
Two-dimensional Cr-based
ferromagnetic semiconductor:
Theoretical simulations and
design

Yufei Tu1,2†, Qingquan Liu3†, Lipeng Hou2, Puyuan Shi2,
Chaobin Jia2, Jingjuan Su2, Jiawen Zhang2, Xiuyun Zhang4* and
Bing Wang2*
1School of Electronics and Information Engineering, Sias University, Xinzheng, China, 2Institute for
Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, China,
3Patent Examination Cooperation (Henan) Center of the Patent Office, China National Intellectual
Property Administration, Zhengzhou, China, 4College of Physics Science and Technology, Yangzhou
University, Yangzhou, China

Two-dimensional (2D) material is the promising for next-generation

information technology. The recently discovered intrinsic magnetic crystals

have simulated a renaissance in 2D spintronics, which provides an ideal platform

for exploring novel physical phenomena. However, current experimental trial-

and-error methods in discovering new spintronic material are still very

expensive and challenging. In contrast, based on well-developed first-

principles calculations, computationally designing the spintronic materials

provides a more efficient way for exploring new ferromagnetic (FM)

materials and understanding the nature of magnetic properties. Several

predictions, such as CrI3 monolayer, CrGeTe3 bilayer, CrSBr monolayer,

FeCl2 monolayer, and Fe3GeTe2 monolayer have been confirmed by

experiments, showing the great performance of computational approaches.

This minireview article attempts to give a brief of discovering intrinsic 2D

spintronics from theoretical aspect, and in particular, we emphasize roles

played by calculation based on first-principles methods in designing 2D FM

materials and devices. The current challenges and proposals on future

developments of 2D spintronics are also discussed.
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1 Introduction

Due to non-volatility, lower energy consumption, and faster information operation

compared to controlling a charge current, spintronic devices that use the spin of an

electron for information processing have attracted worldwide interest [1–7]. Just as

graphene, TMS2 (TM = Mo, W), and black P revolutionized condensed matter, the

introduction of 2D van der Waals (vdW) magnetic materials promises to open new
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horizons in materials science and enable the potential

development of spintrons [8–11]. In fact, 2D magnetism has

been studied for decades but only recently they have been

experimentally verified. The recent exciting 2D ferromagnetic

breakthroughs, such as CrI3 monolayer, Fe3GeTe2 monolayer,

CrGeTe3 bilayer, and CrSBr monolayer exfoliated from their

vdW bulk, have promoted research into new magnetic properties

and creative concepts [1,2,11–17].

Traditional trial and error experiments have no clear goals

and guidelines, and face the fundamental challenges of long time

and high cost. Computational simulations are an important first

step in exploring possible applications of new materials. It not

only can predict new 2D materials, but also suggest possible

routes for their synthesis. Many interesting cases have been

confirmed by experiment, such as the growth of borophene,

ferroelectricity in SnTe. Compared to other computational

methods, the first-principles approach, which is an effective

method to study new materials, is the most widely used tool

in designing new materials, requiring very few fundamental

physical constants and atomic position coordinates. In fact,

the rapid development of 2D FM materials benefits from

theoretical simulation. From the theoretical point of view,

magnetic anisotropy, which can improve the stability of

magnetic information, can break the Mermin-Wagner

theoryopening the door for 2D long-range FM materials.

Firstly, ultra-thin VSe2 had been predicted to be intrinsic

ferromagnetism theoretically in 2012, and has been confirmed

by recent experiment [18–21]. The recent star ferromagnetic

CrGeTe3 bilayer, CrI3 monolayer, CrSBr monolayer, FeCl2
monolayer, and Fe3GeTe2 monolayer were also first predicted

theoretically [22–26], and they have recently been experimentally

made [1,2,11,14,15], which show the strong power of first-

principles calculations in designing these spintronics materials.

This minireview will summarize recent progress of 2D

intrinsic FMSs in theoretical side and show the importance of

first-principles calculations in designing new materials. Firstly,

we give the reason why ferromagnetic order exists in 2D space

theoretically. Then, we summarized the discovery processes and

magnetic properties of recent landscape of several 2D

ferromagnetic semiconductors, using 2D CrI3, CrSBr, and

CrGeTe3 as the examples, respectively. Finally, we highlight

the problems existing in the designed 2D FM materials and

suggest possible directions for further development of

computational simulations.

2 Results and discussion

2.1 Importance of MAE in low dimensional
magnetic materials

Theoretically, spontaneous FM order takes place in three-

dimensional (3D) system for isotropic Heisenberg model at finite

temperatures, but is completely prohibited by the thermal

fluctuations in 2D isotropic Heisenberg model according to

the Mermin–Wagner (M-W) theorem. For 2D isotropic

Heisenberg ferromagnet, due to the absence of a spin wave

excitation gap, the diverging Bose-Einstein statistics at zero

energy, and the abrupt onset of magnon density of states

(DOS), there will be plenty of excitations of magnons at

nonzero temperatures, which would cause the long-range spin

ordering to collapse and giant magnon excitations (Figure 1A).

However, the presence of uniaxial magnetocrystalline anisotropy

(UMA) can open up the magnon excitation gap, which resists the

thermal agitations (Figure 1B). This removes theM-W restriction

by breaking the continuous rotational symmetry of the

Hamiltonian and leads to the finite Curie temperature (TC)

[6]. As the materials evolves from 2D to 3D, the density of

states (DOS) spectrum of magnon has changed from a step

function to a gradually increasing function with zero DOS at the

threshold of excitation (Figures 1C,D). As a result, in 3D system,

UMA is not the prerequisite for the existence of long-range FM

order at finite temperature. As a result, MA is important in 2D

magnets, which not only effects magnetic properties, but also is

necessary to stabilize magnetic order in the 2D space limit.

The previous works show that the sizable MAE mainly arises

from the strong SOC [27–30]. In addition to the SOC

contribution, the shape anisotropy caused by the dipolar

interaction also contributes to the MAE [24,31]. It is worth

mentioning that the quantitative microscopic origin of MA is

still an open question and the 2D magnetic materials usually

possess small MAE (below meV), which is difficult to be

measured directly. Therefore, it is in longing need of careful

examination andmore theoretical efforts will be spent to discover

effective strategy to enhancing the MAE or searching new 2D FM

materials with sizeable MAE.

2.2 Prediction of 2D magnetism

Magnetism usually originates from the spin of unpaired

electrons in partially filled d or f orbitals. According to

characteristics of electronic structures, the FM materials can

be clearly classified into three types: ferromagnetic

semiconductors (FMS), ferromagnetic metals (FMM) (Figure

1G), and ferromagnetic half-metals (FHM) (Figure 1F). Based

on the easy magnetization directions, there are three forms of

Heisenberg, XY, and Ising ferromagnet, respectively, as shown in

Figure 1H. The Heisenberg ferromagnet has no MA; the XY

ferromagnet possesses an easy magnetization plane, in which

spin can rotate freely in the whole plane; and the Ising

ferromagnet exhibits an out-of-plane easy axis.

FMS (Figure 1E), both spin-up and spin-down channels with

semiconducting gaps, combines the advantages and properties of

both semiconductors and magnets, which can be applied for spin

injection, spin manipulation, and spin detection [32]. The history
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of the discovery of the typical 2D FMS, CrI3 monolayer

(Figure 1I), illustrates the power of first-principles

calculations, and shows the intimate interaction between

experiment and theory, which greatly accelerates the discovery

of new materials. The layered vdW bulk CrI3 possesses Ising

ferromagnetism below the TC of 61 K with strong UMA [33]. Its

monolayer was first predicted to be intrinsic FMS with TC of 95 K

by using Monte Carlo (MC) simulations and large MAE (685

μeV/Cr), and could be easily exfoliated from the bulk crystals

[34]. The other theoretical work showed the its TC was 107 K and

can be further increased to 293 K by hole doping [22]. By lithium

atom adsorption, the CrI3 monolayer can be switched from

semiconducting to half-metallicity, which can further enhance

the ferromagnetism of CrI3 sheets [35]. Excitingly, 2 years later,

this CrI3 monolayer was exfoliated from its layered bulk

successfully, and its intrinsic long-range ferromagnetic order

was also confirmed by scanning magneto-optic Kerr

microscopy with the TC of 45 K (Figure 1J) [1], which

provides an ideal platform for the application of 2D

spintronics. For CrI3 bilayer, the first-principles calculations

show that it is interlayer antiferromagnetically coupled [36],

and further theoretical study shows that the stacking order

defines the antiferromagnetic (AFM) coupling, [37]. This

result was confirmed by recent experiment [38], and the

magnetic order of CrI3 bilayers can further transfer from

AFM to FM order by electric fields [39] and pressure [40]. In

FIGURE 1
(A–D) Spin wave excitations in ferromagnets of different dimensionalities Reproduced with permission [6]. Copyright©2019 American
Association for the Advancement of Science (AAAS). (E–G) Schematic DOS for three types of ferromagnetic semiconductor, half-metal, and metal
materials. (H) Spin symmetries of MA for Heisenberg model, XY model, and Ising model, respectively. Reproduced with permission.
Copyright©2020 John Wiley and Sons Australia. (I) The structure of CrI3 monolayer. (J) Polar MOKE signal for a CrI3 monolayer. Reproduced
with permission [1]. Copyright©2017 Springer Nature.
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addition, the isostructure vdW layered CrBr3 and CrCl3 also have

FM ordering, and the previous predicted CrBr3 monolayer and

CrCl3 bilayer has been confirmed by recent experiments (Figures

2A–C) [12,13,41], showing the accuracy and efficiency of

computational predictions.

Another typical 2D FMS is CrXY3 (X = Si, Ge, and Sn; Y = S,

Se, and Te). In 2014, Yang’s group demonstrates the possibility of

2D intrinsic FMSs by exfoliating layered crystals of CrMTe3 (M =

Si, Ge) through first-principles calculations, and the 2D FM order

can persist up to 35.7 K (CrSiTe3) or 57.2 K (CrGeTe3) based on

classical Heisenberg model in MC simulations [23]. Then,

Sivadas et al. show that CrSiTe3 monolayer is an

antiferromagnet (AFM) with a zigzag spin texture contrary to

other studies, whereas CrGeTe3 is a FMS with a TC of 106 K

based on Heisenberg model. Zhuang et al. have performed

accurate hybrid density functional methods to predict that

CrSnTe3 monolayer is a FMS and the calculated TC is about

170 K, which is higher than those of CrGeTe3 (130 K) and

CrSiTe3 (90 K) monolayers based on Ising model [42, 43].

After that, Gong et al. confirmed the intrinsic long-range FM

order in pristine 2D CrGeTe3 bilayer via scanning magneto-optic

Kerr microscopy and the measured TC is about 30 K (Figure 2D)

FIGURE 2
(A) Normalized temperature-dependent dc resistance of CrX3 (X = I, Br, and Cl) at constant current of 0.1 nA. Insets show schematics of the
spin-dependent tunnel barrier for AFM and FM interlayer coupling. MCD measurements on CrBr3. (B) Low-temperature MCD vs B⊥ and (C)
temperature-dependent normalized MCD at zero field (MCD↑(↓) (T) = MCD↑(↓),5K)for 1L, 2L, and 3L CrBr3. Reproduced with permission [41].
Copyright©2018 National Academy of Sciences. (D) Experimental (blue squares) and theoretical (red circles) field dependence of TC in samples
of various thickness. Reproducedwith permission [2]. Copyright©2017 Springer Nature. (E) The structure of CrSBrmonolayer and (F) evolution of spin
magnetic moment with respect to temperature of CrSX (X = Cr, S, and Br) monolayers. Reproduced with permission [25], Copyright©2018 Royal
Society of Chemistry. (G) Atomic force microscopy image of an exfoliated flake of varying thicknesses from one to seven layers for CrSBr and (H)
square roots of the average SHG intensities of monolayer CrSBr as a function of temperature. Reproduced with permission [11].
Copyright©2018 American Chemical Society.

Frontiers in Physics frontiersin.org04

Tu et al. 10.3389/fphy.2022.1078202

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1078202


[2]. Although the value of calculated TC for CrGeTe3 is higher

than that of experiment, the first-principles method is still an

important tool to fuel the discovery of novel 2D FM materials

and guide experimental understanding. Unfortunately, CrGeTe3
monolayer was not still confirmed, and the nature of magnetism

in this monolayer needs more effort to be paid.

A class of 2D magnetic materials, CrMN (M = O, S, Se, and

Te; N = Cl, Br, and I) will crystakize in the space group Pmmn,

which has a vdW layered structure in the z-axis direction. As

early as in 2018, our group shows that the FMS CrSX (X = Cl,

Br, and I) monolayers possess high hole mobilities

(103 cm2V−1s−1) and TC (150–170 K) (Figures 2E,F), which

are competitive candidates for next-generation spintronics

and electronics [25]. Then, Wang et al. have extensively

explored the ferromagnetic properties of CrCX (C = S, Se,

and Te; X = Cl, Br, and I) monolayers and found that they

show extremely large anisotropy [26]. Recently, Millimeter-

size CrSBr single crystals were grown by chemical vapor

transport from Cr and S2Br2 [11] and was confirmed to be

a layered vdW A-type AFM with a bulk Néel temperature (TN)

of 132 K [25,26,44]. Interestingly, CrSBr monolayer was easily

exfoliated from its bulk and the experiment value of TC is

about 146 K (Figures 2G,H) [11], which is in good agreement

with what we predicted. Besides, several other 2D Cr-based

semiconductors such as CrOCl, CrOBr [45], CrOF [46],

Cr2I3X3 (X = Br, and Cl) [47], Cr2O3 [48], were also

predicted to possess robust FM order. Although the rapid

development of theoretical work has generated a lot of very

important results, the presently demonstrated 2D FMSs are

still rare and more efforts should be paid to searching or

designing interesting materials.

3 Conclusion and outlook

2D FM materials have received widespread attention and

form the basis for next-generation nanoscale spintronics. Based

on the first-principles simulations, plenty of theoretical efforts

have been devoted to designing low-dimensional FM materials,

and some of them have been confirmed later by experiment,

which has promoted the rapid development of 2D magnetism

field. Several interesting cases including 2D ferromagnetic

semiconductors have been discussed in this minireview,

showing the strong power of first-principles methods. The

comparison between simulation and experiment proves the

accuracy and efficiency of the calculation and prediction. As

an important tool, first-principles calculations will remain a key

component of designing materials, providing guidance for the

development of spintronics. It should be emphasized that

although great recent successes have been made, the study of

2Dmagnetism is still in its infancy, and searching for high 2D TC

intrinsic ferromagnetism is still a current hotspot. Several key

challenges are still needed to be overcome in the future as follow:

(1). Designing new members of 2D FM materials with high

TC, large out-of-plane MAE, and easy experimental

accessibility. On one hand, the types of 2D FM materials

confirmed experimentally are rather limited, and should be

enriched further. On the other hand, the present 2D FM

materials suffer the problem of low TC and small MAE, greatly

limit their application scope. One need to investigate the

factors that affect Curie temperature (such as the exchange

interaction and the magnetic anisotropy), and then find

appropriate strategies to increase TC. Synthesizable 2D FM

materials with high temperature TC and sizable MAE are still

highly desirable.

(2). Improving the accuracy of theoretical prediction. Due to

limitations of standard DFT theory, close cooperation

between theory and experiment is needed to combine the

advantages of both to accelerate the discovery and synthesis of

2D FMmaterials. For example, the predicted TC with the Ising

model and mean field theory are usually overestimated

compared with experiment values [49]. MC simulation

based on Heisenberg model appears to be more reliable in

the accurate prediction of TC, which is also very important to

model new systems for practical applications.

(3). Making full use of rapid development of the 2D database.

To take the advantage of the established database, high-

throughput method [50–53] and machine learning [54–56]

models need to be developed to reduce the number of required

objective function evaluations (first-principles calculations)

and avoid the amount of computational cost. These methods

offer new tools for designing new 2D FM materials to

overcome the challenges in the practical application of

information technologies.
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