement Crack 809 91

Non-cracked 809 91
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were used for image generation and CNN model training. The

remaining 91 test sets were used for CNN model training. The

remaining 142 of the 342 collected images served as the final test

for the crack identification algorithm.

The training parameters were set as follows: Batch Size of 32,

learning rate set to 0.0002, and the number of training iterations

as 1,000; in addition, the Adam optimizer was used.

We selected four generated pictures under different epochs. It

is evident that with the increase of the number of training epochs,

the quality of the generated cracks continuously increased, as

shown in Figure 7. In the first few epochs, the model generated

similar noise of the sample. At 150 epochs, the gridding degree of

the image disappeared. Further, at 300 epochs, the outline of the

crack was observed, and at 500 epochs, the crack was formed with

FIGURE 8
Examples of positive and negative samples of DCGAN enhanced dataset (A) Non-cracked samples (B) Crack samples.

TABLE 3 Accuracy comparison of fluorescent penetration detection data sets.

Datasets Training accuracy accuracy (%) Test accuracy (%)

Unenhanced 86.8 76.9

Non-generative augmentation 97.3 91.2

DCGAN enhancement 96.2 93.4

FIGURE 9
Fluorescence penetrant inspection crack identification process.
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low image clarity. Finally, the crack image generated at

600 epochs was found to be very realistic.The original and the

generated crack images were both similar and different. The

crack outline, size, background, etc. experienced large or minimal

changes. Moreover, the generated image exhibited an

independent and identical distribution relationship with the

original image, such that the generated crack image was

considered suitable as a sample for training the classification

network.

After many experiments, it was found that the model

collapsed after 1,000 iterations, and the loss function oscillated

greatly. This may be because of the data set being exceedingly

small and the discriminator was too well trained; thus, the

generator could not update the gradient. Therefore, we used

crack images generated by the model in 600–1,000 epochs range

to expand the dataset.

3 Results and discussion

3.1 Convolutional neural network
recognition model training

To quantify the effect of data augmentation of the DCGAN

model on fluorescence infiltration images, the augmented

samples were classified using CNN and compared with the

unenhanced and augmented images using non-generative

methods. The selected classification model was ResNet34,

and the non-defect samples were the selected areas such

as UV light reflection and dust residue that are difficult to

remove in image preprocessing. A total of 900 images

were used.

The data set distribution is shown in Table 2. The training

set was used for model training, and the test set was used to

verify the model training effect. To ensure the balance of

positive and negative samples, the non-defective samples

were randomly selected form the unenhanced data set of

190 pictures except the test set. Both non-generative

enhancement and DCGAN enhancement use corresponding

methods to expand the defective samples to the same number

as the non-defective samples. Figure 8 shows examples of

defective and non-defective samples of the DCGAN enhanced

dataset, and all the non-defective samples were real pictures.

The input size required by the ResNet34 network is 224 ×

224 × 3. Thus, the images were uniformly resized to the

corresponding size before training. The dropout during

training was set to 0.25. The Adam optimizer was use with

a learning rate of 0.0001 and the first-order decay index

was 0.5.

As evident from Table 3, the training accuracy of the

model using only a small number of original images was

the lowest compared with the other two enhanced ones.

Further, its accuracy in the test set was much lower than in

the training accuracy at approximately 77%. Thus, the model

exhibited a serious overfitting phenomenon, and as the defect

of fluorescence penetration can be easily misjudged in

practice. The training accuracy of the data set enhanced by

the traditional method was the highest among the three data

sets, reaching 97.3%, and its accuracy on the test set increased

by approximately 24% compared with the original data set.

Thus, the method alleviated the phenomenon of model

overfitting caused by lack of data to a certain extent.

Finally, the data set enhanced by DCGAN method

proposed this study exhibited a slightly lower training

accuracy than the traditional enhanced data set; however,

the accuracy on the test set was 2.2% higher than that of

the latter and not much different from the training accuracy.

Further, it is evident that the model trained on the DCGAN-

enhanced dataset exhibited better robustness and higher

accuracy.

3.2 Crack recognition algorithm testing

Figure 9 shows the flow of the crack identification algorithm

in this study. Grayscale transformation and median filtering were

performed on the input image, and then the global threshold

segmentation was conducted. The OpenCV library was used to

obtain the external window of the candidate area obtained after

TABLE 4 Recognition effects of models trained on different datasets.

Datasets Recall rate/% Precision/% F1-score/%

Unenhanced 79.7 72.0 75.7

Non-generative augmentation 93.6 89.7 91.6

DCGAN enhancement 95.1 90.8 92.9

TABLE 5 Test results of different Methods.

Methods Recall rate/% Precision/% F1-score/%

Shape feature + SVM 75.9 69.6 72.6

Hu + BP 86.6 69.8 77.3

Our method 95.1 90.8 92.9

Frontiers in Physics frontiersin.org09

Yang et al. 10.3389/fphy.2022.1081805

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1081805


image preprocessing. The image was scaled to 224 × 224 pixels,

the unenhanced dataset was input, the dataset was enhanced by

the non-generative method, and the Resnet was trained with the

DCGAN enhanced dataset model for identification. The

identification results are presented in Table 4. The recall rate

and precision of the extracted crack candidate region of the

Resnet model trained with DCGAN enhanced data are higher

than those of other models, in which the recall rate is 95.1%,

which is higher than 15.4% in the case of no enhancement and

1.5% in the case of non-generative enhancement. F1 score, the

comprehensive evaluation index of recall ratio and precision

ratio, also has the best performance.

In addition, the methods proposed in this study was

compared with the traditional machine vision method; that is,

the recognition effect based on the shape feature of the connected

domain and the support vector machine, based on the Hu

invariant moment and BP neural network algorithm. The

results are presented in Table 5. The recognition effect is

shown in Figure 10.

As evident from Table 5 and Figure 10, compared with the

other two methods of crack identification, the proposed methods

can more accurately locate the cracks in the steering knuckle

fluorescent penetrant inspection picture and eliminate false

display, UV lamp reflection, and other interference, while

exhibiting higher performance. Furthermore, the recall and

precision rates of fluorescence penetration testing provided a

more meaningful reference for the automation of fluorescent

penetrant detection.

FIGURE 10
Detection results using three methods (A)Original image (B) Themethod based on Humoment invariant feature and BP (C) Themethod based
on shape features and SVM (D) Our method.
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4 Conclusion

This study proposed a crack recognition method combining

image processing and DCGAN data enhancement to solve the

problem of few crack image samples and unbalanced categories

in the process of fluorescence penetration detection of

automobile steering knuckles. The main methodology involved

building an image acquisition platform, analyzing the

characteristics of fluorescent penetrant inspection images,

preprocessing the images to suppress relevant interference and

segmenting candidate regions of cracks, and using a small

number of original crack images to generate a several high-

quality fake crack images for recognition tasks. Compared with

unenhanced and traditional data enhancement methods, the

DCGAN-based data enhancement method exhibited higher

accuracy on the test set, which can effectively improve the

effect of small sample learning. The recognition results of the

extracted candidate regions show that the crack recognition

algorithm proposed in this paper reached 92.9%, which is

higher than other traditional machine vision methods for

manually extracting image features. However, when our

method is applied to the actual detection, the real-time

performance and accuracy still need to be improved, which is

also the focus of our future research work.
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