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Editorial on the Research Topic

Multiscale Soft Tissue Biomechanics and Cell Mechanobiology: Towards

Coupling Extracellular Biophysical Cues and Cellular Function

Soft matter biomechanics and cell mechanobiology are rapidly developing

interdisciplinary academic fields integrating biophysics, biology, and engineering

sciences. These fields aim to uncover the behavior of living soft materials for

emerging needs in basic and translational research. Soft matter biomechanics apply

mechanical principles to understand the behavior of viscoelastic biological systems such

as cells, extracellular matrix (ECM), and tissues. Mechanobiology focuses on the

influences of the structural microenvironment and physical forces on molecules, cells

and tissues. Specifically, cell mechanobiology studies the basic mechanisms of how cells

generate mechanical forces and respond to extracellular mechanical stimuli. The forces

and mechano-chemical properties can regulate a broad range of cell functions such as

proliferation, polarization, morphogenesis, motility, differentiation, and death [1,2]. ECM

structure was shown to be another factor impacting cellular behavior [3,4].

Understanding the underlying mechanisms of cell-ECM interplay is important

because of its regulatory role in normal tissue development and homeostasis[5,6].

Cell-ECM interactions are of particular importance in disease development, as the

deregulation of matrix mechanical and structural responses can be associated with

cancer metastasis, cardiovascular disorders, tissue aging, and fibrosis [7–11].
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The ECM is a complex macromolecular network that

forms a microenvironment for cells and provides them with

structural and mechanical support. It is composed of

glycosaminoglycans, proteoglycans, glycoproteins, and

fibrous proteins such as collagen, elastin, fibronectin, and

laminin [12,13]. There is also a variety of other molecules

in the ECM, such as cytokines, chemokines, growth factors,

matrix degradation enzymes, and inhibitors [14,15]. All these

molecules are crucially important for defining cellular

phenotype and functionality. The cell-ECM interaction is

mediated via various types of receptors, the majority of

which comprise integrins, discoidin domain receptors, and

syndecans [16–18].

This Research Topic collects five valuable papers

covering four original in vitro and in vivo studies and a

minireview.

Vasquez-Hidalgo et al. study cellular force generation in

response to chemical and mechanical cues using a biophysical

model. A better understanding of the mechanisms of traction

force generation between cells and substrates is needed since

these forces are higher for metastatic cancer cells and, hence,

could be considered as promising biomarkers. The authors

show that several components influence traction force

generation: the number of active myosin complexes,

substrate stiffness, the kinetics of bonds between cells and

substrates, and mechanical reinforcement at the adhesion

sites. It is concluded that the impulse, magnitude, and

duration of a force-generating event are the key limiting

factors in traction stress.

Asadishekari et al. fabricate porous tunable ECM scaffolds

comprised of two of the most abundant components of the ECM:

collagen and fibronectin proteins (fn). The authors show how cell

adhesive and invasive properties can be controlled by thermally

switching the fn conformations assessed using Förster Resonance

Energy Transfer techniques. It is demonstrated that tuning

architecture and mechanics of these scaffolds can direct cell

functionality and matrix deposition. The system can

potentially be used as a 3D platform mimicking physiological

and tumorous conditions.

Le Cerf et al. study an even more simplified model of the

ECM consisting only of collagen. They use atomic force

microscopy to obtain information about the nanomechanical

properties of their model tissue and complement those with

Fourier-transform infrared (FTIR) spectroscopy of the matrix.

The authors show a bi-modal distribution for the Young’s model

of collagen and discuss possible underlining structural

mechanisms. They report that nano-mechanical evaluations

are more sensitive to the effects of cross-linking on collagen

properties compared to FTIR spectroscopy. Further studies are

required to establish a relationship between the chemical and

physical properties of the collagen matrix.

Tong et al. review the progress made in the manufacturing

of microfluidic scaffold materials. Three-dimensional

bioprinting methods hold great promise for organ

biofabrication and regenerative medicine. The authors

identify several promising developments, in particular

towards scaffolds with addressable plumbing (i.e., with

valves). They conclude that even though progress has been

made, materials with the desired characteristics

(biocompatible, biodegradable, flexible, photo-crosslinkable,

transparent) have not been designed yet.

He et al. study renal fibrosis, the final manifestation of

chronic kidney disease characterized by an excessive

accumulation and deposition of ECM components. Renal

ECM, a complex network of collagens, elastin, and several

glycoproteins and proteoglycans, provides structural and

mechanical support to renal cells and regulates the

differentiation of neighboring cells in renal aging and

fibrosis. It is a dynamic structure undergoing remodeling,

and increases its stiffness during fibrosis. The authors

constructed kidney ECM gels of several stiffnesses

mimicking ECMs of healthy and diseased animals. By

combining in vitro measurements of ECM stiffening by

renal fibroblasts with in vivo studies in rats, they conclude

that the increase in stiffness is mutually causal with the

activation of the Yes-associated protein (YAP) pathway.

Polydatin is shown to regulate this YAP-related mechano-

transduction pathway and hence is a potential therapeutic

strategy.

The collected papers highlight how soft matter biophysics

research, by applying advanced experimental and modeling

approaches, contributes to improving human health. Recent

progress in imaging techniques permits an unprecedented

level of structural details that together with the application

of biophysical and biochemical functional assays can provide

quantitative information about how cellular behavior is

affected by the biophysical properties of the extracellular

environment such as matrix viscoelasticity, its structural

characteristics and stability. Such studies can shed light on

the coupling of biology, chemistry, and mechanics (the

“triple-point”) in describing cellular behavior. We

anticipate further rapid progress in this field.
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