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The ideal Hopfield network would be able to remember information and

recover the missing information based on what has been remembered. It is

expected to have applications in areas such as associative memory, pattern

recognition, optimisation computation, parallel implementation of VLSI and

optical devices, but the lack of memory capacity and the tendency to generate

pseudo-attractors make the network capable of handling only a very small

amount of data. In order to make the network more widely used, we propose a

scheme to optimise and improve its memory and resilience by introducing

quantum perceptrons instead of Hebbian rules to complete its weight matrix

design. Compared with the classical Hopfield network, our scheme increases

the threshold of each node in the network while training the weights, and the

memory space of the Hopfield network changes from being composed of the

weight matrix only to being composed of the weight matrix and the threshold

matrix together, resulting in a dimensional increase in the memory capacity of

the network, which greatly solves the problem of the Hopfield network’s

memory The problem of insufficient memory capacity and the tendency to

generate pseudo-attractors was solved to a great extent. To verify the feasibility

of the proposed scheme, we compare it with the classical Hopfield network in

four different dimensions, namely, non-orthogonal simple matrix recovery,

incomplete data recovery, memory capacity and model convergence speed.

These experiments demonstrate that the improved Hopfield network with

quantum perceptron has significant advantages over the classical Hopfield

network in terms of memory capacity and recovery ability, which provides a

possibility for practical application of the network.
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1 Introduction

Machine learning [1] is an important branch of artificial

intelligence and a way to achieve artificial intelligence, i.e.

machine learning is used as a means to solve problems in

artificial intelligence. It is a multi-disciplinary discipline

involving probability theory, statistics convex optimisation,

complexity theory and many other disciplines. Machine

learning algorithms are a class of algorithms that analyse

existing data to obtain a certain pattern and use this pattern

to make predictions about unknown data. It has been used with

great success in very many fields, including medicine [2], biology

[3], chemistry [4], physics [5–8] and mathematics [9]. Machine

learning has proven to be one of the most successful ways to

explore the field of artificial intelligence.

Perceptron [10] is a two-classification linear classification

model, which aims to find the hyperplane that divides the

training data linearly. Its biggest feature is that it is easy to

implement. Suppose the training data set is D � (x̂ϱ, ŷϱ){ }mϱ�1,
where x̂ϱ ⊆ Rm, ŷϱ ∈ {+1,−1}. The perceptron model is:

f x( ) � sign ŵ · x̂ + b( ) (1)
Where ŵ and x̂ are the model parameters of the perceptron,

ŵ ∈ Rm is called weight or weight vector, and b ∈ R is called bias.

ŵ · x̂ represents the inner product of ŵ and x̂. The sign function

is a symbolic function:

sign x̂( ) � +1, x̂≥ 0
−1, x̂< 0

{ (2)

The linear equation ŵ · x̂ + b � 0 is a hyperplane in the

characteristic space, where ŵ is the normal vector of the

hyperplane and b is the intercept of the hyperplane. The

hyperplane can divide the feature space into two parts, and

the point above the hyperplane conforms ŵ · x̂ + bP0,

otherwise, it conforms ŵ · x̂ + b< 0. The model of the classic

perceptron and its application to classification is illustrated in

Figure 1.

Quantum information is a new discipline developed based on

quantum physics and information technology, which mainly

includes two fields: quantum communication and quantum

computing. Quantum communication focuses on quantum

cryptography [11,12], quantum teleportation [13–16], and

quantum direct communication [17], while quantum

computing focuses on algorithms that fit quantum properties

[18–23]. This is an extremely active field, as it has the potential to

disrupt classical informatics, communication technologies, and

computing methods.

Quantum perceptron belongs to quantum machine learning

algorithms [24,25], which is the quantum counterpart of the

classical perceptron model. Kapoor proved that quantum

computation can provide significant improvements in the

computational and statistical complexity of the perceptron

model [26]; Schuld proposed a scalable quantum perceptron

based on quantum Fourier transform [27], which can be used as a

component of other more advanced networks [28]; Tacchino

proposed a quantum perceptron model that can run on near-

term quantum processing hardwar [29]. Currently, quantum

perceptron models are in the exploratory stage and there is no

absolute authority on them. In our work, the quantum

perceptron model based on the quantum phase estimation

algorithm [27] proposed by Schuld is used. The inverse

quantum Fourier transform and the gradient descent

algorithm on a classical computer are used to train the weight

matrix of the perceptron.

Hopfield network (HNN) are single-layer full feedback

network [30], which are characterised by the fact that the

output xi of any neuron is fed back to all neurons xj as output

by connecting the weights wij. The network usually uses Hebbian

rule [31] for the design of the weight matrix. Hebbian rule is

simpler but useful for the design of the weight matrix in HNN.

However, sometimes the Hebbian rule cannot find an exact

weight matrix, even though such a matrix exists [32]. This is

because the rule does not incorporate the thresholds of the HNN

into the training, which can result in attractors producing ranges

of attraction domains that overlap each other or even appear to

overwrite. And if the vectors to be stored are closer to each other,

their probability of error is higher.

Considering that the weight matrix designed by the Hebbian

rule is not enough to support the HNN to accomplish various

practical tasks, we propose an improvement scheme, which will use

the quantum perceptron instead of the Hebbian rule for the design

of the HNN weights, Firstly, the weights and thresholds of the

Hopfield network are mapped into the weight matrix of the

quantum perceptron, and each node of the HNN is used as the

input vector, and the weight matrix of the quantum perceptron is

passed through the quantum The final weight matrix of the

quantum perceptron is the weight matrix and threshold matrix

of the HNN. The improved HNN has more memory storage space

than the Hebbian rule because it has an additional threshold matrix

to assist in storage, and can store the memorised information better.

Moreover, due to the more accurate weight information, it is also

easier to reach the steady state when iterating the HNN, thus the

resilience and model convergence speed are significantly improved.

Currently, the most widespread use of HNNs is for information

recovery and information matching. Our improved HNN has been

simulated and analysed to provide a huge improvement over the

classical HNN in both information recovery and information

matching, which makes the improved HNN more usable than

the classical HNN, which is expected to provide more

applications for HNNs in more fields, such as playing a greater

role in virus information identification, human brain simulation,

and error correction of quantum noise [33].

In Section 2, we describe in detail the HNN model, the

Hebbian rule, the quantum Fourier transform and the quantum

phase estimation algorithm used in this paper; Section 3 describes

in detail the theory of our approach, including the
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correspondence between the HNN and the perceptronmodel, the

quantum perceptron model and how to use the quantum

perceptron model for training the HNN weights and

thresholds; Section 4 presents our simulation Section 4

presents our experimental analysis, in which we design

experiments to verify the feasibility of our proposed scheme

and its improvement and advantages over the classical scheme;

Section 5 concludes the paper and provides predictions and

analysis of the future of our proposed scheme.

2 Preliminaries

2.1 Hopfield network

HNN are multi-input, thresholded, binary nonlinear dynamic

systems. The excitation function of the neuron is usually a step

function, and the value of the neuron is −1, 1, or 0,1.When the value

is 0 or −1, the current neuron is in the inhibited state, and when the

value is 1, the current neuron is in the activated state. The HNN is a

single layer neural network in which all neuron nodes are connected

to other neuron nodes. There is no self-feedback between the nodes,

forming a complete graph model. A neuron node in the inhibited

state will enter the activated state when the stimulus exceeds a set

threshold, i.e. it will jump from 0 or −1 to 1.

Each node in a HNN has the same function, and the output of

a single node corresponds to the final state of that node, denoted

by xi, with the states of all nodes forming the state of the network

X � [x1, x2, x3, x4 . . .xn−1, xn]T. The topology and mode of

operation is shown in Figure 2. The network enters a steady

state and produces an output when the rate of change of the

energy function of the network, ΔE = 0 or when a preset upper

limit of iterations is reached. The energy function and the rate of

change of the energy function are as follows.

E ϵ( ) � −1
2
XT ϵ( )WX ϵ( ) + XT ϵ( )θ

ΔE � ΔE ϵ + 1( ) − ΔE ϵ( ) (3)

where W � xij{ } is the weight matrix, X � xi{ } is the network

state and θ � θi{ } is the threshold matrix.

2.2 Hebbian rule

The Hebbian rule describes the basic principle of synaptic

plasticity, that is, continuous and repeated stimulation from

presynaptic neurons to postsynaptic neurons can increase the

efficiency of synaptic transmission.

The Hebbian rule is the oldest and simplest neuron learning

rule. Here is the description equantion of the Hebbian rule:

wij � 1
p

∑p
k�1

xz
i x

z
j (4)

Wherewij is the connection weight from neuron j to neuron i, p is

the number of training modes, and xz
i is the i input of neuron k.

In the HNN, Hebbian rules can be used to design weight

matrices:

W � ∑P
p�1

Xp Xp( )T (5)

Here wii = 0, which means that there is no self-feedback between

nodes. The equantion is rewritten as follows:

W � ∑P
p�1

Xp Xp( )T − I[ ] (6)

Where I is the unit matrix and X is the system state of HNN.

2.3 HNN attractor and pseudo attractor

Considering that the Hopfield network has M samples of Xm,

then:

Xm( )TXz � 0, m ≠ z
n, m � z

{ (7)

FIGURE 1
Models of classical perceptual machines (left) and applications to classification (right).
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WXz � ∑m
m�1

Xm Xm( )T − I[ ]Xz � n −M( )Xz (8)

Because of n>M, therefore:

f WXm( ) � f n −M( )Xm[ ]
� sgn n −M( )Xm[ ] � Xm (9)

According to Eq. 9: when a given sample, Xm is the ideal attractor

and produces a certain attractor domain around it, which will be

“captured” by the attractor in the attractor domain. However, the

condition that the given samples are orthogonal to each other is

too harsh, which eventually leads to the attraction domain of

some points outside the samples, which are regarded as pseudo

attractors of the HNN.

2.4 Quantum Fourier transform

The quantum Fourier transform is an efficient quantum

algorithm for the Fourier transform of quantum amplitudes.

The quantum Fourier transform is not the classical counterpart

of the Fourier transform and does not speed up the Fourier

transform process on classical data, but it can perform an

important task-phase estimation, i.e. estimating the eigenvalues

of the You operator under certain conditions. The matrix

representation of the quantum Fourier transform is as follows:

QFTN � 1��
N

√

1 1 1 / 1
1 ω ω2 / ωN−1

1 ω2 ω4 / ω2 N−1( )

..

. ..
. ..

. ..
.

1 ωN−1 ω N−1( )2 / ω N−1( ) N−1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Where, ω � e
2πi
N � cos 2π

N + i sin 2π
N .

In the classical Fourier transform, the transformation takes

the following form:

yk � 1��
N

√ ∑N−1

j�0
xje

2πjk/N (11)

The mathematical form of the quantum Fourier transform is

similar to the mathematical representation of the discrete Fourier

transform [34]. It is an operator defined on a set of standard

orthogonal bases |0〉, |1〉/|N − 1〉 with the following action:

|j〉 � 1��
N

√ ∑N−1

j�0
e2πjjk/N|k〉 (12)

An arbitrary quantum state action can be expressed as:

|ψ〉 � ∑
j

~xj|j〉→ ∑N−1

j�0
~xjQFT |j〉( ) � ∑N−1

j�0
~xj

1��
N

√ ∑N−1

k�0
ei

2π
N jk|k〉⎛⎝ ⎞⎠

� ∑N−1

k�0
∑N−1

j�0

~xj��
N

√ ei
2π
N jk⎛⎝ ⎞⎠|k〉 � ∑N−1

k�0
yk|k〉

(13)
where the amplitude yk � 1��

N
√ ∑N−1

j�0 ~xjei
2π
N jk is the value of the

discrete Fourier transform of the amplitude ~xj.

The transform itself does not have much obvious value, but it

is an important component subalgorithm of the quantum phase

estimation algorithm. The quantum Fourier transform

corresponds to the quantum line diagram (omitting the

SWAP gate), where Rk �
1 0

0 e
2π
2k

⎛⎝ ⎞⎠. Figure 3 illustrates the

quantum circuit of the quantum Fourier transform.

FIGURE 2
HNN topology operating structure and mode of operation.
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2.5 Qunamtum phase estimation
algorithm

The quantum phase estimation algorithm is the key to many

quantum algorithms [6,35], and its role is to estimate the phase in

the eigenvalues of the eigenvectors corresponding to the You

matrix. The quantum circuit for quantum phase estimation is

shown in Figure 4. The algorithm uses two registers, the first of

which contains τ quantum bits with initial state |0〉. The value of
τ depends on the number of bits desired to be accurately

estimated and the desired success rate. The second register

has an initial state of |~xn〉. The essence of the process is the

ability to perform the inverse Fourier transform:

1
2
τ
2
∑2τ−1
j�0

e2πiφj|j〉 ~xn| 〉 →|~φ〉 ~xn| 〉 (14)

where state |~φ〉 is the estimated value of φ.

3 Methods

3.1 Correspondence between perceptron
models and HNN

Firstly, we will discuss HNN with the range restricted to cells

with non-zero thresholds and a step function as the threshold

function, which is by far the most common form of HNN.

Secondly two consensus needs to be established: 1) the units

in this network are perceptrons. 2) The perceptron can determine

the weights and thresholds of the network for the problem to be

learned. Focus on consensus i): Based on the definitions of HNN

and perceptual machines above, it is clear that the unit in a HNN

is a perceptual machine.

Focus on consensus ii): Consider a HNN with n cells, where

W is the weight matrix of n × n, such that θi denotes the threshold

of the cell i and the state of the network is X. If one wants this
network to reach a steady state, it means that the following n

inequalities must be satisfied:

sign x1( ) x2w12 + x3w13 +/ + xnw1n − θ1( )> 0
sign x2( ) x1w21 + x3w23 +/ + xnw2n − θ2( )> 0

..

.

sign xn( ) x1wn1 + x2wn2 +/ + xn−1wmn−1 − θn( )> 0
(15)

Since it has no self-feedback, only the n (n − 1)/2 non-zero entries

of the weight matrixW and the n thresholds of the cells appear in

these inequalities. Let u denote the vector of n + n (n + 1)/2

dimension whose components are the non-diagonal elements of

the weight matrix wij (i < j) and the n threshold minus signs. The

vector u is given by the following equation:

u � w12, w13, . . . , w1n, w23, w24, . . . , w2n, . . . , wn−1n,−θ1, . . . ,−θn( )
(16)

The vector x is transformed into n auxiliary vectors v1, v2, v3, . . . ,
vn of dimension n + n (n + 1)/2 given by the expression:

v1 � x2, x3, . . . , xn︸�����︷︷�����︸
n−1

, 0, 0, . . . , 1, 0, . . . , 0︸����︷︷����︸
n

⎛⎜⎝ ⎞⎟⎠
v2 � x1, 0, . . . , 0︸����︷︷����︸

n−1
, x3, . . . , xn︸����︷︷����︸

n−2
, 0, 0, . . . , 0, 1, . . . , 0︸����︷︷����︸

n

⎛⎜⎝ ⎞⎟⎠
vn � 0, 0, . . . , x1︸����︷︷����︸

n−1
, 0, 0, . . . , x2︸����︷︷����︸

n−2
, 0, 0, . . . , 0, 0, . . . , 1︸����︷︷����︸

n

⎛⎜⎝ ⎞⎟⎠
(17)

Eq. 15 can be rewritten in the following form:

sign xi( )vi · u> 0 (18)

Eq. 18 shows that the solution to the original problem is

found by computing the linear separation of vectors zi. The

vectors belonging to the positive half-space are those with

sgn(xi) � 1, and those belonging to the negative half-space

are those with sgn(xi) � −1. This problem can be solved

using perceptron learning, which allows us to calculate

the weight vector v required for linear separation and

from this to derive the weight matrix W with the

threshold matrix θ. Figure 5 shows the correspondence

between the HNN and the perceptron model.

3.2 Quantum perceptron model

First, t-qubit state|0〉 are passed through the

Hadmard gate, to obtain the superposition state

|0〉⊗τ → 1��
2τ

√ ∑2τ−1
J�0 |J〉, where J is the integer form of the bit

string |j1, . . . , jτ〉, i.e. J = j12
n−1 + j22

n−2 +/ + jn2
0. Next, by an

orcal operation O:

O:
1��
2τ

√ ∑2τ−1
J�0

|J〉 ψ0

∣∣∣∣ 〉 → 1��
2τ

√ ∑2t−1
J�0

|J〉UJ ψ0

∣∣∣∣ 〉

|J〉UJ ψ0

∣∣∣∣ 〉 � e2πiΔϕh w,~x( )J|J〉 ψ0

∣∣∣∣ 〉

(19)

Where U0 � eiπ , U � eiπ⊗n
k�1Uk,Uk �

e−2πwkΔϕ 0
0 e2πiwkΔϕ( ),Δϕ � 1/2n.

From Eqs. 13–19:

1��
2τ

√ ∑2τ−1
J�0

|J〉UJ ψ0

∣∣∣∣ 〉 � 1��
2τ

√ ∑2τ−1
J�0

e2πiJφ|J〉 ψ0

∣∣∣∣ 〉 (20)

Finally the estimated phase can be obtained by inverse Fourier

transform |~φ〉:

1��
2τ

√ ∑2τ−1
J�0

e2πiJφ|J〉 ψ0

∣∣∣∣ 〉 →QFT
−1 |~φ〉⊗ ψ0

∣∣∣∣ 〉
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3.3 Obtaining parameter information
using quantum perception

The connection between the HNN and the perceptron model

was described above. It is now clarified how the design of the

HNN weight matrix can be carried out using the quantum

perceptron. Firstly, σ = (v, u) is input to the quantum

perceptron model as an initial parameter and the model

update rule for the quantum perceptron is as follows:

U σ| 〉 � ⊗n
k�1Uk vk| 〉 � ⊗n

k�1e
2πiukvkΔϕ vk| 〉

� e
2πiΔϕ∑n

k�1 ukvk⊗n
k�1 vk| 〉

� e2πiΔϕh u,v( )⊗n
k�1 vk| 〉

� e2πiΔϕh u,v( ) σ| 〉

(21)

From the above equation, it can be deduced that |σ〉 is an

eigenvector of the matrix U and e2πiΔϕh(u,v) is the

corresponding eigenvalue. By picking the appropriate value of

t in the quantum perceptron, the inverse Fourier transform by:

1���
2τ′

√ ∑2τ−1
J′�0

e2πiJ′θ J′
∣∣∣∣ 〉|σ〉→ ~φ′

∣∣∣∣ 〉 ⊗ |σ〉 (22)

It is possible to obtain a value of, which is very close to the true

phase, and also becomes closer to the true phase as the value of t

becomes larger. Combining Eq. 19 gives:

U ψ0

∣∣∣∣ 〉 � e2πiθ ψ0

∣∣∣∣ 〉, θ � 0.5 + Δϕh u, v( ) ∈ 0, 1[ ] (23)

Therefore the value of σ = (v, u) can be obtained by ~φ′.According
to [], it can be known that in the perceptron model, its weight

update rule:

uij ξ + 1( ) ≔ uji ξ + 1( ) ≔ uij ξ( ) + η

2
σqi − Yq

i( )σqj + σqj − Yq
j( )σqi[ ]
(24)

where Yq � sgn(u(ξ)σq), η is the learning rate. However, when

training with a perceptron, it is difficult to guarantee the

separability of the data. Therefore, our perceptron model is

trained using the delta rule, i.e. a gradient descent algorithm

to search the space of possible weight vectors in order to find the

best-fitting sample weight vector. The process is implemented

with the aid of a classical computer. Its weight update rule is

expressed in the same form as (Eq. 25), except that Yq = u(ξ)σq.

FIGURE 3
Quantum circuits for quantum Fourier transform.

FIGURE 4
Quantum circuits for quantum phase estimation.

FIGURE 5
HNN and perceptual model transformation relationship.

FIGURE 6
Non-orthogonal simple matrix memory test.
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3.4 Computational complexity analysis

We analyze the computational complexity of the HNN in two

steps. 1) Analysis of the lift rate of the data to be trained after

conversion of the HNN to the perceptron model. 2) The

computational complexity required to complete the weight

parameters by means of the quantum phase estimation

algorithm. First we analyse i), any HNN with n nodes

satisfying the requirements of Section 3.1 can be converted

into a perceptron model with n (n − 1)/2 weight parameters.

For ii), we analyze here two different algorithms for finding the

weight parameters, namely the gradient descent-based algorithm

and the Grover fast weight finding algorithm. The time

complexity of the gradient descent-based algorithm is mainly

FIGURE 7
Example model of fragmented data recovery.

FIGURE 8
Diagram corresponding to the number of binary matrices and the recovery rate.
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controlled by the number of steps ε accuracy, i.e. O∝ ε2; the time

complexity of finding the parameters using the Grover algorithm

can reach O(n) under certain conditions. It is clear from this

analysis that the final computational complexity is O(nϒ),
regardless of the algorithm used. However, quantum machine

learning is able to process information using quantum effects, as

in this paper, where we input the training set as a superposition of

feature vectors into a quantum perceptron model that can be

processed simultaneously, and this process is not affected by the

size of the model. The value of this process is small when the

model size is small, and becomes more apparent as the model size

increases and becomes the most important part of determining

the computational complexity.

4 Emulation analysis

The two most important applications of HNN are data

matching and data recovery, which correspond to the accuracy

of the HNN’s weight matrix and memory capacity respectively. The

convergence speed of the HNN model is extremely important in

both data matching and data recovery. To this end, we designed

three experiments, namely a non-orthogonal simplematrix recovery

test, a Random binary-based incomplete matrix recovery test, and a

memory capacity test based on the recognizability of QR codes, to

compare the effectiveness of our proposed improvedHNNwith that

of the classical HNN, and finally we added a model convergence

speed comparison experiment to compare the performance

differences between the models.

Our simulation analysis is based on the pennylane open

source framework. The framework has embedded transition

algorithms between quantum and classical algorithms as well

as parameter optimisation algorithms, eliminating the need for

us to package the parameters and design the optimisation

algorithms separately. With this framework, the measured and

calculated weight parameters are directly updated iteratively by

means of a gradient descent algorithm, and the relevant

information is fed back into the quantum algorithm to update

the perceptron weights. Using this as a basis, we have designed

the following simulation experiments.

4.1 Result

In the non-orthogonal simple matrix memory test, we

demonstrated that our proposed solution can effectively cope

with the memory confusion caused by non-orthogonal

simple matrices; in the fragmented data recovery test, we

demonstrated that our proposed QP-HNN has an average

recovery rate improvement of 30.6% and a maximum of

49.1% in the effective interval compared with Hebbian

rule-Hopfield network (HR-HNN), making it more

practical. In the memory stress test based on QR code

recognisability, our proposed QP-HNN is 2.25 times more

effective than HR-HNN.

4.2 Non-orthogonal simple matrix
memory test

The non-orthogonal simple matrix memory test is set up for

the Hebbian rule in the classical HNN, as one of the prerequisites

FIGURE 9
QP-HNN compared to HR-HNN memory capacity.
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for the design of the weight matrix using the Hebbian rule is that

the input vectors must be orthogonal to each other, and if they do

not satisfy orthogonality, the designed weight matrix may be

incorrect. We demonstrate the impact of this deficiency using

two non-orthogonal 3D row vectors Xv = [0, 1, 0] and Xϑ = [1, 1,

1] as the input matrices for HR-HNN and QP-HNN, as shown in

Figure 6 Where the trained weight matrix WHR = [[0, 1, 1] [1, 0,

1] [1, 1, 0]] for HR-HNN, the weight matrixWQP = [[0, 0.5, 0.3]

[0.5, 0, 0] [0, 0, 0.2]] for QP −Hop and the thresholdmatrix θQP =

[0.6, −0.1, 0.2].

FIGURE 10
HR-HNN and QP-HNN convergence and resilience tests.

TABLE 1 Percentage of information required for recovery.

Number Type 1 2 3 4 5 6 7 8 9

HR-HNN 7% 24% 51% 86% - - - - -

QP-HNN 12% 14% 18% 23% 31% 42% 57% 73% 92%
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4.3 Random binary-based incomplete
matrix recovery test

In this subsection, we test and compare the recoverability of

three different HNN: ClassicalPerceptron-Hopfield (CP-HNN),

QP-HNN, and HR-HNN. Firstly, a random number generator

was used to generate 100 60 × 60 binary matrices

M � Mbr1,Mbr2 . . .Mbri . . .Mbr99,Mbr100{ }, and a different

number of binary matrices Mι, ι ∈ {1, 2 . . . 100} were

randomly selected from M as the weight training matrices

using QuantumPerceptron, ClassicalPerceptron, and

HebbianRule to design the weight matrices respectively. A

matrix Mbri was selected from Mι and generated Mbri′ �
Mbri.1/3 of the data in Mbri′ was inverted to simulate data

residuals, and this matrix was used as the input matrix for the

network to test the recovery rate of the above three HNN. The

example model is shown in Figure 7, and its recovery rate with

different numbers of binary matrices memorised is shown in

Figure 8.

From Figure 8, it can be seen that the resilience of the HR-

HNN network decreases rapidly as ι becomes larger ιmeans that

the orthogonality between the matrices in Mι decreases, and

consequently, memory confusion ensues. The resilience of the

network basically fails at ι = 20 and is completely lost at ι = 30; the

ClassicalPerceptron-Hopfield (CP-HNN) network is highly

similar to the QP-HNN network in terms of resilience and

has excellent robustness in the first and middle stages of ι

growth because the network also trains the threshold This is

equivalent to increasing the error tolerance space and mitigating

errors due to the non-orthogonality of the vectors in the matrix.

As can be seen from the diagram, the network is still very resilient

at ι = 20. However, as ι increases, the fault tolerance space

becomes saturated and the resilience decreases rapidly until it

fails.

4.4 Memory capacity test based on the
recognizability of QR codes

In order to visualise the memory capacity of the models, the

differences between the models are presented using QR codes,

which have different levels of fault tolerance and represent the

number of error pixels that can be tolerated in the QR code. For

our tests we have used the L level of fault tolerance, which allows

for a maximum of 7% of incorrect pixels.

The QR code q1 is generated and stored in the “Successful

Identification”, generating a QR code set Q � qn{ }, n �
2, 3, 4, 5 . . . the information in qn is an irregular string of

numbers generated by a random number generator, a

randomly selected m - QR code from Q is used as the

interfering QR code, and q1 is involved in the design work of

HR-HNN and QP-HNN weight matrices. After 100 tests and

statistical processing, the output matrix of HR-HNN can be

successfully recognised whenm ≤ 4; QP −Hop output matrix can

be successfully recognised when, m ≤ 8. In Figure 9 we show a

comparison of these two HNNs in terms of memory capacity.

4.5 HNN recovery rate test

The usability of HNN is also affected by the number of

iterations required for the model to converge, which in turn is

affected by the completeness of the weights, threshold

information and input data. Therefore, building on the

previous subsection, we further investigate the number of

iterations required for q′ to recover to the state q̂ where

information can be correctly identified for different

numbers of interfering QR codes, as shown in subplot a

and subplot b in Figure 10. Subplot c shows the difference

in the number of iterations required for q′ to recover to q̂ with
the same amount of information. As can be seen from the

figure, QP-HNN possesses a significant advantage over HR-

HNN for the q′ to q̂ process, and this advantage becomes more

pronounced as m grows.

Table 1 counts the recovery capacity limit of the HNN when

the preset upper limit of 30,000 iterations is reached, where HR-

HNN reaches the memory limit at m = 4, i.e. at m = 5, q′ cannot
recover to q̂ even if the number of iterations is increased, while in

QP-HNN, the memory limit occurs at m = 8.

5 Conclusion

We improve the original HNNweight designmethod by using a

quantumperceptron instead of theHebbian rule. The improvedQP-

HNN can better handle non-orthogonal matrices, and its

information memory and recovery capabilities as well as model

convergence speed are significantly improved compared to HR-

HNN. It also opens up the possibility of further expanding the scope

of applications in areas such as virus information recognition,

human brain simulation, and error correction of quantum noise.

Our improved scheme is based on the quantum perceptron

model proposed that we can input all the data to be processed

into the model simultaneously by transforming and preparing

them into quantum entangled states. The current model used is

still the quantum-classical computing model, where the optimal

weighting parameters are found by a classical computer, but

Kapoor et al. have shown that the weighting parameters can be

found much faster using the Grover algorithm, considerably

increase the efficiency of finding the weight parameters to

compensate for the extra time consumed in its determination

of the weights compared to the Hebbian rule. Currently,

corresponding quantum models of HNNs already exist, and

the combination of quantum perceptrons and quantum HNNs

is also destined to be more desirable in pure quantum computers

than in classical HNNs.
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