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As we enter an age where the behavior and capabilities of artificial intelligence

and autonomous system technologies become ever more sophisticated,

cooperation, collaboration, and teaming between people and these machines

is rising to the forefront of critical research areas. People engage socially with

almost everything with which they interact. However, unlike animals, machines

do not share the experiential aspects of sociality. Experiential robotics identifies

the need to developmachines that not only learn from their own experience, but

can learn from the experience of people in interactions, wherein these

experiences are primarily social. In this paper, we argue, therefore, for the

need to place experiential considerations in interaction, cooperation, and

teaming as the basis of the design and engineering of person-machine

teams. We first explore the importance of semantics in driving engineering

approaches to robot development. Then, we examine differences in the usage

of relevant terms like trust and ethics between engineering and social science

approaches to lay out implications for the development of autonomous,

experiential systems.
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1 Introduction

For much of its history, teaming research has focused on teams of people. Yet, as

artificial intelligence and autonomous system technologies become more advanced, we

enter an age in which it is necessary to consider how people will team, cooperate, and

collaborate with intelligent machines, and vice versa. As research on person-machine

teaming begins to take shape, the prevailing assumption has been that the social

interactions occurring within interpersonal teams (and/or teams including non-

human animals) can serve as a useful basis for understanding the interactions

between persons and machines. However, we argue that that there are essential

differences between persons and machines that require special consideration when

discussing person-machine teaming.

In particular, there are foundational concepts in interpersonal (person-person)

teaming that require translation and adaptation when applied to person-machine

teams. These concepts include Autonomy (compared to Automation), Trust

(compared to Reliability), Ethics (compared to Governance), and Teaming (compared
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to Use of Automation) and other, similar terms, which do not

directly port from teams comprised of people to those including

machines.

While of superficially minor distinction, the interpersonal

concepts to which these terms refer inform how we interact with,

interpret, and evaluate behavior, regardless of whether their

extension to machines is performed casually or deliberately. In

teaming, essential notions underpinning these concepts, such as

control and vulnerability (compared to risk or uncertainty) tend

to become mischaracterized or fall out of consideration in the

course of translation. In the following pages, we will scrutinize

each concept across the interpersonal and machine contexts and

identify features that warrant additional consideration in

translation.

To accomplish this, we will review conceptual issues that

have arisen in the translation of the above italicized terms from

the interpersonal context to that between people and machines,

and the cross-disciplinary roots of the divergent uses for each

term. We begin by summarizing an assembly of computational

linguistic techniques devised to shed light on the state of

discourse around concepts for application to teaming with

machines that we refer to collectively as the Semantic

Mapping Pipeline (SMP). Then, we provide a series of

qualitative discussions about topics ready to be run through

this quantitative method, beginning with Teaming and Sociality,

continuing with underpinning notion of Vulnerability, and then

covering the concepts of Autonomy, Trust, Ethics, and Teaming.

We conclude with a discussion that summarizes the major

arguments presented.

2 Personhood and relationships over
speciesism

While it is common for researchers to use the term “human-

machine teaming” and to speak of “the human” doing this or that

with “the machine,” a core tenet of our analysis is that the species

of intelligent animal is not the primary feature that distinguishes

people frommachines. Instead, a more salient difference between

the two classes of teammates, in the spirit of Locke, Singer, and

Strawson, is that humans are persons, who are able to

reciprocally recognize the personhood of other humans,

whereas machines are not (yet, if they ever could be) persons,

and are not (yet) able to recognize personhood, even if they can

discriminate humans from other species [1]. In making this

distinction, we seek to highlight the fact that there is

something special about those with personhood status (and

people, in particular) that makes their dyadic behavior

fundamentally distinct from that of their machine

counterparts. Indeed, we believe that the direct comparison of

living species with technology is a false equivalence. First, it

implies that the two classes of teammates may be treated

similarly—that the person is just another cog in the system

with an input and output interface, ripe for replacement by

machines. Second, the use of the term “the human” distances and

objectifies the person with clinical detachment, especially when

juxtaposed with “the machine,” so reducing people to

automatons. Thus, the use of the term “the human” gives the

impression that person-person interactions (and the language

that is used to describe them) are directly analogous to person-

machine interactions, when it is eminently clear that much of

what imbues these actions with their significance stems from

mental capacities that nomachines currently possess. Themutual

relationship of personhood and person recognition in the

interpersonal sphere is perhaps the absent core that prevents

direct translation to person-machine teaming context (more on

this in upcoming paper on relationships by Hutler and

Greenberg, forthcoming). For the rest of this paper, in

deference to the taxonomic superiority of person over human

(a human is a type of person, and all humans are people), we will

try to correct this terminology by referring strictly to persons or

human beings where humans might typically be used, in

particular to recast human-machine teaming as person-

machine teaming or PMT.

3 Semantics matter

When a concept is ported from one domain to another, a

typical first step in the engineering design process is for

practitioners to compress the concept into an operational

definition toward which they can build. This reduction in

practice is ordinarily very effective [2]. However, when

designing for PMT in particular, salient features of the

concept to be replicated (e.g., sensitivity to vulnerability,

recognition of personhood) are frequently lost in translation,

while skeuomorphic features (i.e., machine features that

superficially emulate interpersonal capabilities, but are

substantively dissimilar under the hood, e.g., voice production

or eye-contact) are unintentionally retained, or picked up in

translation, leading to inappropriate expectations of machine

capability. In contrast to these issues in the translation of

interpersonal capabilities, translation of physical capabilities

(e.g., walking or grasping) is relatively mechanistic and

straightforward.

There are perils in this lossy compression (The metaphor of

lossy compression is used here to indicate that the concepts

coming out of this processes are smaller, but also lower

resolution). If we only use these concepts in their most

superficial form, we miss out on the richness to be had in the

phenomena they signify. If we use them in their full interpersonal

sense, we misrepresent the capabilities of the machine and set

inappropriate expectations for their performance (see wishful

mnemonics [3]). If we use the terms in an ambiguous sense

between the most superficial and the full interpersonal, then the

capabilities realized in different machines are bound to be
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inconsistent across implementations. This last case is the most

prevalent, and with each occurrence, the conceptual drift

continues. By allowing this inconsistent usage to prevail, we

may ultimately lose our grip on the original meaning, our

appreciation of the fullness of the phenomenon may diminish,

and the reduced definition may become prone to be cast over the

entire phenomenon, interpersonal and otherwise. As Sherry Turkle

[4] puts it: “When we see children and the elderly exchanging

tenderness with robotic pets, the most important question is . . .

what will “loving” come to mean?” [emphasis added].

This disconnect in language becomes especially apparent in

design meetings and program reviews, wherein operational

definitions are only found to be incongruent with empirical

capabilities after the fact. Worse is when that incongruence

remains unrecognized—the same words are used by different

designers with significantly different meanings. This disconnect

naturally arises from the different backgrounds of those using the

terms. Robotics is inherently a multidisciplinary area of research,

and different disciplines understand and use the same terms very

differently, including how to measure them in context. Of course,

harmonizing terms is a perennial challenge in multidisciplinary

work, but is particular acute for social robotics since

interpersonal terms have previously been used in the context

of technology more metaphorically than anthropomorphically,

or simply for purpose of usability. An engineer using the term

“trust” may construe the term with respect to things that can be

engineered, while a social scientist might construe the term with

respect to social constructs. We argue that adequate definitions

are those which may be operationalized sufficiently for design

and can be measured accurately, reliably, and repeatably, while

respecting the richness of the phenomenon in the context of its

relevant interpersonal constructs.

There are a number of interventions possible to address this

disconnect. The most extreme is to declare that interpersonal

termsmay not be used in the context of person-machine teaming.

This prescriptive approach to controlling language rarely

succeeds, and will only be effective at alienating incoming

generations of researchers. Another intervention is to create

new terms or to add a qualifying adjective to existing ones to

make these terms specific to PMT [e.g., adding semi-to qualify

Semi-autonomous [5], adding robot and artificial intelligence to

qualify RAI-responsibility (upcoming publication by Greenberg

et al., Robots that “Do No Harm”)]. The most gentle intervention

is to do what we have set out to do here: Identify what is lost and

found in translation between contexts.

3.1 Semantic mapping pipeline (SMP)

As part of an earlier effort, Greenberg led a small team to

review how terms central to person-machine teaming were being

used across the literature. This preliminary investigation sought

to develop the methodology and begin a cursory exploration, and

it is presented here to introduce a mixed-method approach to

semantic conceptual analysis. In the sections that follow, we

discuss the concepts of Autonomy, Trust, Ethics, and Teaming in

primarily qualitative terms. However, we believe that these same

topics are ripe to be run through the SMP method for

quantitative support.

This review, formulated as a semantic map of terms, was

intended to address questions such as:

• How do various disciplines use PMT terms, both within

their discipline, and when communicating to their

interdisciplinary counterparts?

• What are the differences and similarities in the ways the

various disciplines use the terms?

• How much true interdisciplinary treatment is there, or is

treatment mostly disparate multidisciplinary

contributions?

• In which semantic clusters does a particular organization

find their conceptualization to fit best (the inverse problem

of semantic map assembly, whereby particular articles

invoking the terms are placed within the map generated

from the corpus).

To answer these questions, the concepts under

consideration are first cataloged and discussed. Once a

suitable list of keywords has been identified, they are then

run through the semantic mapping pipeline to display their

prevalence, authorial provenance, and co-occurrence in current

person-machine teaming scholarship, against a background of

those terms’ usage in interpersonal contexts and in common

parlance. The methodology of the semantic mapping pipeline is

as follows:

First we populate a corpus; the body of papers that include

the terms of interest, semantically similar terms, and their

related word forms across various parts of speech, retrieved

from scholarly clearinghouse sources like Web of Science and

arXiv, and from policy statements of international

organizations. We then review the bibliographies of these

papers to augment the corpus with secondary papers that are

related but may not have used the search terms precisely as we

had specified them. Given that the contents of this corpus is the

source material from which the pipeline produces it analyses,

we take care to be comprehensive at the start. Late additions are

possible to be accepted, at which point those new entries are

reprocessed as described in the next steps, for an updated

output.

Next, we use the systematic review software Covidence to

screen the papers for relevance by the PRIMSA protocol, and tag

them with an interpretation of how the paper authors are using

the search term, from a standardized list of meanings set a priori

from a preliminary scan. Should new meanings be discovered in-

process, they are added to this list for tagging. Those papers

emerging from the screen are parsed, along with their metadata.
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With the corpus now formed into a computational object,

we can visualize and analyze in silico. For preliminary

visualization, nodes of terms are linked by edges of co-

occurrence, sized by number of citations, and colored by

community detection that reflects disciplinary field. A

semantic graph composed of these nodes is assembled and

visualized by VOS Viewer (Figure 1), or programmatically by

the python Network X package.

Next, we perform various analyses to update the semantic map.

Bibliometric analyses include undirected graphs of cocitations and

directed graphs describing the discourse between contributing

disciplines, authorial provenance, and target audience (Figure 2).

Throughout, the method invokes synsets (WordNet’s grouping of

synonymous words that express the same concept) to improve

flexibility across semantically similar terms. Semantic analyses

encompass the usage patterns of terms found across several

parts of speech: nouns, adjectives, and prepositions.

The nominal [of nouns] analysis queries co-occurrence

graphs and compares term frequency distributions (Figure 3)

to discover if PMT discussions around a term are addressing the

same concept—and if so, how those discussions are distinct by

discipline and/or from usage in interpersonal literature. The

adjectival analysis queries the lexical dispersion (relative

locations of terms within the text and their distances from

one another, Figure 4) of preidentified terms and of terms

with wordfinal morphemes of adjective suffixes, to collect how

terms are described, and whether descriptions are used

consistently throughout each document. The prepositional

analysis uses phrase chunking to discover to what, to whom,

or for what the term pertains.

By filtering the visualization of the semantic map that serves

as frontend to the combination of computational linguistics

techniques here described, researchers may examine term

semantics at scale. We invite those interested to adopt this

mixed-method approach and continue the work where we left

off, with code available upon request.

4 PMT concept 1: Teaming is
inherently social

Unlike almost any other engineering product, autonomous

systems interact with people through social channels to achieve

their goals. Meanwhile, people’s responses even to non-agentic

computers are inherently social (e.g. [6]), and with just a bit more

interactivity, they become what Sherry Turkle [4] calls relational

artifacts: “Their ability to inspire relationship is not based on

their intelligence or consciousness but on their ability to push

certain Darwinian buttons in people (making eye contact, for

example) that make people respond as though they were in a

relationship.”

The question of whether a machine can truly team with

people (or even other non-human agents) is a source of

significant debate, and the term “team” is frequently misused

or misapplied, especially with respect to person-machine teams.

Research engineers often apply the term “human-machine team”

to any collection of people and robots or autonomous agents,

regardless of whether they meet the criteria that define a team,

such as the need for interdependence between members or

common identity as a team [7–9].

FIGURE 1
Term co-occurrence.

FIGURE 2
Articles by target.
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A team is a set of two or more people who interact

dynamically, interdependently, and adaptively, toward a

common and valued goal, each member having specific roles

or functions to perform, and a limited life-span of membership

[10]. Teams, therefore, are inherently social groups with

interdependence between team members who are working

toward common goals [10–12]. Team members behave

differently from other organizational structures (e.g.,

supervisory hierarchies) in several ways. They demonstrate

increased communication between members, greater effort

and commitment to the goals, greater trust between members

[13] and show greater adaptability and innovation from these

other structures [14]. Kozlowski and Ilgen [14] also emphasize

the social aspects of teaming—motivation, affect and

interpersonal interaction.

As a further example, Walliser et al. [11] explored how team

structure and the manner in which people are directed to work

with a teammate impact team performance with autonomous

agents. In this study, participants worked with a human

collaborator or an autonomous system, either as a

FIGURE 3
Term frequency distribution.

FIGURE 4
Lexical Dispersion, with sentence breaks indicated by red vertical lines. The legend is on top of hits for the first two discovered terms
(“vulnerable” and “consistent”) between word offsets 3000 and 3500.
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collaborative teammate or to direct its performance as they

would a tool. As would be expected, collaboration was more

common in the teaming condition than in the tool condition. For

example, there were significantly more task-relevant chat

messages sent by participants in the team condition. Task-

relevant chat messages were equally common for both the

human and autonomous agents. In contrast, messages related

to performance, information, and acknowledgment were only

sent when the other agent was human. The authors argue that

these results indicate that the interaction between people and

autonomous agents is fundamentally social; given that effective

teamwork relies heavily on social interactions, these aspects of

interaction must be included in the development of autonomous

agents. They point out that the social aspects of person–machine

team design are neglected in favor of enhancing the more

traditional computational and electromechanical capabilities of

the autonomous agent. We explore that focus in the next section

where we examine guidance given on the design and

development of autonomous systems.

The debate regarding whether autonomous machines may be

considered teammates over tools centers on the development and

demonstration of shared common goals or shared mental

models, interdependence of actions, and inter-agent trust [15].

Relatively recent advancements have begun to demonstrate the

ability for machines to share goals and adapt to changing context

(see for example [16]). Further, people appear to team as easily

with robots as with humans [17, 18]. Taken together, these

findings suggest that research that neglects the experiential,

social, and cognitive-affective aspects of person-machine

interaction will not yield successful teaming; in which case

machines will remain in the role of tools and the full

capabilities of effective person-machine teams will not be

realized.

One way to approach these neglected aspects of PMT is to

attend to the latent construct of vulnerability. The constituent

concepts we will review in the next sections, on Autonomy, Trust,

and Ethics, all share this latent construct, which tends to be the

first to fall out when translating these terms from their

interpersonal sense to their person-machine teaming sense.

Vulnerability, the state in which a person is subject to harm

(physical, psychological, financial, etc.) remains the condition for

a teammate whether that person is relying on another person, or

on a machine.

5 PMT concept 2: Vulnerability is
ultimately unmitigable

In PMT contexts, the notions of autonomy, ethics, and trust

are inextricably linked not just to mission and task risk (cognitive

trust [19]) but to personal vulnerability (emotional trust, [19]. To

demonstrate this for yourself, try the following exercise—replace

the terms autonomy, ethics, and trust with a conjugate of

vulnerability, and determine whether the statement still holds1.

However, while this connection is apparent in every definition of

interpersonal trust (see [20, 21]), the notion of vulnerability is

frequently operationalized as relatively less-rich concepts such as

uncertainty or risk when translated to pertain to persons

cooperating with machines. This may be because vulnerability

is perceived as more affect-laden and nebulous, while uncertainty

or risk can be defined in probabilistic terms, which is more

compatible with an engineering orientation. However, the notion

of vulnerability is not encompassed by uncertainty or risk alone,

and creating an operational definition that exchanges these

concepts loses essence (now try that term replacement

exercise again, with uncertainty or risk swapped for

vulnerability). The stakes are not simply outcome- or

likelihood- oriented pertaining to risk, but indeed personal—a

machine teammate’s failure has personal consequences for its

human teammates.

These consequences may arise not just from failure to

complete the task (as discussed in Section 8 on trust), but

from performing the task in unexpected or incompatible ways,

or from performing the task in an expected manner that yields

undesired results. Among other things, human teammates may

grow disappointed, insecure, or worried, and that negative affect

is itself a harm, not captured by the concept of risk (though

approximated by vigilance). While this may not appear to be a

consequential effect, keep in mind how crucial a lever negative

affect is for humans teaming with non-human animals: dogs in

particular are exquisitely sensitive and responsive to our

disposition to them [22].

Of course, the typically negative affect associated with the

experience of vulnerability is not felt by machines, so there is an

intrinsic limit to how faithfully a machine can participate in the

downstream concepts of PMT Autonomy, Trust, Ethics, and

Teaming. As put by Marisa Tschopp [23]: “The victims are

always the humans.” Even just an imbalance of vulnerability

between partners is generally enough to undermine trust [24].

Autonomous systems are indifferent about survival; are without

social or emotional values to protect; are unconcerned with

stakes and unaffected by reward (despite it being sought

computationally through reward and objective functions in

machine learning) and undeterred by punishment.

Autonomous systems have nothing to lose, and nothing to

gain, so the act of judgement must be privileged to those who

are innately vulnerable (people), who also have a sense of

responsibility and who are affected by the potential

disappointment of those subject to the judgement.

1 For example, does “I trust the machine to fold my laundry” mean the
same as “I am willing to be vulnerable to a poor outcome should the
machine not succeed,” or simply that “I believe the machine will be
successful?”
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Further, machines do not have the visceral appreciation for

human vulnerabilities that people do. As a result, people have

no basis for confidence that machine teammates will

understand the shape of the utility functions of people to

select a behavior that is congruent with their interests. This

creates inter-dyadic risk that is independent of the operational

context (or, at the very least, omnipresent across all contexts),

and dramatically lowers the likelihood that people will be

willing to trust the machine. It is not just that machines do

not share the same vulnerabilities, it is that because they cannot

feel vulnerable, we don’t expect them to share or understand

our values.

To address this vulnerability gap, Greenberg has worked toward

the development of a harms ontology, described further in the

section on Ethics. In this installment of research into artificial

non-maleficence, he and his team explicitly trace potential

physical harms to humans through their vulnerabilities (in this

one case, the biology of the species of intelligent animal is the

salient feature vs. their personhood that is primary for the other

ethical principles and types of non-physical harms). From an ethical

standpoint, each actor should seek to recognize and respect the

vulnerability of other actors, to minimize harms that prey upon that

vulnerability. In fact, the ability to recognize vulnerability may be a

criterion for personhood (Strawson Microsoft Word - Document3

(brandeis.edu)).

In both interpersonal and PMT contexts, Control is the

primary means to mitigate vulnerability to another actor’s

behavior or to situation outcomes. It is also something

engineers are adept at building the means to achieve (e.g.,

control theory, control surfaces, controllers, etc.). However,

increased control by people of machine actions diminishes the

machine’s independence, defeats the objective of autonomy, and

squarely eliminates the opportunity for trust, which otherwise

thrives when the trustor’s vulnerability is protected by the trustee

amidst unpredictable circumstances, even if (or especially when)

the objective may not be met, but the measures to protect are

communicated and appreciated.

McDermott et al. [25] provide an example of vulnerability

mitigation in their guide on development of human-machine

teaming systems [the authors of this guide use the term

human—in the context of this paper, we would use the term

person]. In their guide, they first discuss “Directability.”

Directability is supported when humans are able to easily

direct and redirect an automated partner’s resources, activities,

and priorities. People will have expertise or insights that the

automated system will not. People are ultimately accountable for

system performance, which means they must be able to stop

processes, change course, toggle between levels of autonomy, or

override and manually control automation when necessary. They

provide the following guidelines for development:

• The automation/autonomy shall provide the means for the

operator to redirect the agent’s resources when the

situation changes or the human has information/

expertise that is beyond the bounds of the agent’s

algorithms.

• The automation/autonomy shall provide the operator the

capability to override the automation and assume partial or

full manual control of the system to achieve operational

goal states.

• The automation/autonomy shall not remove the human

operator from the command role.

Despite the essentialness of vulnerability to PMT concepts,

the term is rarely operationalized in any meaningful fashion

within discourse or experimentation. In scanning our SMP

corpus for lexical dispersion of the term, we find that it

frequently appears in isolated statements and definitions, but

is otherwise abandoned [20]. In fact, the interpersonal definition

of vulnerability is often contramanded by experimental design. In

the excellent review by Woolley and Glikson on Trust in AI, the

authors open with Mayer’s definition of interpersonal trust: “the

willingness of a party to be vulnerable to the actions of another

party based on the expectation that the other will perform a

particular action important to the trustor, irrespective of the

ability to monitor or control that other party” [26]. In contrast

and in contradiction, Woolley and Glikson’s summary of

research conducted by Ullman and Malle states: “They found

that participants reported higher cognitive trust in the robot they

controlled” [emphasis added]. Furthermore, following this

controlled experience of involvement, participants expressed

significantly higher trust in potential future robots [27, 28].

This discrepancy is apparent but not addressed: If trust is

about willingness to be vulnerable irrespective of control, then

what is an experiment truly measuring if it finds that “trust” is

contingent on level of control? Further, trust entails an

acceptance of vulnerability, which is refused by a desire to

control.

Recently, the authors of this paper explored the development

of trust between people and machines in using a virtual

environment, the Platform for Assessing Risk and Trust with

Non-exclusively Economic Relationships (PARTNER) [We refer

to this experiment to illustrate the questions of interest rather

than to elucidate the results, therefore, we will forgo review of the

conclusions. Interested readers can refer to [17]]. In PARTNER,

people and machines are paired up to escape a room, and these

puzzle stages are constructed to be unsolvable without cooperation

(see Valve’s Portal 2 game). We made sure to draw in and probe

vulnerability in two ways: The first was to build upon its

operationalization in Berg et al.’s [29] canonical investment

game concerned with financial trust. We argued that the

paradigm used—to give a gift of funds which may then be lost

during the interaction—did not invoke authentic vulnerability in

most participants; thus we focused on non-economic relationships.

We argued that inducing participants to experience a sense of

physical vulnerability comparable to a trust fall would be more
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effective and relevant in the real world [A trust fall is a team-

building exercise in which a person deliberately falls, trusting the

members of a group (spotters) to catch them.]. Insofar as

Institutional Review Boards (IRBs) generally frown upon the

prospect of dangling people off the edge of cliffs, we opted to

do so in virtual reality (VR), from heights and into pits of hazards,

to emulate physical peril. Falling in VR is a reliable method to

trigger the sensation of falling in the vestibular system, and some

users even experience vertigo (those participants were screened

out). The other way we enabled opportunities to experience non-

financial vulnerability was by creating situations for the robot

partner to save or betray the human player, and for the robot

partner to perform activities that were hazardous to the human

(again, those hazards relate in particular to human biology). Which

teammate took the risk-laden action exposes an aspect of trust

designed for experimental examination: Did the person perform the

safe task while the robot took the risky task (e.g., the task with the

potential to fall)?

6 PMT concept 3: Autonomy is a
relationship, not a system property

The term autonomous systems (AS) has its origin in warfare.

The person-machine unit of a submarine is the typical exemplar,

often separated from traditional C3 (command, control, and

communications), and authorized to act without instruction. A

special class of autonomous systems, lethal autonomous weapons

systems (LAWS), are machines set to fire when conditions are

met in cases in which intervention by people would be too slow to

neutralize the threat. When LAWS are referred to as human-

machine teams, the macabre reading is that people are

participating only in the sense that they are the targets. LAWS

do have significant bounds and limitations on their behavior: The

systems cannot not act if the conditions for action are not met,

nor can the systems weigh factors in the environment which have

not been programmed to assess. While these machines are able to

perform complicated actions without the direction of a person, in

many respects LAWS are still more automated than

autonomous2.

When used in an interpersonal context, the term autonomy is

meant to indicate that a person is not subject to another authority in

making personal determinations. This sense of autonomy concerned

with self-governance is not even desirable for installation in

machines—after all, autonomous systems are meant to improve

the human condition and serve people’s needs, not act as machines

want for themselves (as if wants are even possible for machines).

Autonomous systems are artificial and designed, and thus without

true motivations. In contrast to automation, wherein a technology

performs a pre-specified task in a controlled environment, machine

autonomy (in the PMT context) is often used to describe

sophisticated, flexible, or adaptive automation that can perform

with some degree of initiative and independence in novel contexts or

environments, without complete external oversight or control.

Importantly, autonomy is earned and awarded through an

external authority, making it a property of a relationship rather

than a property of an entity within that relationship, as in

automation.

Autonomous systems are commonly understood as decision-

making technology both capable and worthy of being granted

some degree of independence from human control. However,

“decision-making” as used here is wishful mnemonic (cf. [3]) for

the calculations these machines perform, and the actuations to

accomplish the determination of those calculations. While the

systems do hold goals, objectives, andmissions, these imperatives

exist around the level of programing. These systems do not really

make decisions, conduct judgements about the preferability of

different actions, or emergently generate novel options to choose

amongst beyond the methods available in their deployed code.

Currently, potential options and actions available to

autonomous systems are limited by their programming, but these

machines may eventually be so capable that available to them are

such a broad spectrum of possibilities that the limits to their actions

cannot be fully predicted; in fact, in systems that are not embodied in

the physical world, such as on-line avatars or large languagemodels3

we are rapidly approaching this uncircumscribed scope, if we have

not already reached it.

Though autonomous capability and intelligence often

overlap, they are distinguishable. Where autonomous

capability is concerned with initiative and independence,

intelligence is concerned with the ability to hedge against

dynamic vulnerabilities—i.e., threats to autonomy,

coordination (teamwork), and ethical (desirable) behavior—in

real time. In other words, intelligence and agency are among the

essential components of the “personhood” that’s missing. For a

study in the topic of intelligence, see an upcoming paper in

Entropy by Baker and Greenberg.

Machine autonomy is not a widget that can be built [30], but

rather a privilege people grant to machines that are capable of

operating without or outside of our supervision and control. That

privilege is earned after testing and experience have

demonstrated the capability, or in cases where control is

impossible due to environmental constraints (remote, dirty,

dangerous). Various conceptual efforts [31, 32] to arrange

autonomy as levels, as adjustable, or on a sliding scale, falter

2 For further information about C3 and LAWS, please see these
references: Chapter 20 Command, Control, and Communication
(fas.org), IF11150 (congress.gov), DoDD 3000.09, 21 November
2012, Incorporating Change 1 on 8 May 2017 (whs.mil).

3 Is LaMDA Sentient? — an Interview | by Blake Lemoine | Medium:
Though the authors of this paper do not accept the sentience claim,
the novelty claim is compelling.
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in ordering autonomy as a single functional unit, as opposed to a

collection of constituent capabilities that combine in complex

patterns to enable minimal communication along the

appropriate level of abstraction. These constituent capabilities

included in the notion of autonomy, initiative, and

independence, and in particular, graceful handoff, are buildable.

Ideally, we might want people to be the ones drawing the line

for transfer of attention, but in practice, it may have to be

determined by machines, driven by time constraints to be part

of its autonomous functionality. Accomplishing effective and

efficient handoff between machines and people requires

substantial social cognition on the part of the machine. First,

the person-machine system needs to assess whether an action is

in the purview or even the ability of the machine or the person.

Not only does the machine need to know its performance

boundaries, that is, what it can and cannot do well, but both

the machine and the person require the bit of metacognition that

allows each to infer what the other does not or cannot know or

do. Together, these indicate to the machine when it ought to ask

for help from people, for the person to offer assistance, or that it is

not appropriate to ask for assistance. If the machine determines

that it cannot or does not know information critical to

performing the task, or that it does not have the capability to

act, it needs to ask for help. In that respect, autonomous systems

should be experiential—they should learn from their interactions

with people, or from the experiences of other autonomous

systems. Critically, methods are needed to ensure this learning

is indeed in the desired direction, and that the autonomous

system will not converge to performance boundaries that are

unwanted. Appropriate requests for assistance require that the

machine have elementary theory of mind, that is, to infer who

might know what, who to ask, and deixis (how to refer in time,

space, and person). Finally, the machine may need to escalate the

request for attention to a person, and hand off the question or

task to them. Requests for assistance cannot happen all the time

or the system is almost useless, nor can they never happen as the

system would take unacceptable action or fail to act appropriately

too often. Similarly, if the task is to be handed off, there must be

sufficient time for the person to assess the context and prepare to

perform the task, as well as to perform the task (Tesla Autopilot

Crashes into Motorcycle Riders—Why?4 7:24: “So before you

trust his take on autonomy, just know that autopilot is

programmed to shut down one second before impact, so

who’s the manslaughter charge going to stick to?”). The

timing, information provided, and receptivity of the person

are elements of this handoff package. The machine should not

escalate for attention matters that set up the people for failure, by

leaving insufficient time or providing insufficient information for

the issue to be adjudicated by people, or by sharing with people

who are not available to receive the handoff. This means that

developers must consider the full spectrum of activities in which

the person might be engaged as it is a person-machine team

wherein neither entity is fully separable.

7 PMT concept 4: Ethics for machine
teammates

Ethics for autonomous systems (i.e., those that make for

machine teammates), differ from the ethics of artificial

intelligence: In particular, the autonomous system’s special

features of agency, physicality, and sociality, draw in

considerations beyond those of traditional technology ethics

concerned with social implications of the built world, to

include among other specializations, philosophy of action and

philosophy of mind.

Agency, the capacity of an entity (agent) to “instantiate

intentional mental states capable of performing action,” is not

necessarily required for a machine to be granted some degree of

autonomy, but that capacity becomes increasingly relevant as

these machines are permitted entry into more complex

environments. Here, complexity is not strictly along the

physical or computational dimensions, but the

social—arguably, the environment of a home healthcare aid

robot is more complex than that of an autonomous vehicle.

Moral agency, wherein “an agent has the capacities for making

free choices, deliberating about what one ought to do, and

understanding and applying moral rules correctly in the

paradigm cases” is a much higher bar. It is not clear that

machines will ever be able to meet these criteria [33] or even

need to in order to accomplish their directives, but Ethical Agency

is within reach and essential for appropriate system performance.

The related concept ofMoral Patiency, the capacity to feel pain or

pleasure remains in the realm of living creatures, and respecting

that capacity is the mandate of artificial ethical agency.

Physicality: Not all AI is embodied, and not all autonomous

systems can be deemed to have intelligence (not even all AI can

be deemed to truly have intelligence, cf. upcoming Baker and

Greenberg paper). The ethical implications of a machine with

the ability to sense an object in the environment to change

direction and avoid it differ from those of algorithms that can

crunch large amounts of data. Artificial autonomous capability

is generally embodied in a cyber-physical system, and is bound

to have direct and indirect effect on the physical world. This is

not necessarily true of AI, in which its effects on the physical

world tend to be mediated by its provision of information to

people.

Sociality: The ethical concerns around machine teammates

tend to fall more around how the team interacts, how the handoff

between team members is performed, and whether each member

is prepared to act and capable of acting. If a machine is working

with a person, it must perform the handoff between tasks,4 https://www.youtube.com/watch?reload=9&v=yRdzIs4FJJg
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information, objects in such a way that the person is capable of

succeeding, while at the same time ensuring that potential for

harm to people is minimized. There will be times when a

machine is performing a task, and the context changes such

that the machine is no longer able to perform the task safely.

In those instances, the current development approach is to

hand the task back to the person. But this does not ensure that

the person is able to perform the task either. It assumes that

the person is fully engaged in the task to the point that a hand

off is possible. But the purpose of autonomy is to allow the

machine to perform without the person, enabling the person

to be engaged in other tasks. If the machine is unable to

perform the current task, it may be better to have the machine

alert the person and instead perform a task at which it is

capable of succeeding. In handoff, simply assuming that the

person is ready to perform yields a liability issue, and may defy

the concept of operations for which the system was built.

Rather than transparency of decision making, the person

needs to accurately understand how context and

environment may affect the ability of the machine to

perform. Similarly, the machine needs to understand how

the task and environment may have impacted the person’s

ability to perform, e.g., whether the person has sufficient time

to engage in the task, can sense the data or object that has

confused the autonomous system, or is even available to

perform the task.

Ethics with respect to people refers singularly to the moral

principles that govern a person’s behavior or the conducting of an

activity. These principles collect as the set: Transparency, Justice

and fairness, Non-maleficence, Responsibility, Privacy,

Beneficence, Freedom and autonomy, Trust, Sustainability,

Dignity, Solidarity. However, ethics with respect to machines

carries at least two senses [34].

The first sense (the Ethics of machines or machines as

objects of ethical consideration) is the one commonly

understood when invoking the terms AI Ethics, or Ethical

AI, concerned with the ethical use of artificial agency. This

sense in the vein of technology ethics governs human beings

(and their institutions), in producing or interacting with

machines (their design, use, or interpretation of machine

products). The constraints in such governance is extrinsic

to the machine, and ethical principles pertain to designers and

users. Of the set of principles, fairness, bias, and privacy most

exemplify this of/as objects sense. Policy documents are

exclusively of this sense, both those prescriptive, like from

the US Government (IC, DOD, and CIV), Asilomar, and from

the Vatican, as well as those descriptive, like the reports by

Harvard and Montreal.

The best of breed survey of the of/as object sense is Jobin

et al. [35]. In reviewing the landscape of AI ethics they came to a

consensus around the set of principles listed upfront. They also

identified four divergences in how each principle was addressed

in the corpus they examined: how ethical principles are

interpreted; why they are deemed important; what issue,

domain or actors they pertain to; and how they should be

implemented. These divergences characterize the splay in

semantics mentioned earlier.

As part of the SMP effort, we sought to computationally

represent and visualize these divergences. In Figure 5 below, we

depict a “divergence graph” for the principle of responsibility.

These graphs show how different usages or senses of terms

(corresponding to Jobin’s divergences) differentially connect to

related terms. Nodes are sized by term prevalence in the

document or corpus. Edges are directional and sized by co-

occurrence so that, for example, the width of the link from

responsibility to accountability is to be understood as

proportionate to the number of mentions of accountability

in discussions of responsibility. Within the node of

responsibility, the pie chart indicates the proportions of

pertinence usage (Jobin et al’s divergence regarding to what

or to whom the principle pertains), answering the question: As

it appears in documentation, in what proportions does

responsibility pertain to the agency (in this case, meaning

institute) in its use of AI, designers in their production of AI,

or to those who deploy AI?

The works Jobin review are focused on the ethical

implications of AI and how policy and governance should

safeguard development and protect users. Although this

research concerned with obviating and mitigating the personal

and societal consequences of AI, such as those presented by

algorithmic bias and reward hacking, is crucially important to

undertake, it is not the whole picture.

The alternative sense, Ethics for machines, or machines as

subjects (for/as subjects), is the more Asimovian [36] sense

concerned with Artificial Ethical Agency. Ethics in this sense

regulate the machines themselves, and are only applicable to

machines that possess the capability for autonomous agency,

unlike other powerful technologies without such a capacity for

initiative (like nukes). Ethics formachines are on-board the system

proper, and the principles are intended to pertain to the artificial

agent itself. This sense of ethics requires commensurate capability

and judgement from the machine, a tall order since machines are

FIGURE 5
Divergence graph.
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ordinarily produced for capability, leaving the judgement for

people. That gap is how accidents of the kind at the Moscow

Open can occur, in which a chess-playing robot broke a child’s

finger (for a discussion of this incident see upcoming Elsevier

chapter by Greenberg on enabling machines to reason about

potential harms to humans). Of the principles, non-maleficence

and beneficence are the most clearly of this sort. Important

questions about how to “teach” ethics to machines emerge of this

sense (described in upcoming robots that do no harm paper). The

best of breed survey of the for/subject sense is by Tolmejer et al. [37].

When these two senses are set for and followed by people,

there is a unitary apparatus for producing, understanding, and

executing the principles. However in machines, these two senses

are differentiable, though the of/as object sense tends to

dominate. To see how little these two senses conceptually

overlap between Jobin and Tolmejer, see Figure 6 below.

We argue that successful application of ethics to autonomous

systems is distinguished by its goal to explicitly design into

machines the basic mental faculties (including perception,

knowledge representation, and social cognition) that enable

them to act as ethical agents. These capabilities in ethics for

artificial agents are so fundamental, treatment of them tends to be

neglected, but it is at this low and early level that the machine’s

agency is most available to adjustment by normative

considerations. Furthermore, owing to these faculties’

universality across major schools of philosophical thought

(deontological, consequentialist, and virtue ethics) their

essentialness is fairly uncontroversial. Beyond this basic level

where mental faculties enable machines to have consideration for

moral patients, application of ethics to machines begins to

resemble the ethics of/as objects sense, wherein appropriate

behavior is imposed by governance, leading to brittle

performance and diminishment of the capacity for

trustworthy autonomous activity.

8 PMT concept 5: Trust is learned,
trustworthiness is earned

Trust is a socio-affective construct indicating the willingness

of a person to be vulnerable to the unpredictable actions of

another. Of the foundational concepts for translation from the

interpersonal context to the PMT context, confusion around the

term trust is perhaps the longest lived and most fraught. The

topic of trust is also the most integrative of the foundational

concepts in PMT, and for this reason we discuss it last. As

compared to the rich interpersonal concept, its use in machine

contexts is austere. Notable contributions to distinguish the

senses between contexts include Thin vs. Thick Trust [38],

and Cognitive vs. Emotional [19]. In this section, we first

survey the features of interpersonal trust and the intricacies of

instantiating them in machines, to then we address issues in

measurement and in calibration.

When held between people, trust and trustworthiness are

understood to be part of a relationship wherein three

characteristics of the trustee make it so that the trustor may

confidently hold the belief that the trustee will act in the trustor’s

interest: ability (or competence), benevolence, and integrity [26].

The stability of one’s trust varies depending on which of the

aforementioned qualities it is based. If trust is based (solely) on

the ability of a trustee, trust should then vary depending on how

well the trustee performs a task. If trust is grounded in the

integrity of a trustee, then it should vary based not on the actual

performance of a trustee but on the extent to which the trustee’s

actions match the values of the trustee. The stability of

benevolence-based trust is contingent upon whether the

trustee’s actions match the goals and motivations of the

trustee. When trust is based primarily on the integrity or

benevolence of a trustee, poor performance alone will not

significantly damage it. Machines, however cannot truly be

either benevolent or malevolent, or have integrity or be

corrupt. Researchers have attempted to translate benevolence

[39] and integrity for machine contexts, but since these qualities

are currently impossible to instantiate in machines as they appear

in people, they must be inherited by machines from the people

who design them. When the trustee is a machine, the final pillar

of trustworthiness—ability—is reduced to little more than

“predictable performance,” or reliability. This hollow port begs

the question of why we bother with this artifice of

“Trustworthiness” at all.

Yet researchers continue to pursue designs for autonomous

systems that are inherently trustworthy. From an engineering

perspective, one way to operationalize trustworthiness is to

ensure that the behavior of the machine is reliable to a high

degree, and that the machine is capable of performing the task of

interest or telling the person that it is unable to perform the task.

From a psychological perspective, based on research on the

development of trust between people team members, research

demonstrates that these are not the critical bases of the

development of trust between team members.

Reducing ability to reliability is problematic: creating

machines that are 99.9% reliable may actually be detrimental to

the development of trust in autonomous systems. Reliability is

defined as the consistent performance of an action, an attribute

of the trustee, while trust is a learned response by the trustor [40]

applicable to situations in which the trustee is not perfectly reliable,

or in which the task entrusted is not certainly achievable. We know

from research on learning that consistent reinforcement of behavior

does lead to learned response. However, if a consistent reward is

discontinued, the learned behavior is quickly extinguished. In other

words, if a system is 99.9% reliable, then 999 times out of 1000, it will

behave as expected—yielding the learned response of trust. But on

that 1000th trial, in response to a system failure, the person’s learned

response can be quickly extinguished. Variable reinforcement, by

contrast, leads to acceptance of a much longer duration without

reinforcement before the learned response is extinguished.
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FIGURE 6
Taxonomies, of/as objects vs. for/as subjects.
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Therefore, we argue that providing the people insight into when,

how, or why the system will fail, will lead to higher levels of trust in

autonomy even if (or especially when) the system is less than 99.9%

reliable.

Calibration of trust: The discourse on the calibration of trust

in autonomy most commonly arises from Lee and See’s [21]

examination of trust in automation. On the face of it, the concept

is straightforward: trust in the system should match the system’s

trustworthiness. However, as we have reviewed, automation does

not scale to autonomy, and neither trust nor trustworthiness are

unitary—what aspect the trustor’s trust is based upon need not

match the aspect from where the trustee’s trustworthiness is

derived. We recommend escaping this complexity by simply

replacing trust calibration with reliance calibration: In this way,

the axes of calibration would simply be trustor’s perceived

reliability against trustee’s demonstrated reliability. While

aspects of the relationship between people and machines are

not captured in reliance calibration, the interaction of the person

and machine is not aggrandized beyond what the current state of

science and engineering can speak to.

We see this aggrandization of reliability to trust occur, for

example, with the reception of findings on algorithm aversion5.

These findings are typically summarized to claim that people do

not expect machines to make errors whatsoever, and so people’s

“trust” in people is often overrated, whereas people’s “trust” in

machines is underrated. However, since this phenomenon is

almost entirely concerned with performance, it remains squarely

within the realm of perceived reliability, and the richness of trust

may not need to be invoked.

Nonetheless, if the behavior of the system never varies (it

performs with perfect reliability), trust is almost irrelevant to the

relationship between the person and the machine. For all these

reasons, in some cases, the less loaded term of assurance (which is

licensure-oriented) is more appropriate than the term trust

(which is state-oriented). For automation, in which action is

paramount, and mimicry and rule-following is sufficient (but

brittle), the assurance case is based on performance. For machine

autonomous systems, in which internal state reflecting the

machine’s conception of its environment is paramount, and

generalization and transfer learning around that environment

is possible, the assurance case is based on transparent and

interpretable (legible) reasons for why some action was taken

over another.

Operationalization and Measurement of trust: Trust is

notoriously difficult to measure, in both interpersonal and

PMT contexts. As [41] state “a lack of clearly defined

measures as they connect to trust theory has also forced

scientists to create their own ad hoc measures that capture

trust as a monolith, rather than a targeted aspect of trust

theory.” In part, this is due to the phenomenon being a

mental state and social relationship to which direct access or

quantification is unavailable. Research instead measures proxies

from classes including behaviors, subjective assessments, and

physiology. However, any of these proxy measures, or even all of

them together as a set still do not fully characterize the relevant

mental state. The allure that these proxies are measurable drives

the conceptualization of trust to meander to meet the proxies. So

then, trust is reduced to adoption (behavior), or affinity

(subjective assessment), or oxytocin levels (physiology). If we

do not measure the right thing, but still optimize for that proxy,

are we really saying anything about trust itself? This way of going

about science strains the criterion of falsifiability—in these cases,

we are searching for our keys under the lamppost, because that’s

where the light is.

Initial research on trust (of people or machines) relied on

subjective measures (e.g., [42]) or indirect measures of trust

reflected in the behavior of the person (see for example [43]).

Subjective indicators, such as the negative attitudes toward

robots scale (NARS), tend to capture more about the

likeability of the machine and its position vis-à-vis the

uncanny valley or anthropomorphism (eye contact,

smiling, nodding, social gesture, responsiveness) than

about trust proper. Likeability does not necessarily indicate

a willingness to be vulnerable to the machine, especially once

the person experiences an event where the machine fails at the

task. While such etiquette and immediacy behaviors by the

machine are useful to promote adoption, these expressions

are manufactured, not earnestly produced as they appear in

people, and so designed to manipulate people into a positive

disposition, which is not a benevolent affair. When machines

produce apologies for poor outcomes, they generally cannot

state what they are sorry for, nor can they necessarily change

their behavior to ensure that outcome does not occur again

(an essential aspect of a genuine apology without which the

apology is simply a speech act to get one’s way, a sociopathic

device). Such a speech act improves perception of the

machine’s trustworthiness, at least after the first failure,

though it is not clear whether repeated apologies would

maintain the perception of trustworthiness after a second

or third identical failure. Here, notions of betrayal and

forgiveness come into play—if these related terms from the

interpersonal context seem irrelevant with regard to

interacting with a machine, use of the term “trust” must be

drawn into suspicion for being just as overzealous.

Physiological indicators of trust are not well established in

interpersonal contexts, and it is further unclear whether they

would even appear in humans (humans used here instead of

people, since the physiology of concern is particular to human

biology) trusting machines if those machines are not

recognized as social actors, or if teleoperation means that

the trust relationship is interpersonal between operator and

5 Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing
Them Err (upenn.edu), Overcoming Algorithm Aversion: The Power of
Task-Procedure-Fit | Academy of Management Proceedings (aom.org)
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user, and only mediated by machine. Since the behavior of the

trustee also has an impact on the wellbeing or goals of the

trustor, that is, there is vulnerability in the act of trusting, the

psychophysiology associated with that state may be a more

worthwhile measurement target.

Behavioral indicators (including Acceptance, Deference,

tolerance, Workload-resistant compliance, behavioral economics

measures like investment) of trust fail to capture alternatives, and

if the options are utilize/adopt or not, then the volitional aspect of

trust (willingness) is not being measured. Vigilance/neglect and

accepting advice or recommendations are also problematic for

the same reason. High workload necessitates neglect and

acceptance, which saturates measurement, whereas it is only

under these kinds of circumstances that one would employ an

autonomous system.

On top of these confusions are another, related to Jobin’s

divergences mentioned in the previous section on ethics—to

what issue, domain or actors does trust and trustworthiness

pertain? In the 2020 executive order promoting the use of

trustworthy AI in the federal government, most of the

principles listed are actually referring to “trustworthy use”

instead of “the use of trustworthy AI.” Of the nine principles,

five are incumbent on the governmental agency to ensure that the

institution’s use is trustworthy—in fact the principle of

transparency is reversed from its typical use applying to the

technology, and here applies to the governmental agency’s

transparent use of the AI.

Finally, trust is not only personal and calibrated, but highly

contextual—one may trust a particular individual for one task in

one context but not in another because as people we have learned

the characteristics of the context that suggest potential successful

performance. Therefore, the ability of the machine to understand

the differences in these contexts, and predict its own performance

in the context becomes a useful element for the development of

trust between people and robots. In other words, the system may

succeed at the task in one instance, performing in the way that the

person expects but based on reasoning that differs from the

person’s basis for action. At a second point in time, the machine

may take a different action because the aspects of the context on

which it focused are different than in the first instance (while the

aspects of the context on which the person focused remain the

same). When an autonomous system is created to perform a task,

it is designed to achieve the person’s goal. When the person

performs the task without automation, there are rules that

underly how the task is performed—such as to act otherwise

could lead to injury. These underlying rules may not be relevant

to the machine, as it may not be harmed by the environment as

easily. The designer must ask, however, whether the machine

should still follow this rule so that the behavior of the machine is

more easily predicted, understood, or trusted by the person.

Given our conceptualization of trust (and following the argument

of [44]) the person in a person-machine team must similarly be

able to assess the state of the machine—that is, the ability to

assess the risk in teamwork and their own vulnerability to the

potential for a mistake by the machine.

9 Conclusion

Words matter—in a very Whorfian way, they shape how we

engineer our world. The translation of terms from their original

interpersonal use to their use in person-machine teaming

contexts must be performed deliberately to maintain

conceptual and scientific rigor. The reductive mindset of

“human-machine teaming” suggests that a human may be

treated like automatons with input and output to be

compatible and interchangeable with machines, but in a team

or otherwise, machines and people are not equivalent.

This reductive mindset further leads to beliefs that

development of machine teammates can ignore the

fundamental behavior of people, because the person could just

be trained to support the machine. Vice our argument here that

people will always be part of the system, “in the loop,” “on the

loop,” or dictating or receiving the output of the autonomous

system’s actions, we find that too often, the aim in developing

autonomous systems centers around the desire to engineer

people out of the system. However, this approach undercuts

the purpose of developing autonomous teammates. People are

social, and will engage in social interactions with entities that

have even a modicum of perceived independent behavior.

Therefore, person-machine teaming is an inherently social

activity, and as such, engineering and development of

autonomous systems must acknowledge people as social

entities, and account for social behavior in developing the system.

To be of the greatest utility, autonomous machines must be

allowed to operate with the initiative and independence they were

built to exert. Seeking to control every possible outcome of their

behavior reduces them to tools and undermines their usefulness.

We must admit that machine performance, just as the

performance of people, will rarely be perfect. To that end, in

the development of autonomous teammates, we must accept this

imperfection and the vulnerability that it entails, to people, to the

system, and to the task (see Coactive design (acm.org)). We must

acknowledge that development and test environments, even when

they are of high fidelity and of adequate ecological validity, will never

exactly match the deployment environment of the wild. Instead of

controlling machine behavior as a means to achieve some aspect of a

trust relationship, we argue that we must appreciate how context

affects system performance—both the performance of the machine

and of the person. Autonomous machines must not be designed to

assume that the person they are teaming with is sufficiently involved

in the task to be able to take it over at any time (evenwith notice), but

rather, these systems must be designed for safe and graceful failure

that accounts for unmitigable vulnerability. The approach here

detailed has significant ethical and legal implications for the

development of robots that are categorically different and merit
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distinct consideration from those commonly discussed in the

development of AI.
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