
Hilbert solution, iterative
algorithms, convergence
theoretical results, and error
bound for the fractional Langevin
model arising in fluids with
Caputo’s independent derivative

Mohammad Abdel Aal1, Omar Abu Arqub2* and Banan Maayah3

1Department of Basic Sciences, Faculty of Arts and Educational Sciences, Middle East University,
Amman, Jordan, 2Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt,
Jordan, 3Department of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan

Studying and analyzing the random motion of a particle immersed in a liquid

represented in the Langevin fractional model by Caputo’s independent

derivative is one of the aims of applied physics. In this article, we will attend

to a new, accurate, and comprehensive numerical solution to the

aforementioned model using the reproducing kernel Hilbert approach.

Basically, numerical and exact solutions of the fractional Langevin model are

represented using an infinite/finite sum, simultaneously, in the Σ2(Ξ) space. The
proof has been sketched for many mathematical theorems such as

independence, convergence, error behavior, and completeness of the

solution. A sufficient set of tabular results and two-dimensional graphs are

shown, and absolute/relative error graphs that express the dynamic behavior of

the fractional parameters (α, β) are utilized as well. From an analytical and

practical point of view, we noticed that the simulation process and the iterative

approach are appropriate, easy, and highly efficient tools for solving the studied

model. In conclusion, what we have carried out is presented with a set of

recommendations and an outlook on the most important literature used.
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1 Introduction

The Langevin equation, in its fractional issue, is a

mathematical dynamic model fundamental in Brownian

motion applications to characterize the emergence of

physical episodes in oscillating mediums. It is a

popularization of the conventional model that utilizes a

fractional Gaussian procedure formalized by two vertices,

which is much more adaptable to the parameterization of

the fractal evolution processes [1–4]. The applications of the

FLM can be seen in the stock market, motor control system

modeling, photoelectron counting, fluid suspensions, deuteron-

cluster dynamics, protein dynamics, evacuation process

modeling, financial markets, single-file diffusion, and

anomalous transport [5–8]. Commonly, FDMs have wide

applications in the formation of many engineering and fluid

physics phenomena. In the second half of the last century, the

search for more serious numerical algorithms began to control

many of the nonlinear problems that appeared with the

emergence of fractional derivatives and their emerging

applications. However, many studies came into existence, as

in the following literature [9–13]. To date, effective analytical

and numerical schemes have been developed and successfully

applied to deal with different classes of FDMs [14–20].

Although finding accurate solutions to FDMs of different

orders in Brownian particle motion placements is an important

problem for understanding the dynamic attitudes of oscillatory

environments in trifling media, in this article, we contemplate

creating an accurate numerical solution to FLMs utilizing the

CFD with appropriate boundary data using a new renewal in the

RKHA. Here, we will generate effective and straightforward

numerical solutions without imposing any restrictions on the

nature of the proposed FLM and obtain sufficient convergence

while reducing the computation time by exposure to the

following model [1–8]:

zβ

z

zα

z
+ μ( )E ( ) � H , E ( )( ), (1)

equipped with the posterior boundary condition:

E 0( ) − E0 � 0,

zα

zx
E 1( ) − Eα

1 � 0.

⎧⎪⎪⎨⎪⎪⎩ (2)

Typically, the FDM (Eqs 1, 2) consists of the posterior

parameters, functions, and variable effects as attached:

1)  ∈ Ξ: [0, 1] stands for the time-coordinate independent

domain.

2) 0≤ α, β≤ 1 stands for the rank of fractional derivatives

applied.

3) E: [0, 1] → R stands for the particle position.

4) zγ

z E: Ξ → R is the CFD of the rank γ of E and is given as

follows:

FIGURE 1
2-D Cartesian plots of the RKHA numeric solution of the FLM platform over Ξ: (A) application 1, when (α, β) � (1/2,4/5); (B) application 2, when
(α, β) � (1/3,3/4); and (C) application 3, when (α, β) � (1/4,4/5).
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FIGURE 2
2-D Cartesian plots of RKHA absolute errors of the FLM platform over Ξ: (A) application 1, when (α, β) � (1/2,4/5); (B) application 2, when
(α, β) � (1/3,3/4); and (C) application 3, when (α, β) � (1/4,4/5).

FIGURE 3
2-D Cartesian plots of RKHA relative errors of the FLM platform over Ξ: (A) application 1, when (α, β) � (1/2,4/5); (B) application 2, when
(α, β) � (1/3,3/4); and (C) application 3, when (α, β) � (1/4,4/5).
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zγ

z
E ( ) �

1
Γ 1 − γ( )∫

0
 − ω( )−γ z

z
E ω( )dω, 0< γ< 1,

z

z
E ( ), γ � 1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

6) H: Ξ × R → R is a bounded variational map that symbolizes

the imposed acting on Brownian particles.

7) μ ∈ R is a nontrivial parameter that represents the damping

or viscosity term.

8) E0, Eα
1 ∈ R are nontrivial parameters that represent the initial

and terminal positions of the particle simultaneously.

Ordinarily, no conventional schemes produce an accurate

prototype solution for FLMs. Thus, there is a great need for the

RKHA, which satisfies the purpose, as usual, and has reached the

desired and satisfactory numerical results with fully stochastic

properties. Here, the relevant theories and facts have been

confirmed by numeric emulations, graphical representation,

and scale tables for three types of FLMs. However, the tenor

of the paper is arranged as follows: Section 1: Presentation: FDMs

and CFDs. Section 2: RKHA: Preliminaries and definitions.

Section 3: RKHA: Construction and properties. Section 4:

RKHA: Solutions and convergence. Section 5: Error:

Estimation and bound. Section 6: Justifications: Algorithms,

TABLE 1 Associated RKHA scores for application 1 with 8 � 101, when (α, β) � (1/2, 4/5).

ℴ E(ℴ) E8(ℴ) ρ8(ℴ) σ8(ℴ)
0 0 0 0 ∞

0.1 0.01 0.01000000000000009 9.194034423 × 10−17 9.194034423 × 10−15

0.2 0.04 0.03999999999999999 2.081668171 × 10−17 5.204170428 × 10−16

0.3 0.09 0.08999999999999998 4.163336342 × 10−17 4.625929269 × 10−16

0.4 0.16 0.15999999999999992 1.110223025 × 10−16 6.938893904 × 10−16

0.5 0.25 0.24999999999999990 1.110223025 × 10−16 4.440892099 × 10−16

0.6 0.36 0.35999999999999993 1.665334537 × 10−16 4.625929269 × 10−16

0.7 0.49 0.48999999999999990 2.220446049 × 10−16 4.531522549 × 10−16

0.8 0.64 0.63999999999999980 3.330669074 × 10−16 5.204170428 × 10−16

0.9 0.81 0.80999999999999960 4.440892099 × 10−16 5.482582838 × 10−16

1 1 0.99999999999999980 2.220446049 × 10−16 2.220446049 × 10−16

TABLE 2 Associated RKHA scores for application 2 with 8 � 101, when (α, β) � (1/3, 3/4).

ℴ E(ℴ) E8(ℴ) ρ8(ℴ) σ8(ℴ)
0 1 1 0 2.220446049 × 10−16

0.1 1.1051709180756477 1.1051709182537852 1.781375047 × 10−10 1.611854799 × 10−10

0.2 1.2214027581601699 1.2214027584214940 2.613240735 × 10−10 2.139540555 × 10−10

0.3 1.3498588075760032 1.3498588080897970 5.137938963 × 10−10 3.806278801 × 10−10

0.4 1.4918246976412703 1.4918246984882728 8.470024682 × 10−10 5.677627335 × 10−10

0.5 1.6487212707001282 1.6487212716247421 9.246139410 × 10−10 5.608067036 × 10−10

0.6 1.8221188003905090 1.8221188018679133 1.477404199 × 10−9 8.108166156 × 10−10

0.7 2.0137527074704766 2.0137527108024590 3.331982246 × 10−9 1.6546134160 × 10−9

0.8 2.2255409284924680 2.2255409327352247 4.242756813 × 10−9 1.9063935240 × 10−9

0.9 2.4596031111569500 2.4596031111516954 5.254463531 × 10−12 2.136305450 × 10−12

1 2.7182818284590450 2.7182818271214640 1.337581157 × 10−9 4.920686085 × 10−10
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applications, and analyses. Section 7: Outline: Conclusion and

outlook.

2 Reproducing kernel: Preliminaries
and definitions

The approach of the reproducing kernel is a novel solver built

to find solutions to FDMs emerging in physics, waves, statistics,

and engineering [21–23]. This technique is based on the

Gram–Schmidt process and Fourier expansion approach for

an arbitrary order and is used for optimizing an orthogonal

basis to detect unknown compounds. The RKHA has many

motivational aspects and a great ability to handle complicated

problems without imposing any restrictions on the style of the

models. Therefore, it has been gaining a lot of solicitude and

examination lately [24–32].

First, a reproducing kernel induced from a given Hilbert

space is called the RKHA. Here, |C|(Ξ) is a set of maps that are

continuous absolutely on Ξ. At the outset, some requirements

that are necessary to go further in our RKHA scheme will be

sought.

Remark 1. [24] The frameworks of Σ0(Ξ) are as follows:
Σ0 Ξ( ) � E: E ∈ C| | Ξ( ) ∧ E ∈ L2 Ξ( ){ },
〈E1 ( ), E2 ( )〉Σ0 � E1 0( )E2 0( ) + ∫

Ξ
E1
′ ( )E2

′ ( )d,

E‖ ‖2Σ0 � 〈E ( ), E ( )〉Σ0,
Π 1{ }

 ( ) � 1 + , ≤,
, >.
{

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (4)

Remark 2. [24] The frameworks of Σ1(Ξ) are as follows:

Σ1 Ξ( ) � E: E ℴ( ) ∈ C| | Ξ( ) ∧ E ℴ( ) ∈ L2 Ξ( ) ∧ E 0( ) � 0{ },
〈E1 ( ), E2 ( )〉Σ1 � ∑1

ℴ�0
E ℴ( )
1 0( )E ℴ( )

2 0( ) + E1 1( )E2 1( )

+∫
Ξ
E1
‴ ( )E2

‴ ( )d,

E‖ ‖2Σ1 � 〈E ( ), E ( )〉Σ1,

Π 1{ }
 ( ) � 1

120

Π ,( ), ≤,

Π , ( ), >,

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

with Π(,) � (−120(−1 + ) − (120 − 246 + 102 −
53 +4) + 5(−1 +)3 − (−1 + 2)4).
Definition 1 The framework of Σ2(Ξ) is as follows:

Σ2 Ξ( ) � E: E ∈ Σ1 Ξ( ) ∧ zα

z
E 1( ) � 0{ }. (6)

Here, one can find that Σ2(Ξ) is a subset in Σ1(Ξ) and is

closed. Next, to generate the kernel function of Σ2(Ξ), we put

ΛE() � /E()|�1.

Theorem 1. If ΛΛΠ 1{ }
 () ≠ 0, then the framework function

of Σ2(Ξ) is as follows:

Π 2{ }
 ( ) � Π 1{ }

 ( ) − ΛΠ 1{ }
 ( )ΛΠ 1{ }

 ( )
ΛΛΠ 1{ }

 ( ){ . (7)

Proof: Because zα/zΠ 2{ }
1 () � 0, Π 2{ }

 () ∈ Σ2(Ξ). However, for

each E() in Σ2(Ξ), one can obtain

〈E ( ),Π 2{ }
 ( )〉 � 〈E ( ),Π 1{ }

 ( )〉
� E ( ), (8)

or Π 2{ }
 () is the reproducing kernel of Σ2(Ξ).

TABLE 3 Associated RKHA scores for application 3 with 8 � 101, when (α, β) � (1/4, 4/5).

ℴ E(ℴ) E8(ℴ) ρ8(ℴ) σ8(ℴ)
0 0 0 0 ∞

0.1 0.1331000000000000 0.1331000000000007 6.938893904 × 10−16 5.213293692 × 10−15

0.2 0.3456000000000001 0.3456000000000002 1.110223025 × 10−16 3.212450881 × 10−16

0.3 0.6591000000000001 0.6591000000000005 3.330669074 × 10−16 5.053359238 × 10−16

0.4 1.0976000000000001 1.0976000000000006 4.440892099 × 10−16 4.046002276 × 10−16

0.5 1.6875000000000000 1.6875000000000002 2.220446049 × 10−16 1.315819881 × 10−16

0.6 2.4576000000000007 2.4576000000000010 4.440892099 × 10−16 1.807003621 × 10−16

0.7 3.4391000000000007 3.4391000000000010 4.440892099 × 10−16 1.291294844 × 10−16

0.8 4.6656000000000010 4.6656000000000010 0 0

0.9 6.1731000000000010 6.1731000000000000 8.881784197 × 10−16 1.438788323 × 10−16

1 8.0000000000000000 8.0000000000000000 0 0
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Theorem 2. If E ∈ Σ2(Ξ), then |E()|≤ 3.5‖E‖Σ2
,

|E′()|≤ 3‖E‖Σ2
, and |E″()|≤ 2‖E‖Σ2

.

Proof: Since E, E′, E″, E‴ ∈ |C|(Ξ), applying successive

integration from 0 to  for E‴, E″, and E′, one can obtain

E″ ( ) − E″ 0( ) � ∫

0
E‴ p( )dp, (9)

E′ ( ) − E′ 0( ) − E″ 0( ) � ∫

0
∫1

0
E‴ p( )dp( )d1, (10)

E ( ) − E 0( ) − E′ 0( ) − 0.5E″ 0( )2

� ∫

0
∫2

0
∫1

0
E‴ p( )dp( )d1( )d2. (11)

Taking | · | values and using the fact 0≤ ||, ||2 ≤ 1, we can

obtain

E ( )| |≤ E 0( )| | + E′ 0( )∣∣∣∣ ∣∣∣∣ + 0.5 E″ 0( )∣∣∣∣ ∣∣∣∣ + ∫
Ξ
E‴ p( )∣∣∣∣ ∣∣∣∣dp. (12)

To complete, one can get |E(0)| �
�����
E2(0)
√

≤ ‖E‖Σ2
,

|E′(0)| �
�������
(E′(0))2
√

≤ ‖E‖Σ2
, |E″(0)| �

��������
(E″(0))2
√

≤ ‖E‖Σ2
, and∫

Ξ
[zwj]|E‴()|d≤

������������������∫
Ξ
[zwj](E‴())2d

√
≤ ‖E‖Σ2

.

3 Reproducing kernel: Construction
and properties

Herein, the boundaries in Eq. 2 will first be homogenized to

zero to obtain easy-to-access modeling in the proposed Σ2(Ξ)
space. The form of the operator that formulates the required

solution will also be determined in addition to some of what is

needed for the scheme.

To achieve this, one must first carry out the following:

zβ

z

zα

z
+ μ( )E ( ) � �H , E ( )( ), (13)

equipped with the posterior boundary condition:

E 0( ) � 0,

zα

z
E 1( ) � 0.

⎧⎪⎪⎨⎪⎪⎩ (14)

For the briefing, the normalizing modified version in Eqs 13, 14 was

obtained from the posterior underlying conversion, taking into

account that all the extra terms transformed into �H(, E()) as
E ( ): → E ( ) − 0.5Γ 3 − α( )Eα

1
2 + E0( ), (15)

�H , E ( )( ) ≔ Γ 3 − α( )
Γ 3 − α − β( ) + μ

Γ 3 − α( )
Γ 3 − β( )α( )Eα

1
2−α−β

+H , E ( ) − 0.5Γ 3 − α( )Eα
1

2 − E0( ). (16)

The conversions in Eqs 15, 16 are needful to insert the

equipped boundaries in Eq. 2 inside Σ2 (Ξ). Indeed, we will

denote E to new and old solutions always.

1) Define the map Ƌ such that

Ƌ: Σ2 Ξ( ) → Σ0 Ξ( ). (17)

2) Build the Ƌ[E] operator as

Ƌ E[ ] ( ) ≔ zβ

z

zα

z
+ μ( )E ( ). (18)

3) Reframe the FLM problem to solve such that

Ƌ E[ ] ( ) ≔ �H , E ( )( ),
E 0( ) � 0,

zα

z
E 1( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (19)

Theorem 3. Ƌ: Σ2(Ξ) → Σ0(Ξ) is a bounded linear operator.

Proof: From Remark 1, one can obtain

ƋE ( )‖ ‖2Σ0 � 〈ƋE ( ),ƋE ( )〉Σ0
� ƋE 0( )[ ]2 + ∫

Ξ
ƋE( )′ ( )[ ]2d.

(20)

Using the reproducing property of Π 2{ }
 (), one can obtain

E ( ) � 〈E ( ),Π 2{ }
 ( )〉Σ2,

ƋE( ) ℴ( ) ( ) � 〈E ( ), ƋΠ 2{ }
( ) ℴ( )

( )〉Σ2,ℴ � 0, 1.
(21)

With the use of the Schwarz inequality, one can obtain

ƋE( ) ℴ( ) ( )∣∣∣∣ ∣∣∣∣ � 〈E ( ), ƋΠ 2{ }
( ) ℴ( )

( )〉Σ2
∣∣∣∣∣ ∣∣∣∣∣
≤ ƋΠ 2{ }

( ) ℴ( )
( )

����� �����Σ0 E‖ ‖Σ2
≤ C ℴ{ } E‖ ‖Σ2, ℴ � 0, 1.

(22)

So ‖ƋE‖2Σ0
≤ (C20{ } + ∫ΞC21{ }d)‖E‖2Σ2

or

‖ƋE‖Σ0
≤
��������
C20{ } + C21{ }
√

‖E‖Σ2
. By picking out a countable dense

subset ℴ{ }∞ℴ�1 in Ξ, defining ωℴ() � Π 1{ }
ℴ
(), and setting

Θℴ() � Ƌ*ωℴ(), one can fit the orthogonal function

system of Σ2(Ξ). Furthermore, by the Gram–Schmidt process,

one can fit the orthonormal function systems �Θℴ(){ }∞ℴ�1 on

Σ2(Ξ) as

�Θℴ ( ) � ∑ℴ
�1

ℴΘ ( ). (23)

Theorem 4. Θℴ(){ }∞ℴ�1 is the complete function system of

Σ2(Ξ) with
Θℴ ( ) � ƋΠ 2{ }

 ( )∣∣∣∣
�ℴ

. (24)

Proof: First, Ƌs indicates that Ƌ applies to a function of .

Certainly,

Θℴ ( ) � Ƌ*ωℴ ( )
� 〈Ƌ*ωℴ ( ),Π 2{ }

 ( )〉Σ2� 〈ωℴ ( ),ƋsΠ 2{ }
 ( )〉Σ0� ƋΠ 2{ }

 ( )∣∣∣∣
�ℴ

.

(25)
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So Θℴ() can be written as ƋΠ 2{ }
 ()|�ℴ

in Σ2(Ξ).
To illustrate more effective properties in Σ2(Ξ), the set

Π 2{ }
ℴ
(){ }∞

ℴ�1 is linearly independent as ℴ{ }ηℴ�1 agrees well

with ∑η

ℴ�1ℴΠ 2{ }
ℴ
() � 0, and for l � 1, 2,/, η, taking E()

in Σ2(Ξ) as E(l) � δl,, then

0 � 〈E ( ),∑η
ℴ�1

ℴΠ 2{ }
ℴ

( )〉Σ2

� ∑η
ℴ�1

ℴ〈E ( ),Π 2{ }
ℴ

( )〉Σ2

� ∑η
ℴ�1

ℴE ℴ( )
� ℴ, � 1, 2,/, η.

(26)

So Π 2{ }
ℴ
(){ }η

ℴ�1 is linearly independent for each η≥ 1.

4 Reproducing kernel: Solutions and
convergence

This section aims to construct exact and RKHA numeric

solutions of Eq. 19, together with some convergence theories, to

ensure this analysis is more efficient. Here, C(Ξ,R) and

C(Ξ × R,R) indicate a set of continuous maps on the group

inside parentheses.

If E ∈ C(Ξ,R) and �Θℴ(){ }∞ℴ�1 are orthonormal, then

〈E(), �Θℴ()〉Σ2
, ℴ � 1, 2,/ are the Fourier maps of E for

�Θℴ(){ }∞ℴ�1 and its Fourier expansion

E() �∑∞
ℴ�1〈E(), �Θℴ()〉Σ2

�Θℴ(), wherein ℴ{ }∞ℴ�1 is

dense throughout Ξ.

Theorem 5. Suppose that ℴ{ }(∞,ℴ)
(ℴ,)�(1,1) are orthogonalization

coefficients of �Θℴ(){ }∞ℴ�1 and a unique solution of Eq. 19 exists,
then the posteriors are accomplished:

1) As 8 → ∞, the exact solution, E(), of Eqs 1, 2 is as follows:

E ( ) � ∑∞
ℴ�1
∑ℴ
�1

ℴ
�H , E ( )( )�Θℴ ( ). (27)

2) The RKHA numeric solution, E8(), of Eqs 1, 2 is as follows:

E8 ( ) � ∑8
ℴ�1
∑ℴ
�1

ℴ
�H , E ( )( )�Θℴ ( ). (28)

Proof: For the first side: Through Theorem 4, �Θℴ(){ }∞ℴ�1 is
an orthonormal basis in Σ2(Ξ), which is complete. Using∑∞

ℴ�1〈E(), �Θℴ()〉Σ2
�Θℴ() as the Fourier expansion

concerning �Θℴ(){ }∞ℴ�1, one can obtain∑∞
ℴ�1〈E(), �Θℴ()〉Σ2

�Θℴ()<∞ in ‖ · ‖Σ2
. So

E ( ) � ∑∞
ℴ�1

〈E ( ), �Θℴ ( )〉Σ2 �Θℴ ( )

� ∑∞
ℴ�1

〈E ( ),∑ℴ
�1

ℴΘ ( )〉Σ2 �Θℴ ( )

� ∑∞
ℴ�1
∑ℴ
�1

ℴ〈E ( ),Ƌ* E[ ] ( )〉Σ2 �Θℴ ( )

� ∑∞
ℴ�1
∑ℴ
�1

ℴ〈Ƌ E[ ] ( ),ωj ( )〉Σ0 �Θℴ ( )

� ∑∞
ℴ�1
∑ℴ
�1

ℴ〈 �H , E ( )( ),ωj ( )〉Σ0 �Θℴ ( )

� ∑∞
ℴ�1
∑ℴ
�1

ℴ
�H , E ( )( )�Θℴ ( ).

(29)

For the second side: Because∑∞
ℴ�1〈E(), �Θℴ()〉Σ2

�Θℴ()<∞ and Σ2(Ξ) are the Hilbert

space, one can truncate Eq. 27 using the 8-idiom RKHA

numeric solution of E() to generate Eq. 28.

Remark 3. Assume that ‖E8−1‖Σ2
<∞ and ℴ{ }∞ℴ�1 are dense

throughout Ξ. Then, according to Eqs 27–28, the portrayal effect

can be determined as follows:

E ( )� ∑∞
ℴ�1

Vℴ
�Θℴ ( ),

Vℴ � ∑ℴ
�1

ℴ
�H , E ( )( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (30)

E8 ( ) � ∑8
ℴ�1

Vℴ
�Θℴ ( ),

Vℴ � ∑ℴ
�1

ℴ
�H , E−1 ( )( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (31)

Theorem 6. Assume that ‖E8−1 − E‖Σ2
→ 0,8 →  as 8 → ∞,

‖E8−1‖Σ2
<∞, and �H(, E()) ∈ C(Ξ × R,R). Then,

�H(8, E8−1(8)) → �H(, E()) as 8 → ∞.

Proof: It all started where E8−1(8) → E() as 8 → ∞.

Evidently, one can obtain

E8−1 8( ) − E ( )| | � E8−1 8( ) − E8−1 ( ) + E8−1 ( ) − E ( )| |
≤ E8−1 8( ) − E8−1 ( )| | + E8−1 ( ) − E ( )| |
≤ E8−1( )′ σ( )∣∣∣∣ ∣∣∣∣ 8 − | | + E8−1 ( ) − E ( )| |,

(32)
with σ in between8 and . Applying Theorem 2, one can obtain

|E8−1() − E()|≤ 3.5‖E8−1 − E‖Σ2
or equivalently |E8−1() −

y()| → 0 as 8 → ∞ and |(E8−1)′(σ)|≤ 3‖E8−1‖Σ2
. Using

‖E8−1‖Σ2
<∞ and 8 → , one can obtain equivalently

|E8−1(8) − E8−1()| → 0 as 8 → ∞. By
�H(, E()) ∈ C(Ξ × R,R), it gives a glimpse that
�H(8, E8−1(8)) → �H(, u()) as 8 → ∞.
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Theorem 7. One gains E8() → E() as 8 → ∞.

Proof: Because E8+1() � E8()+ V8+1 �Θ8+1() and the

orthogonality of �Θℴ(){ }∞ℴ�1, one can obtain

E8+1‖ ‖2Σ2 � E8‖ ‖2Σ2 + V2
8+1

� E8−1‖ ‖2Σ2 + V2
8 + V2

8+1

� ..
.

� E0‖ ‖2Σ2 +∑8+1
ℴ�1

V2
ℴ.

(33)

So ‖E8+1‖Σ2
≥ ‖E8‖Σ2

and ∃κ ∈ R such that ∑∞
ℴ�1V

2
ℴ � κ or

V2
ℴ{ }∞ℴ�1 ∈ l2. To get

Ed ( ) − Ed−1 ( ) ⊥ Ed−1 ( ) − Ed−2 ( ) ⊥/⊥ E8+1 ( ) − E8 ( ),
(34)

it is adequate to have for d> 8 that

Ed − E8‖ ‖2Σ2 � Ed − Ed−1 + Ed−1 −/ + E8+1 − E8‖ ‖2Σ2
� Ed − Ed−1‖ ‖2Σ2 + Ed−1 − Ed−2‖ ‖2Σ2 +/ + E8+1 − E8‖ ‖2Σ2 ,

(35)
with ‖Ed − Ed−1‖2Σ2

� V2
d
. However, on the other line, ‖Ed − E8‖2Σ2

�∑d

l�8+1V
2
ℴ → 0 as 8, d → ∞. Using completeness,

∃E8() ∈ Σ2(Ξ) such that E8() → E() as 8 → ∞.

Theorem 8. Assume that ‖E8−1‖Σ2
<∞ and ℴ{ }∞ℴ�1 are dense

throughout Ξ. Then, E() �∑∞
ℴ�1Vℴ �Θℴ() as 8 → ∞.

Proof: Applying lim
8 �����→∞ on Eq. 31, one gets

E() �∑∞
ℴ�1Vℴ �Θℴ(). So

Ƌ E[ ] ( ) � ∑∞
ℴ�1

Vℴ〈Ƌ �Θℴ[ ] ( ),ω ( )〉Σ0

� ∑∞
ℴ�1

Vℴ〈�Θℴ ( ),Ƌ* S[ ] ( )〉Σ2

� ∑∞
ℴ�1

Vℴ〈�Θℴ ( ),Θ ( )〉Σ2.

, (36)

∑l
�1

lƋ Θ[ ] ( ) � ∑∞
ℴ�1

Vℴ〈�Θℴ ( ),∑l
�1

lΘ ( )〉Σ2

� ∑∞
ℴ�1

Vℴ〈�Θℴ ( ), �Θl ( )〉Σ2
� V l.

(37)

Sequentially, if l � 1, then Ƌ[E](1) � �H(1, E0(1)), and if

l � 2, then Ƌ[E](2) � �H(2, E1(2)). As a rule, one can obtain
Ƌ[E](8) � �H(8, E8−1(8)). By the condition of density,

∀ ∈ Ξ; ∃ 8q{ }∞
q�1 such that 8q →  as q → ∞ or

equivalently Ƌ[E](8q) � �H(8q, E8q−1(8q)). Letting q → ∞,

one gets Ƌ[E]() � �H(E, E()). Because �Θℴ() ∈ Σ2(Ξ), E()
fulfills (Eq. 19).

5 Error: Estimation and bound

As a matter of fact, the exact solution of FDMs (Eqs 1, 2)

restricted with the CFD depends on α and β. In most cases, this

real problem is complicated to be solved traditionally because it

lacks an exact solution. This induces us to develop numerical

schemes like RKHA that generate approximated realizations of

the exact solution depending on the values of α and β.

Here, we will fix T � ℴ{ }8ℴ�1 ⊂ Ξ − 0, 1{ } with

1 ≤2 ≤/≤8 ⊆ Ξ, Z � max0≤ℴ≤ 8|ℴ+1 − ℴ|,
‖℘‖∞ � max∈[ℴ ,ℴ+1]|℘()|, and

‖Ƌ−1‖ � sup0≠E∈Σ2
‖E‖−1Σ0

‖Ƌ−1‖Σ2
. Furthermore, we will fix RE8() �

Ƌ[E8]() − �H(, E()) to the residual truncated error at  ∈ Ξ.

Lemma 1. One gains Ƌ[E8](j) � ƋE(j), j ∈ T .

Proof: Set Π8: Σ2(Ξ) → ∑8

j�1jEj(),j ∈ R{ }. So
Ƌ E8[ ] j( ) � 〈E8 ( ),Ƌ

Π 2{ }


( )〉Σ2� 〈E8 ( ), E ( )〉Σ2� 〈Π8E ( ), Ej ( )〉Σ2� 〈E ( ),Π8Ej ( )〉Σ2� 〈E ( ), Ej ( )〉Σ2� 〈E ( ),ƋjΠ 2{ }
j

( )〉Σ2
� Ƌj〈E ( ),Π 2{ }

j
( )〉Σ2

� ƋjE j( )
� ƋE j( ).

(38)

In other words, Ƌ[E8](j) � ƋE(j).

Lemma 2. Assume that ℘ ∈ Cd(Ξ,R), ℘(d+1) ∈ L2(Ξ) for a fixed
d≥ 1, and ℘ → 0 at T with 8≥ d + 1. So ℘ ∈ Σ0(Ξ) and a

parameter A exist with

℘
���� ����Σ0 ≤AZd max

∈Ξ
℘ d+1( ) ( )∣∣∣∣ ∣∣∣∣. (39)

Proof: Clearly, ℘ ∈ Σ0(Ξ) and ∀ ∈ [ℴ,ℴ+1],
ℴ � 1, 2,/8, one can obtain

℘ ( )∣∣∣∣ ∣∣∣∣ � ℘ ( ) − ℘ τℴ( )∣∣∣∣ ∣∣∣∣
� ∫

τℴ

℘′ τ( )dτ
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
≤  − τℴ| | max

∈ ℴ ,ℴ+1[ ]
℘′ ( )∣∣∣∣ ∣∣∣∣,

≤ Z ℘′
���� ����∞.

(40)

On [ℴ,ℴ+1], applying Roll’s theorem on ℘ yields ℘′(τℴ) � 0

with τℴ ∈ (ℴ,ℴ+1), ℴ � 1, 2,/, 8 − 1. So for fixed , ∃τℴ
such that | − τℴ|< 2Z. Similarly, one can write

℘′ ( )∣∣∣∣ ∣∣∣∣ � ℘′ ( ) − ℘′ τℴ( )∣∣∣∣ ∣∣∣∣
� ∫

τℴ

℘″ τ( )dτ
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
≤  − τℴ| | max

∈ ℴ ,ℴ+1[ ]
℘″ ( )∣∣∣∣ ∣∣∣∣,

≤ 2Z ℘″
���� ����∞.

(41)

So |℘()|≤ 2Z2‖℘″‖∞. Sequentially, a parameter C1 exists with

|℘()|≤C1Z
d+1‖℘(d+1)‖∞ and |℘′()|≤C1Z

d‖℘(d+1)‖∞. By

compiling the previous results, one can obtain

℘
���� ����Σ0 � ℘ 0( )( )2 + ∫

Ξ
℘′ τ( )( )2dτ( ) 1

2

≤AZd max
∈Ξ

℘ d+1( ) ( )∣∣∣∣ ∣∣∣∣, (42)
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with A � C1

�����
Z + 1

√
.

Theorem 9. A parameter B exists with

E ℴ( ) − E ℴ( )
8

���� ����∞ ≤BZd max
∈Ξ

RE d+1( )
8 ( )∣∣∣∣ ∣∣∣∣,ℴ � 0, 1, 2. (43)

Proof: Utilizing Lemma 3, one can obtain

RE8‖ ‖W1
2
≤AZd max

∈Ξ
RE d+1( )

8 ( )∣∣∣∣ ∣∣∣∣. (44)

However, since

RE8() � ƋE8() − �H(E, E()) � Ƌ(E8() − E()), then E −
E8 � Ƌ−1RE8 and a parameter C2 exists with

E − E8‖ ‖Σ2 � Ƌ−1RE8

���� ����Σ2
≤ Ƌ−1���� ���� RE8‖ ‖Σ0
≤AC2Z

d max
∈Ξ

RE d+1( )
8 ( )∣∣∣∣ ∣∣∣∣. (45)

Applying Theorem 2, one can obtain

E ℴ( ) − E ℴ( )
8

∣∣∣∣ ∣∣∣∣≤C3 E − E8‖ ‖Σ2
≤AC2C3Z

d max
∈Ξ

RE d+1( )
8 ( )∣∣∣∣ ∣∣∣∣,ℴ � 0, 1, 2. (46)

In another mode, one can obtain

‖E(ℴ) − E(ℴ)
8 ‖∞ ≤BZdmax∈Ξ|RE(d+1)

8 ()|, ℴ � 0, 1, 2,

where B � AC2C3.

Ultimately, one can see that ‖E − E8‖2Σ2
is decreasing for a

large 8 as

E − E8‖ ‖2Σ2 − E − E8−1���� ����2Σ2 � ∑∞
ℴ�8+1

〈E ( ), �Θℴ ( )〉A�Θℴ ( )
��������� ���������2Σ2
− ∑∞

ℴ�8
〈E ( ), �Θℴ ( )〉Σ2 �Θℴ ( )

��������� ���������2Σ2
� ∑∞

ℴ�8+1
〈E ( ), �Λℴ l( )〉2Σ2

−∑∞
ℴ�8

〈E ( ), �Θℴ ( )〉2Σ2 < 0. (47)

However, as ∑∞
ℴ�1〈E(), �Θℴ()〉Σ2

�Θℴ()<∞, one can

obtain ‖E − E8‖2Σ2
→ 0 as 8 → ∞.

6 Justifications: Algorithms,
applications, and analyses

To clarify the portability and effectiveness of the presented

numeric approach, we need some of the steps, the first of which

is to provide sufficient algorithms to demonstrate the

mechanism of the solution, the second of which is to present

several tangible applications, and then finally to provide several

tables, figures, and numeric explanations of the solution

procedures. However, all of this is the content of the

following sections.

6.1 Algorithms

Next, three used algorithms in our RKHA implementation

are given. These algorithms are problem initialization, the

Gram–Schmidt process, and RKHA solution steps,

simultaneously. However, an expert in the Mathematica

platform can interpret these steps in the form of programs.

Stride 1: Set the assumptions.

E ( ): → E ( ) − 1
2
Γ 3 − α( )Eα

1
2 + E0( ), (48)

�H , E ( )( ) ≔ Γ 3 − α( )
Γ 3 − α − β( ) + μ

Γ 3 − α( )
Γ 3 − β( )α( )Eα

1
2−α−β

+H , E ( ) − 0.5Γ 3 − α( )Eα
1

2 − E0( ). (49)

Output: Homogenous FLM.

zβ

z

zα

z
+ μ( )E ( ) � �H , E ( )( ), (50)

E 0( ) � 0,

zα

z
E 1( ) � 0.

⎧⎪⎪⎨⎪⎪⎩ (51)

Stride 2: Define a suitable operator.

Ƌ: Σ2 Ξ( ) → Σ0 Ξ( ), (52)

Ƌ E[ ] ( ) ≔ zβ

z

zα

z
+ μ( )E ( ). (53)

Output: Homogenous FLM in the functional form.

Ƌ E[ ] ( ) ≔ �H , E ( )( ),
E 0( ) � 0,

zα

z
E 1( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (54)

Algorithm 1. Problem initialization.

Stride 1: At ℴ≥ 2 and  � 1, 2, . . . ,ℴ − 1, evaluate

11 � 1
Θ1‖ ‖Σ2

,

ℴℴ � 1��������������������������
Θℴ‖ ‖2Σ2 −∑ℴ−1

p�1
〈Θℴ ( ), �Θp ( )〉2Σ2

√√ , ℴ ≠ 1

ℴ � − 1��������������������������
Θℴ‖ ‖2Σ2 −∑ℴ−1

p�1
〈Θℴ ( ), �Θp ( )〉2Σ2

√√ ∑ℴ−1
p�

〈Θℴ ( ),

�Θp ( )〉Σ2εpj,ℴ> (55)

Output: ℴ parameters.
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Stride 2: At ℴ � 1, 2, 3, . . ., evaluate

�Θℴ ( ) �∑ℴ
j�1
ℴΘℴ ( ). (56)

Output: �Θℴ(){ }∞ℴ�1 system.

Algorithm 2. Gram–Schmidt process.

Stride I: At fix l, on Ξ evaluating ℴ � 1/xℴ and Θℴ() �
Ƌ*[ωℴ]() in ℴ � 1, 2,/, 8.

Output: Θℴ() system.

Stride II: Wherein ℴ≥ 1 and j � 1, 2,/,ℴ − 1, evaluate

Gram–Schmidt.

Output: ℴ parameters.

Stride III: Set �Θℴ() �∑ℴ

j�1ℴΘℴ() in ℴ � 1, 2,/, 8.

Output: �Θℴ() system.

Stride IV: Set E0(0) � 0 in ℴ � 1, 2,/, 8 and evaluate

Eℴ ℴ( ) � Eℴ−1 ℴ( ),
Vℴ � ∑ℴ

�1
ℴ

�H , E ( )( ),

E8 ℴ( ) � ∑ℴ
�1

Vℴ
�Θ ( ).

(57)

Output: 8-term numeric approximation E8(ℴ) of E(ℴ).

Algorithm 3. Process of RKHA solutions.

6.2 Applications

Next, three test applications that coincide with the FLM

platform are utilized on the basis of the CFD: the first is

(α, β) � (1/2, 4/5), the second is (α, β) � (1/3, 3/4), and the

third is (α, β) � (1/4, 4/5). Actually, these applications are

solved and analyzed using the presented RKHA as utilized in

Algorithm 1, Algorithm 2, Algorithm 3.

Application 1: Theorize the posterior and evaluate E8(ℴ):

z
4
5

z

z
1
2

z
+ 1( )E ( ) � 25

3Γ 1
5( ) 6

5 + 2

Γ 17
10( ) 7

10, (58)

equipped with the posterior boundary condition:

E 0( ) � 0,

z
1
2

zx
E 1( ) − 8

3
��
π

√ � 0.

⎧⎪⎪⎨⎪⎪⎩ (59)

Here, E() � 2 is the exact smooth solution of Eqs 58, 59 on Ξ.

Application 2: Theorize the posterior and evaluate E8(ℴ):
z

3
4

z

z
1
3

z
+1( )E ( )+ ln E ( )( )�2e− Γ

1
4,( )
Γ 1

4( ) e− Γ
11
12,( )
Γ 11

12( ) e+, (60)

equipped with the posterior boundary condition:

E 0( ) � 0,

z
1
3

zx
E 1( ) − 1 −

Γ 2
3
, 1( )

Γ 2
3
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (61)

Here, E() � e is the exact smooth solution of Eqs 60, 61

on Ξ.

Application 3: Theorize the posterior and evaluate E8(ℴ):
z

4
5

z

z
1
4

z
+ μ( )E ( ) + �����

E ( )3
√ � 25

3Γ 1
5( ) 6

5 + 2

Γ 39
20( ) 19

20, (62)

equipped with the posterior boundary condition:

E 0( ) � 0,

z
1
4

zx
E 1( ) − 32

21Γ
3
4
( ) � 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (63)

Here, E() � (1/2 + 4/3)3 is the exact smooth solution of

(Eqs 62, 63) on Ξ.

6.3 Analyses

Eventually, to clarify the portability and effectiveness of the

presented RKHA, we present and provide several RKHA solution

tables, RKHA numeric solution figures, RKHA absolute error

figures, and RKHA relative error figures. However, in this

section, we used ℴ � ℴ − 1/8 − 1 with ℴ � 1, 2,/, 8 � 101 in

E8(ℴ) on Ξ and then executed Algorithm 3 throughout and its

related steps.

The tabulated data presenting

ℴ, E ℴ( )( ),
ℴ, E8 ℴ( )( ),

ρ8 ℴ( ) � E ℴ( ) − E8 ℴ( )| |,
σ8 ℴ( ) � E ℴ( ) − E8 ℴ( )| |E−1 ℴ( ),

(64)

concerning the features of the memory inherited, are utilized

in detail by the RKHA performance of the applications addressed

previously, as shown in the included tables (Tables 1–3).

The 2-D Cartesian plots presenting (ℴ, E(ℴ)),
concerning the features of the memory inherited, are utilized

in detail by the RKHA performance of the applications addressed

previously, as shown in the included graphs (Figures 1A–C).

The 2-D Cartesian plots presenting (ℴ, ρ8(ℴ)),
concerning the features of the memory inherited, are utilized

in detail by the RKHA performance of the applications addressed

previously, as shown in the included graphs (Figures 2A–C).

Ultimately, the 2-D Cartesian plots presenting

(ℴ, σ8(ℴ)), concerning the features of the memory

inherited, are utilized in detail by the RKHA performance of

the applications addressed previously, as shown in the included

graphs (Figures 3A–C).
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7 Outline: Conclusion and outlook

This research embraced the RKHA to handle a type of well-

known FDM called FLM on the basis of the CFD by including

three test applications. A detailed presentation of the theories

related to the establishment of the solution and the formulation of

the approximate was interspersed with the construction of the

necessary spaces and the associations’ form of Green’s functions

used, with many new results that centered on convergence, error,

and independence. Based on the RKHA, E(ℴ), E8(ℴ), ρ8(ℴ),
and σ8(ℴ) have been sketched in 2-D and tabulated for various

value parameters of (α, β) and ℴ. Conclusively, obtaining

analytical solutions for many types of FDMs is not a simple

procedure, which motivates us to conduct more studies and

scientific research to obtain innovative approximations of

FDMs subject to influence the CFD. The RKHA has diverse

feasible and favorable benefits. First, the RKHA is appropriate

and delicate since the approximation is very closest to the required

solution. Second, by utilizing small 8 terms, we can obtain high

accuracy. Third, it is an easy, simple, and soft method to be applied

since it does not require sophisticated mathematical tools or an

adept professional programmer. Fourth, it is global since it may be

utilized to handle different types of fractional complex models.

Fifth, the main characteristic of the RKHA is that it may be used

with other orthogonal basis sequences. Our outlook study will

focus on solving the FLM concerning fuzzy boundaries.
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