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The effective interaction between a nucleon and a nucleus is one of the most
important ingredients for reaction theories. Theoretical formulations were
introduced early by Feshbach and Watson, and efforts of deriving and computing
those ‘optical potentials’ in a microscopic fashion have a long tradition. However,
only recently the leading order term in the Watson multiple scattering approach
could be calculated fully ab initio, meaning that the same nucleon-nucleon (NN)
interaction enters both the structure as well as the reaction pieces on equal footing.
This allows the uncertainties from the underlying chiral effective NN interaction to be
systematically explored in nucleon-nucleus elastic scattering observables. In this
contribution the main ingredients for arriving at the ab initio leading order of the
effective nucleon-nucleus interaction in the Watson approach will be reviewed.
Concentrating on one specific chiral NN interaction from the LENPIC collaboration
and light nuclei with a 0+ ground state, the leading order nucleon-nucleus
interaction is calculated using up to the third chiral order (N2LO) in the nucleon-
nucleon potential, and elastic scattering observables are extracted. Then pointwise
as well as correlated uncertainty quantification is used for the estimation of the chiral
truncation error. Elastic scattering observables for 4He, 12C, and 16O for between
65 and 200 MeV projectile energy will be analyzed.
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1 Introduction

Simplifying the many-body problem posed by scattering of a proton or neutron from a
nucleus to a two-body problem with an effective (optical) potential was introduced already by
Bethe [1] in the 1930s, and its justification summarized by Feshbach [2]. Since then differential
cross sections as well as spin observables for elastic scattering played an important role in either
determining the parameters in phenomenological optical models for proton or neutron
scattering from nuclei or in testing validity and accuracy of microscopic models thereof.
The theoretical approach to elastic scattering from a nuclear target presented in this article is
based on the ansatz of a multiple scattering expansion that was pioneered by Watson [3, 4],
made familiar by Kerman, McManus, and Thaler (KMT) [5]. and refined further as spectator
expansion [6–8]. Specifically, elastic scattering from stable nuclei has led in the 1990s to a large
body of work on microscopic optical potentials in which the nucleon-nucleon interaction and
the density of the nucleus were taken as input to rigorous calculations of first-order potentials,
in either a Kerman-McManus-Thaler (KMT) or a Watson expansion of the multiple scattering
series (see e.g. [9–14]). Here the primary goal was a deeper understanding of the reaction
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mechanism. However, a main disadvantage of that work was the lack
of sophisticated nuclear structure input compared to what is available
today.

Recent developments of the nucleon-nucleon (NN) and three-
nucleon (3N) interactions, derived from chiral effective field theory,
have yielded major progress [15–22]. These, together with the
utilization of massively parallel computing resources (e.g., see
[23–27]), have placed ab initio large-scale simulations at the
frontier of nuclear structure and reaction explorations. Among
other successful many-body theories, the ab initio no-core shell-
model (NCSM) approach (see, e.g. [28–31]), has over the last
decade taken center stage in the development of microscopic tools
for studying the structure of atomic nuclei. The NCSM concept
combined with a symmetry-adapted (SA) basis in the ab initio SA-
NCSM [32] has further expanded the reach to the structure of
intermediate-mass nuclei [33].

Following the developments in nuclear structure theory, it is very
natural to again consider rigorous calculations of effective folding
nucleon-nucleus (NA) potentials, since now the nuclear densities
required as input for the folding with the NN scattering amplitudes
can be based on the same chiral NN interaction. This development
also allows to investigate effects of truncation uncertainties in the
chiral expansion on NA scattering observables in a similar fashion as
already successfully performed in NN scattering (see e.g. [34–36]),
nucleon-deuteron scattering [37], or structure observables for light
nuclei [31, 38].

The theoretical and computational developments leading to ab
initio NA effective interactions (in leading order in the spectator
expansion) are described in a serious of publications by the authors
[39–43] and others (see e. g. [44–47]). Thus the aim of this review is to
shed light on truncation uncertainties in the chiral expansion, and
within that context give a perspective on intricacies of the spectator
expansion as well as the explicit content of its leading order term,
which can now be calculated ab initio.

Deriving ab initio optical potentials within a multiple scattering
approach focuses on projectile energies at energies about 80 MeV or
higher, since the expectation is that at those energies the leading order
term may already capture the most important physics. Another recent
ab initio approach starts from a formulation introduced by Feshbach
[48] and constructs optical potentials and elastic scattering
observables within a Green’s function approach [49, 50]. For elastic
scattering from medium-mass nuclei the coupled-cluster method [51]
and the SA-NCSM [52] approach have been successfully
implemented. These approaches are by design better suited for
calculating scattering observables at energies below about
20–30 MeV due to restrictions on the size of the model spaces
which increase with increasing projectile energy. In Ref. [53] an
extensive overview of the status of the field of optical potentials
and their need in the rare-isotope era is given and the current
status of ab initio approaches is discussed. We want to encourage
the reader to refer to this work, for more details.

2 Watson optical potential within the
spectator expansion

The standard starting point for describing elastic scattering of a
single projectile from a target of A particles within a multiple

scattering approach is the separation of the Lippmann-Schwinger
(LS) equation for the transition operator T,

T � V + VG0 E( )T (1)
into two parts, namely an integral equation for T,

T � U + UG0 E( )PT, (2)
where U is the effective potential operator defined by a second integral
equation,

U � V + VG0 E( )QU. (3)
Here p is a projection onto the ground state of the target,P � |Φ0〉〈Φ0 |

〈Φ0|Φ0〉 , with
P + Q = 1 and [G0(E), P] = 1. The free propagator for the projectile and
target system is given by G0(E) � (E − h0 −HA + iϵ)−1 where h0 is the
kinetic energy of the projectile and HA is the Hamiltonian of the target
nucleus. The general solutions of the nuclear bound state problemHA|Φ〉
include the ground state, excited states and continuum states. For the
scattering problem given by the transition amplitude T the reference
energy separating bound and continuum states is chosen such that the
ground state energy is set to zero. Thus energies referring to the target
Hamiltonian in G0 are excitation energies of the target. With these
definitions the transition operator for elastic scattering may be
redefined as Tel = PTP, in which case Eq. 2 can be written as

Tel � PUP + PUPG0 E( )Tel. (4)

2.1 Spectator expansion of the operator U

The transition operator for elastic scattering is given by a
straightforward one-body integral equation, which of course
requires the knowledge of PUP, which is a many-body operator.
For a brief review we follow the spectator expansion of PUP as
introduced in Ref. [54] in contrast to Ref. [6] where the expansion
of T is considered. Following those references, we assume the presence
of two-body forces only for the present discussion. The extension to
many-body forces is not precluded by the formulation. With this
assumption the operator U can be expanded as

U � ∑A
i�1

Ui, (5)

where Ui is given by

Ui � v0i + v0iG0 E( )Q∑A
j�1

Uj, (6)

provided that V � ∑A
i�1v0i, where the two-body potential v0i acts

between the projectile and the ith target nucleon. Through the
introduction of an operator τi which satisfies

τi � v0i + v0iG0 E( )Qτ i, (7)
Eq. 6 can be rearranged as

Ui � τ i + τiG0 E( )Q∑
j≠i

Uj. (8)

This rearrangement process can be continued for all A target particles,
so that the operator for the optical potential can be expanded in a
series of A terms of the form
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U � ∑A
i�1

τ i + ∑A
i,j≠i

τ ij + ∑A
i,j≠i,k≠i,j

τijk +/ . (9)

This is the Spectator Expansion for U, where each term is treated in
turn. The separation of the interactions according to the number of
interacting nucleons has a certain latitude, due to the many-body
nature of G0(E), which needs to be considered separately. In the
following we will concentrate on the leading-order term, which is still a
many-body operator due the presence of G0(E). The next-to-leading
order term in this spectator expansion forU has been formally derived
and connected to standard three-body equations in Ref. [54].

2.2 Propagator expansion in the leading-
order term of U

When using the leading-order term of the spectator expansion as
given in Eq. 7, for elastic scattering only PτiP, or equivalently
〈Φ0|τi|Φ0〉 needs be considered. With this in mind, Eq. 7 can be
re-expressed as

τ i � v0i + v0iG0 E( )τ i − v0iG0 E( )Pτ i � τ̂ i − τ̂ iG0 E( )Pτ i, (10)
or

〈Φ0|τi|Φ0〉 � 〈Φ0|τ̂ i|Φ0〉 − 〈Φ0|τ̂ i|Φ0〉
1

E − EA( ) − h0 + iε
〈Φ0|τi|Φ0〉,

(11)

where τ̂i is defined as the solution of

τ̂ i � v0i + v0iG0 E( )τ̂ i. (12)
The combination of Eqs 10, 2 corresponds to the leading-order

Watson optical potential [3, 4]. In ab initio structure
calculations the one-body densities or ground state wave
functions for protons and neutrons are calculated separately, so
that Eq. 11 allows to combine e.g. for proton scattering of a
nucleus the proton-neutron interaction (τ̂i�pn) with the neutron
one-body density and the proton-proton interaction with
the proton one-body density. The sum over i then adds
both to obtain the driving term 〈Φ0|τ̂i|Φ0〉 the integral
equation, Eq. 11.

If the projectile-target-nucleon interaction is assumed to be the
same for all target nucleons and if iso-spin effects are neglected then
the KMT approximation (A−1A 〈Φ0|τ̂i|Φ0〉) can be derived from the
leading-order Watson potential [5]. When working with momentum
space integral equations, the numerical implementation of Eq. 11 is
straightforward [40, 41, 45, 55]. Working in coordinate space with
differential equations does not allow an equally straightforward
implementation, and thus the KMT prescription is the most
favorable alternative. A comparison between leading-order Watson
potential and the KMT prescription is shown in Figure 1 for elastic
proton scattering from 8He at 71 MeV laboratory kinetic energy.
Despite the relatively large difference between the proton and
neutron densities for this nucleus the KMT prescription agrees
with the exact Watson description very well up to momentum
transfers of about 2 fm−1.

Since Eq. 11 is a one-body integral equation, the principal problem
is to find a solution of Eq. 12, which due to many-body character of
G0(E) is still a many-body integral equation, and in fact no more easily
solved than the starting point of Eq. 1.

For most practical calculations the so-called closure
approximation to G0(E) is implemented [56] turning Eq. 12 into a
one-body integral equation. This approximation replaces HA by a
constant that is interpreted as an average excitation energy, and is
justified when the projectile energy is large compared to typical
excitation energies of the nucleus. The closure approximation is
very successfully applied for elastic scattering around 80 MeV and
higher.

Going beyond the closure approximation in the spirit of the
spectator expansion we want to single out one target nucleon i and
write G0(E) as

G0 E( ) � E − h0 −HA + iε( )−1

� E − h0 − hi −∑
j≠i

vij −Hi + iε⎛⎝ ⎞⎠−1

,
(13)

where the target Hamiltonian is expanded as HA = hi+ ∑j≠ivij + Hi

with vij being the interaction between target nucleons i and j, and
Hi being an (A-1)-body operator containing all higher order
effects. Realizing that ∑j≠ivij ≡ Wi and thus Hi = HA−hi−Wi

does not have an explicit dependence on the ith particle, then
Hi may be replaced by an average energy Ei which is akin to the
effective binding energy between the ith nucleon and the A−1
spectator. This is not an approximation since G0(E) may be
regarded as

G0 E( ) � E − Ei( ) − h0 − hi −Wi − Hi − Ei( ) + iε[ ]−1 (14)

FIGURE 1
The angular distribution of the differential cross section divided by
the Rutherford cross section (upper panel) and the analyzing power (Ay)
for elastic proton scattering from 8He at 71 MeV laboratory kinetic
energy as function of the momentum transfer q and the c. m. angle
calculated with the LENPIC SCS chiral interaction [19] with a cutoff R =
1 fm. The calculations are based on non-local densities using ZΩ =
14 MeV at Nmax = 14. The solid (red) line stands for using the Watson
optical potential while the black (dashed) line represents the KMT
prescription.
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and (Hi−Ei) should be set aside to be treated in the next order of the
expansion of the propagator G0(E). In this order of the expansion
G0(E) becomes

Gi E( ) � E − Ei( ) − h0 − hi −Wi + iε[ ]−1, (15)
and Eq. 12 reads

τ̂ i � v0i + v0iGi E( )τ̂ i. (16)
In order to connect the above expression with the free NN
amplitude

t0i � v0i + v0igit0i (17)
with

gi � E − Ei( ) − h0 − hi + iε[ ]−1. (18)
algebraic relations between the resolvents lead to

τ̂ i � t0i + t0iGiWigi E( )τ̂ i. (19)
Defining GiWi � giT i with T i � Wi +WigiT i leads to

τ̂i � t0i + t0igiT igiτ̂i. (20)
The three-body character of the above expression becomes more
evident if one defines it as a set of coupled equations as

τ̂ i � t0i + t0igiXi

Xi � T igiτ̂i.
(21)

Though the spectator expansion of the operator U in terms of active
particles is defined in Eq. 9, we see that this expansion is performed in
terms of quantities which contain many-body propagators. Each of the
ingredients τi, τij, etc. may themselves be expanded in a spectator
expansion, i.e. expanding the many-body propagator also according to
the number of active participants. The corrections to the propagator in the
leading-order term of U contributions that arise from the Q space,
whereas the terms arising from the propagator remain in the P space
at first order level. Thus their contribution may be more relevant for
elastic scattering.

In an explicit treatment of Gi(E) it is necessary to consider the
explicit form of ∑j≠ivij =Wi, which is a priori a two-body operator. In
the framework of ab initio nuclear structure calculations this will
involve two-body densities. In earlier work [54, 57, 58] the quantityWi

was treated as one-body operator, specifically a mean-field potential.
This was a physically reasonable choice, though being outside the strict
demands of the spectator expansion. However, those studies revealed
that the next order in the propagator expansion has little effect on
elastic scattering observables at energies larger than 100 MeV, while
the description of differential cross section and spin-observables for
elastic scattering from 40Ca at 48 MeV showed considerable
improvement with respect to experiment [57]. Obviously this type
of calculation will need to be explored within an ab initio approach. In
Ref. [57] the energy Ei of Eq. 18 was set to zero.

As illustrated in this section, deriving a multiple scattering
expansion for elastic NA scattering means projecting on the
ground state of the target in order to obtain a Lippman-Schwinger
type equation for the transition amplitude and obtaining an operator
U for the effective interaction, which is defined in the space Q = 1 − P.
In this spirit, the spectator expansion contains therefore two pieces,
namely the expansion of the operator U in terms of active particles in
the scattering process as well as the expansion of target Hamiltonian
HA in the propagatorG0(E) in a similar fashion. Thus it is very difficult
to define a single expansion parameter which governs the convergence
of the expansion.

3 Leading order ab initio optical potential
based on a chiral NN interaction

The leading order of the spectator expansion involves two
active nucleons, the projectile and a target nucleon. Therefore,
the leading order is driven by the NN amplitude �M, which in its
most general form can be parameterized in terms of Wolfenstein
amplitudes [59–61],

�M q,KNN, ϵ( ) � A q,KNN, ϵ( )1 ⊗ 1
+iC q,KNN, ϵ( ) σ 0( ) · n̂( ) ⊗ 1
+iC q,KNN, ϵ( ) 1 ⊗ σ i( ) · n̂( )
+M q,KNN, ϵ( ) σ 0( ) · n̂( ) ⊗ σ i( ) · n̂( )
+ G q,KNN, ϵ( ) −H q,KNN, ϵ( )[ ]
× σ 0( ) · q̂( ) ⊗ σ i( ) · q̂( )

+ G q,KNN, ϵ( ) +H q,KNN, ϵ( )[ ]
× σ 0( ) · K̂( ) ⊗ σ i( ) · K̂( )

+D q,KNN, ϵ( ) σ 0( ) · q̂( ) ⊗ σ i( ) · K̂( )[
+ σ 0( ) · K̂( ) ⊗ σ i( ) · q̂( )], (22)

where σ(0) describes the spin of the projectile, and σ(i) the spin of the
struck nucleon. The average momentum in the NN frame is defined as
KNN � 1

2 (k′NN + kNN). The scalar functions A, C,M, G,H, and D are
referred to as Wolfenstein amplitudes and only depend on the
scattering momenta and energy. Each term in Eq. 22 has two
components, namely a scalar function of two vector momenta and
an energy and the coupling between the operators of the projectile and
the struck nucleon. The linear independent unit vectors q̂, K̂, and n̂ are
defined in terms of the momentum transfer and the average
momentum as

q̂ � q

q
∣∣∣∣ ∣∣∣∣ , K̂ � K

K| | , n̂ � K × q

K × q
∣∣∣∣ ∣∣∣∣, (23)

FIGURE 2
The expansion parameter Q, defined by Eq. 30 where Λb =
x600 MeV, as a function of the center-of-mass angle θc.m. for a range of
lab projectile energies Elab. In this case of nucleon-nucleus (NA) elastic
scattering, the transition betweenwhen the expansion parameter is
dominated by the center-of-mass momentum and the momentum
transfer can easily be identified.
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and span the momentum vector space. With the exception of the
momentum transfer q, which is invariant under frame transformation,
the vectors in Eq. 23 need to be considered in their respective frame in
explicit calculations [41, 62]. For the struck target nucleon the
expectation values of the operator one and the scalar products of
σ(i) with the linear independent unit vectors of Eq. 23 need to be
evaluated with the ground state wave functions of the respective
nucleus when calculating the leading-order NA effective
interaction. Evaluating the expectation value of the operator one in
the ground state of the nucleus results in the scalar non-local,
translationally invariant one-body density that has traditionally
been used as input to microscopic or ab initio calculations of
leading order effective interactions [11, 12, 40, 44]. The other
operators from Eq. 23, namely (σ(i) · n̂), (σ(i) · q̂), and (σ(i) · K̂)
need to also be evaluated for a leading-order ab initio NA effective
interaction, in which the NN interaction is treated on equal footing in
the reaction and structure calculation.

Thus, the general expression for a non-local density needs to
include the spin operator σ(i) explicitly,

ρKs
qs

p, p′( ) �〈Φ0′ ∑A
i�1

δ3 pi − p( )δ3 pi′ − p′( )σ i( )Ks
qs

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣Φ0〉, (24)

where σ(i)Ks
qs

is the spherical representation of the spin operator and
the wavefunction Φ0 (p1, . . . , pA) � 〈p1, . . . , pA|Φ0〉 is defined in
momentum space. Evaluating this expression for Ks = 0 gives the
non-local one-body scalar density andKs = 1 becomes a non-local one-
body spin density.

The Wolfenstein parameterization of Eq. 22 requires the
evaluation of scalar products of the one-body spin density with
unit momentum vectors. Since those only depend on the momenta
p and p′, those can be calculated as ρKs(p, p′) · n̂, ρKs(p, p′) · q̂, and
ρKs(p, p′) · K̂. For the explicit calculation of ρKs(p, p′) · n̂, we refer the
reader to [41, 62]. The scalar products (σ(i) · q̂) and (σ(i) · K̂)
represent scalar products of a pseudo-vector and a vector, a
construct that is not invariant under parity transformations, and
thus vanish when sandwiched between ground state wave
functions, which is explicitly shown in [62]. Thus the tensor
contributions of the NN force only enter the leading order effective
NA interaction through theWolfenstein amplitudeM as long as elastic
scattering is considered. When e.g. transition amplitudes between
states of different parity would be considered, the other tensor
amplitudes will contribute.

Currently contributions to elastic scattering observables due to the
spin-projected one-body densities have only been calculated for light
nuclei with 0+ ground states, and it was found that this contribution is
very small for nuclei with equal proton and neutron numbers [41, 42].
This is likely different for nuclei with ground states of non-zero spin,
which was explored for 10B polarization transfer observables in Refs.
[63, 64], where the authors assume a nuclear structure which consists
of a core and valence nucleons. The work of Ref. [45] extends the
standard leading order calculation to non-zero spin nuclei, however
does not consider the inherent tensor contributions from the NN force
in their formulation. This leaves the importance of a consistent
treatment of the NN force on elastic scattering from non-zero spin
nuclei still an open question.

The complete calculation of the leading-order effective
interaction describing the scattering of a proton from a nucleus
in a 0+ ground state and which enters the integral Eq. 11 as driving
term is given by

Ûp q,KNA,ϵ( )� ∑
α�n,p

∫d3Kη q,K,KNA( )Apα q,
1
2

A+1
A

KNA −K( );ϵ( )ρKs�0
α P′,P( )

+ i σ 0( ) · n̂( )×∑
α�n,p

∫d3Kη q,K,KNA( )Cpα q,
1
2

A+1
A

KNA −K( );ϵ( )ρKs�0
α P′,P( )

+ i ∑
α�n,p

∫d3Kη q,K,KNA( )Cpα q,
1
2

A+1
A

KNA −K( );ϵ( )Sn,α P′,P( )cosβ
+ i σ 0( ) · n̂( ) ∑

α�n,p
∫d3Kη q,K,KNA( )

× −i( )Mpα q,
1
2

A+1
A

KNA −K( );ϵ( )Sn,α P′,P( )cosβ. (25)

The term η(q,K,KNA) is the Møller factor [65] describing the
transformation from the NN frame to the NA frame. The
functions Apα, Cpα, and Mpα represent the NN interaction through
Wolfenstein amplitudes [59]. Since the incoming proton can interact
with either a proton or a neutron in the nucleus, the index α indicates
the neutron (n) and proton (p) contributions, which are calculated

FIGURE 3
Reaction cross section for proton scattering on (A) 4He at 65 MeV
and (B) 16O at 100 MeV, both at N2LO as a function of Nmax. The error
bars show a 68% credible interval (CI) from using a pointwise error
estimationwith the LO, NLO, and N2LO results. The shaded regions
show variations with respect to the harmonic oscillator parameter ZΩ.
The values of the expansion parameters used were Q = .47 for4He at
65 MeV and Q = .69 for 16O at 100 MeV. Note the different scales in
(A, B).
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separately and then summed up. With respect to the nucleus, the
operator i(σ(0) · n̂) represents the spin-orbit operator in momentum
space with respect to the projectile. As such, Eq. 25 exhibits the
expected form of an interaction between a spin-12 projectile and a target
nucleus in a J = 0 state [66]. The momentum variables in the problem
are given as

q � p′ − p � k′ − k,

K � 1
2

p′ + p( ),
KNA � A

A + 1
k′ + k( ) + 1

2
p′ + p( )[ ],

P � K + A − 1
A

q
2
,

P′ � K − A − 1
A

q
2
.

(26)

The two quantities representing the structure of the nucleus are the
scalar one-body density ρKs�0

α (P′,P) and the spin-projected
momentum distribution Sn,α(P′,P) � ρKs�1(P′,P) · n̂. Both
distributions are non-local and translationally invariant. The
reduced matrix elements entering the one-body densities are
obtained within the NCSM (SA-NCSM) in the center-of-mass
frame of the nucleus. In order to employ them in calculating the
leading-order effective NA interaction, this center-of-mass variable
must be removed. Within the framework of NCSM (SA-NCSM) the
technique for obtaining non-local and translationally invariant one-
body densities is well developed [40, 44, 67–70]. Lastly, the term cos β
in Eq. 25 results from projecting n̂ from the NN frame to the NA
frame. For further details, see Ref. [41].

4 Chiral truncation uncertainties in the
leading order optical potential

With the emergence of nuclear forces based on chiral effective field
theory (EFT), we are presented with an opportunity to study the
nucleon-nucleus effective interaction as it develops order-by-order in
a chiral EFT framework. Given the hierarchical nature of chiral EFT,
we can combine these order-by-order results to reliably estimate
truncation uncertainties associated with the higher chiral orders
not included in the calculations. To this end, Refs. [35–37] first
implemented uncertainty quantification for the cases of NN and
Nd scattering by assuming a quantity y(x) at a chiral order k can
be written as

yk x( ) � yref x( )∑k
n�0

cn x( )Qn x( ) (27)

where yref(x) is a reference value that sets the scale of the problem and
also includes the dimensions of the quantity y(x) of interest. By
construction, the coefficients cn(x) are dimensionless and are
expected to be of order unity. The remaining quantity Q(x) is the
expansion parameter associated with the chiral EFT. The expansion
parameter is usually defined as

Q � 1
Λb

max Mπ , p( ) (28)

where Λb is the breakdown scale of the EFT, Mπ is the pion mass,
and p is the relevant momentum for the problem. Various works
[35–37] have identified the relevant momentum in different ways,
but keeping with Ref. [43] we choose the relevant momentum as

the center-of-mass (c.m.) momentum in the nucleon-nucleus
system

p2
NA � ElabA2m2 Elab + 2m( )

m2 A + 1( )2 + 2AmElab
(29)

where Elab is the kinetic energy of the projectile in the laboratory
frame, A is the target nucleus’s mass number, andm is the mass of the
nucleon.

Previous scattering works [36, 43] have noted that various
results indicate, when identifying the relevant momentum,
the momentum transfer q should also be considered. That
is, the expansion parameter would be more appropriately
defined as

Q � 1
Λb

max Mπ , pNA, q( ) (30)

The momentum transfer in elastic scattering is defined as

q � 2pNA sin
θc.m.

2
( ) (31)

where θc.m. is the scattering angle in the c. m. frame. Notably, including
the momentum transfer in Eq. 30 makes the expansion parameter a
function of θc.m., even though the other momentum scales in Eq. 30 are
independent of the scattering angle. When considering observables
such as the differential cross section or analyzing power that are
functions of θc.m., this implies the expansion parameter will be larger at
backward angles than at forward angles. Furthermore, since the
leading order of the spectator expansion is not applicable at low
energies, we only consider scattering at lab energies of 65 MeV or
higher. As a result, the chiral expansion parameter becomes Q =
max(pNA, q)/Λb. This expansion parameter is shown in Figure 2 for the
case of A = 4 and Λb = 600 MeV. Because of the factorization of the c.
m. momentum, there is a universal scattering angle at which the
momentum transfer q begins to dominate the expansion parameter,
regardless of the chosen Elab or nucleus. We will exploit this behavior
in later sections.

TABLE 1 Ground state binding energies (top) and point-proton RMS radii
(bottom) of 4He, 12C, and16O with LO, NLO, and N2LO LENPIC SCS NN potentials.
Both our estimated numerical uncertainties (first set of uncertainties) and chiral
truncation uncertainty estimates (second set of uncertainties, not evaluated for
LO) are given.

4He 12C 16O

Binding energy (MeV)

LO 45.45(.01) 137.(1.) 224.(2.)

NLO 28.53(.01)(3.5) 97.(3.)(9.) 156.(5.)(14.)

N2LO 28.11(.01)(.9) 94.(4.)(3.) 149.(5.)(4.)

expt 28.30 92.16 127.62

Point-proton radius (fm)

LO 1.08(.02) 1.85(.17) 1.8(.2)

NLO 1.40(.02)(.08) 2.04(.16)(.09) 2.05(.16)(.10)

N2LO 1.42(.02)(.02) 2.12(.15)(.03) 2.11(.15)(.03)

expt 1.46 2.32 2.58
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4.1 Nuclear structure calculations

Prior to our detailed study of truncation uncertainties of a chiral
NN interaction in elastic NA scattering observables we need to choose
a specific chiral NN interaction. Here we want to focus on the EKM
chiral NN interaction [18, 19] with a semi-local coordinate space
regulator of R = 1 fm, which has a breakdown scale ofΛb = 600MeV. This
interaction gives a slightly better description of the ground state energies
in the upper p-shell than a similar, more recent interaction with a semi-
local momentum space regulator. For consistency with the leading-order
optical we only use the NN potentials, omitting three-nucleon forces,
which appear at N2LO in the chiral expansion, both in the structure
and the scattering part of the calculations. Including three-nucleon
forces consistently in both, the structure and scattering calculations
requires going beyond the leading-order optical potential, and is

beyond the scope of this work. Though initial attempts of
incorporating three-nucleon forces as an effective density-
dependent NN force in the scattering part have been presented
[46], they can not yet be considered as systematic consideration of
three-nucleon forces in NA scattering. For similar reasons, we
restrict most of our results to N2LO since three-nucleon force
contributions at N3LO and N4LO are significant [71].

Next, the translationally-invariant one-body density needed for
the scattering calculation can be obtained using the NCSM approach,
in which the nuclear wavefunction is expanded in Slater determinants
of harmonic oscillator basis functions [30]. Ideally, one uses a
sufficiently large basis to ensure convergence of this expansion, but
in practice observables depend on both the many-body basis
truncation, Nmax (defined as the total number of harmonic
oscillator quanta in the many-body system above the minimal

FIGURE 4
Differential cross section divided by Rutherford for proton scattering on 4He at (first row) 65 MeV, (second row) 71 MeV, (third row) 100 MeV, and (fourth
row) 200 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots are experimental data from Ref. [75] (65 MeV) [76], (71 MeV) [77], (100 MeV), and [78] (200 MeV).
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configuration), and on the harmonic oscillator scale ZΩ. In Table 1 we
give the ground state binding energies and point-proton radii of 4He,
12C, and 16O obtained with the EKM chiral NN potential [18, 19] with
a semi-local coordinate space regulator of R = 1 fm (note that at N2LO
we did not include any three-nucleon forces).

For 4He we can obtain nearly converged results for both the
binding energy and the proton radius, and these results agree, to
within their estimated numerical uncertainties (the first set of
uncertainties in Table 1), with Yakubovsky calculations using the
same NN potential [71]. However, for larger nuclei such as 12C and 16O
we are more limited in the Nmax values that can be reached on current
computational resources.1

4.2 Pointwise truncation uncertainties

To assess the relative size of chiral truncation uncertainties compared
to other known uncertainties, e.g. the harmonic oscillator parameters
Nmax and ZΩ, we employ a pointwise truncation procedure and study
reaction observables that are not functional quantities, e.g. reaction cross
sections at a specified laboratory energy. This pointwise approach was
previously implemented in Refs. [36, 43] and it starts by assuming the
expansion parameterQ and reference scale yref are known. From there, we
can apply Eq. 27 to calculate the coefficients cn, which are treated as
independent draws from the same underlying distribution. The properties
of this distribution can be learned from Bayesian techniques and the
posterior distribution for the prediction can be readily calculated with its
associated credible intervals. For more details, see Ref. [36].

In order to estimate the chiral truncation uncertainties of the
obtained ground state binding energies and radii, we apply the
pointwise approach with Q ≈ .3 as the effective expansion
parameter, following Ref. [31]. These uncertainties are listed as the
second set of uncertainties in Table 1, starting from NLO. Here we see
that for the energies, the chiral uncertainties are at least of the same
order as the estimated numerical uncertainties; however, the
uncertainties of the radii of 12C and 16O are clearly dominated by
their systematic dependence on the basis parameter ZΩ.

To illustrate the pointwise approach for scattering observables,
Figure 3 shows the reaction cross sections for proton scattering from
4He at 65 MeV and 16O at 100 MeV. For each case, the result is shown as
a function ofNmax, and variations with respect to ZΩ are indicated.While
more obvious for the smaller nucleus where the NCSM can better
converge, in both cases the uncertainty resulting from the chiral
truncation remains larger than the uncertainty arising from the many-
body method. To better illustrate this point, we present the reaction cross
section for 4He with a scale starting from 115 mb and with a range of only
45 mb, while using the full range of 600 mb for 16O. While larger model
spaces will better converge the NCSM results, smaller truncation
uncertainties will only be achieved by higher chiral orders, despite the
noticeable dependence of the radii on the harmonic oscillator parameter
ZΩ, in particular for the heavier nuclei, in the current calculations. Note
however that even at N3LO we anticipate the chiral truncation
uncertainties will be larger than the indicated variations with respect
to the harmonic oscillator parameter ZΩ due to the rather large value of
the expansion parameter Q in the scattering calculation.

4.3 Correlated truncation uncertainties

For functional quantities y(x) we employ a correlated approach that
includes information at nearby values of x. This approach is better for
observables such as a differential cross section, which we know does not
vary wildly from values at nearby angles. It also starts from Eq. 27 and
treats the coefficients cn(x) as independent draws from an underlying
Gaussian process. This Gaussian process encodes information about the
correlation length ℓ, and the qualities of the underlying distribution can be
learned from the order-by-order results. This training is followed up by
testing procedures which seek to confirm the Gaussian process has been
appropriately fit to the available results, and if not, to diagnose potential
issues. From a well-fit Gaussian process we can then extract truncation
uncertainties for the functional quantities. For more details and
applications, see Refs. [36, 43].

In the following examples, we examine proton scattering for 4He, 12C,
and 16O at various projectile energies and compare to the available
experimental data. In each case, we show the convergence with respect
to chiral order and the resulting decrease in the size of the chiral
truncation uncertainties, as well as discuss any associated physics
insights. To avoid concerns about the expansion parameter increasing
at larger angles, wemostly restrict our analysis to forward angles where we
expect the expansion parameter to be independent of the scattering angle.

For proton scattering on 4He, we see good agreement with
experiment for the differential cross sections (Figure 4) at lower
projectile energies. Below 100 MeV, most data points fall within
the 2σ uncertainty band, and at 100 MeV a majority of the data
points are within the 1σ band. At the highest energy of 200 MeV, the
chosen interaction seems unable to reproduce the experimental data,
though this is not uncommon for scattering from 4He.

The analyzing powers for proton scattering on 4He (Figure 5) is more
complicated. For the lower energies of 65 and 71MeV, the experimental
data shows a near zero value, regardless of scattering angle. In the
scattering of a spin-1/2 particle from a spin-0 nucleus, this indicates
that there is no spin-orbit force at play. This behavior is only reproduced
by the LO result, for which the chiral NN interaction only contains the
one-pion exchange and contact terms, which do not produce a spin-orbit
force. At NLO the two-pion exchange diagrams are responsible for
reproducing the NN p-waves and thus provide a spin-orbit force that

1 One commonly applies a Similarity Renormalization Group (SRG)
transformation to the NN potential in order to improve the convergence
of themany-body calculation. However, this leads to induced three-nucleon
forces that are non-negligible; omitting those would lead to a strong
dependence on the SRG parameter. We therefore choose to not employ
such a transformation here. For the binding energies we use an exponential
extrapolation to the complete basis, with associated uncertainties, see Ref.
[71] for details. Radii converge rather slowly in a harmonic oscillator basis, and
they do not necessarily converge monotonically with increasing Nmax;
furthermore, in the scattering calculations we use densities obtained at
fixed values of the harmonic oscillator parameters Nmax and ZΩ. We
therefore simply give in Table 1 our results for the point-proton radii of
12C and 16O atNmax = 10, averaged over the range 16 ≤ ZΩ ≤ 28 MeV (the same
range as is used for the scattering calculations). The numerical uncertainty
estimates for the radii listed in Table 1 correspond to the spread over this ZΩ
interval; this is a systematic uncertainty due to the Gaussian fall-off of
harmonic oscillator basis functions, and is therefore strongly correlated
for the different chiral orders. However, the trend of a significant increase
in the radii going from LO to NLO, followed by a smaller increase going from
NLO to N2LO, is robust, and correlates with the decrease in binding energies
going from LO to NLO to N2LO. Note that we did not include any chiral EFT
corrections to the R2 operator; and the experimental point-proton radii are
extracted from the charge radius measured in electron scattering
experiments, using standard proton and neutron finite-size corrections,
relativistic corrections, and meson-exchange corrections.
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leads to a non-zero value for the analyzing power in NA scattering. At
N2LO there are no new terms in the two-nucleon sector, and thusAy does
not change its shape at that chiral order. Therefore, one needs to conclude
that in this case other physics which goes beyond the leading order NA
effective interaction may be needed to describe the analyzing power.

For the higher energy of 200MeV, all of the experimental data points
are within the 2σ uncertainty band, though there is a slight offset in the
shape. In all cases, the analyzing power ismore difficult to reproduce using
this interaction, though other interactions have done better [39, 41].

For proton scattering from 12C, the differential cross sections
(Figure 6) are reliably reproduced by the central value of the N2LO
calculations up to 100MeV laboratory kinetic energy, and systematically
over-predict at higher energies. As the projectile energy increases, the
expansion parameter increases and as a result uncertainty bands become
larger. This is most noticeable at 160MeV: the experimental data is within
the 1σ band, but the size of that band, as well as the 2σ band, are so large
that they are not practically useful. The gray bars in the cross section
panels for N2LO indicate the momentum transfer up to where we expect
the expansion parameter to be dominated by the c. m. momentum pNA.
Once the momentum transfer exceeds the value given by the bar, the
uncertainty is dominated by the momentum transfer q, and is thus
underrepresented by themethodwe use. Note that the vertical bar is at the
same scattering angle θc.m., but different momentum transfer q, as
function of the projectile energy since pNA is a function of the
projectile energy as given in Eq. 29. Looking at the lower energies, the

increasing agreement with experiment in the first peak and minimum as
higher orders in the chiral NN interaction are included gives the correct
trend.Minima in the differential cross section correlate with the size of the
target nucleus. It is well well known [31], and also evident from Table 1,
that the nuclear binding energy calculated with the LO of the chiral NN
interaction is way too large and correspondingly the radius much too
small. Only when going to NLO and N2LO the binding energy as well as
the radiusmove into the vicinity of their experimental values. This finding
from structure calculations is corroborated by the calculations in Figure 6,
where with increasing chiral order the calculated first diffraction
minimum moves towards smaller momentum transfers indicating a
larger nuclear size.

The analyzing powers for proton scattering on 12C are at 65 MeV also
almost zero for small momentum transfers and rise at q = 1.2 fm−1 to its
maximum value of +1. This is captured by the NLO calculation where
spin-contributions occur in the NN interaction (Figure 7). For 65 MeV,
the experimental data is mostly within the 2σ band until approximately
θc.m. = 60°, where we expect the expansion parameter to being increasing
and the uncertainty bands to thus be underestimates. For 122MeV, the
very forward direction is inside the 1σ band, but the overall shape of the
experimental data is not well captured by this interaction.

For proton scattering from 16O, the differential cross sections
(Figure 8) are similar to the 12C case. Namely, the lower energies do
reasonably well at describing the data within the 2σ bands, but as the
projectile energy increases the uncertainty bands increase to unhelpful

FIGURE 5
Analyzing power for proton scattering on 4He at (first row) 65 MeV, (second row) 71 MeV, and (third row) 200 MeV) for LO (left column), NLO (middle
column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [75]
(65 MeV) [76], (71 MeV), and [78] (200 MeV).
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sizes. At the lowest energy of 65 MeV, we see a better and better
reproduction of the first minimum in the differential cross section as
the chiral order increases. Again, this first minimum is known to be
related to the size of the nucleus, so this is an important feature to
reproduce from both a structure, see Table 1, and reaction perspective.

The analyzing powers for proton scattering on 16O (Figure 9) are
again similar to the 12C case. At lower energies (65 and 100 MeV), we
again see a good reproduction to within 1σ or 2σ of the forward
direction data, but beyond θc.m. = 60°, the experimental data is outside
the uncertainty bands. At the higher energy of 135 MeV, many of the
experimental data are within the uncertainty bands but for a nucleus of
this size, the expansion parameter has already increased such that the
resulting uncertainty bands are unhelpfully large.

As stated toward the beginning of the section we omit three-nucleon
forces for consistency with the leading-order optical potential which only

treats two active nucleons. Those three-nucleon forces already appear at
N2LO in the chiral expansion, however, including them consistently in the
structure as well as reaction calculation requires going beyond the leading-
order optical potential and is beyond the scope of this work. For the sake of
investigating truncation errors in the chiral NN force, one may carry out
inconsistent calculation in the sense that the structure part of the calculation
is keptfixed atN2LO, and in the reaction part higher orders in theNN force
are used. Proceeding in this fashion is sensible, since the scattering
calculation is more sensitive to the NN force compared to the structure
calculation, provided this structure calculation gives a reasonable
description of the ground state one-body density. To show how the
chiral truncation error develops when higher chiral orders in the NN
interaction are introduced, we show in Figure 10 proton scattering from 16O
at 100MeV projectile energy, where the higher chiral orders are only
employed in the scattering part through the corresponding Wolfenstein

FIGURE 6
Differential cross section divided by Rutherford for proton scattering on 12C at (first row) 65 MeV, (second row) 100 MeV, (third row) 122 MeV, and (fourth
row) 160 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots/purple triangles are experimental data from Ref. [79] (65 MeV, black dots) [80], (65 MeV, purple triangles) [81], (96 MeV, purple triangles) [82],
(99 MeV, black dots), and [83] (122 MeV and 160 MeV). Figure from Ref. [43].
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amplitudes. In both, the differential cross section as well as the analyzing
power the twomost right panels depicting the inconsistent calculation show
that the uncertainty bands become smaller when higher chiral orders in the
NN interaction are included. However, these uncertainty bands are not
necessarily realistic due tomissing higher-body effects, which include higher
orders in the chiral force as well as higher orders in the multiple scattering
expansion. Therefore, we can not draw firm conclusions from the fact that
data are outside the uncertainty estimates.Nevertheless, it is obvious that the
decrease in the uncertainties in the chiral truncation is rather slowdue to the
large expansion parameter. Furthermore, the medians of the calculations
shown in Figures 8, 9 do not change when higher chiral orders are
considered in Figure 10, which further indicates that the smaller error
bands of the higher order chiral truncations may be artificial.

4.4 Analysis of posteriors

Even while restricting our analysis to a region where we expect the
expansion parameter to be constant, we can still observe effects on the
uncertainty bands if the expansion parameter is large, as noted inmany of
the results at larger projectile energies. In fact, this behavior will place
limits on the size of nucleus that can be considered with this approach,
since pNA as defined by Eq. 29 will continue to increase as A increases,
yieldingQ > 1 eventually.While this situation is not ideal, we non-etheless
find support for it in our analysis after examining the posteriors for Q, in
accordance with Refs. [36, 43].

In Figure 11, we calculated posteriors for the differential cross sections
in proton scattering from 4He, 12C, and 16O at the energies previously
discussed. From these, we can extract a single best guess for the value of Q
based on the order-by-order calculations and compare that to the
expectation for Q based on Eq. 30. For 16O, the largest nucleus
considered, we see generally good agreement between the expected
value of Q and the best guess value from the posteriors (Figure 11C).
However, as the nucleus decreases in size and as the laboratory energy

decreases, some differences begin to emerge between the two values. In
Figure 11B for 12C, the comparisons are roughly similar to the 16O case, but
for the 4He analysis (Figure 11A), the differences are more pronounced,
especially for the lower laboratory energies. A similar analysis of neutron
scattering on 12C did not show any significant differences between the two
values [43], which implies 4He may be the outlier in this approach. This
analysis may imply scattering from 4He with projectiles at lower energies
could be analyzedwith a smaller expansion parameterQ, though the higher
energy results still favor the larger expansion parameter. As the smallest
nucleus considered here, it may also point to the few-body character of 4He,
which has not historically been well captured in an optical potential
approach.

5 Outlook

Procedures that quantify the theoretical uncertainties
associated with the underlying chiral EFT NN interaction are by
now well established for the NN and nucleon-deuteron systems as
well as nuclear structure calculations, while the systematic study of
chiral truncation uncertainty is not as widely used in ab initio
effective interaction employed to describe the scattering of protons
or neutrons from nuclei. Contributing factors for this relatively
slow development include that when considering a multiple
scattering approach to deriving this effective NA interaction in
an ab initio fashion only recent progress in calculating the leading-
order term in the multiple scattering approach has allowed to treat
the NN interaction on the same footing in the structure and
reaction part [41] by considering the spin of the struck target
nucleon. Though calculations showed that the latter does not
contribute significantly to observables when considering
scattering from nuclei with a 0+ ground state, one nevertheless
needs a consistent ab initio implementation of the leading-order
term of the effective NA interaction in order to study the

FIGURE 7
Analyzing power for proton scattering on 12C at (first row) 65 MeV and (second row) 122 MeV for LO (left column), NLO (middle column), and N2LO (right
column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [84] (65 MeV) and [83] (122 MeV).
Figure taken from Ref. [43].
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theoretical uncertainties imprinted on NA observables by the chiral
EFT NN interaction.

In this work we carry out a systematic study of chiral truncation
uncertainties of the EKM chiral interaction on the ab initio effective NA
interaction calculated in leading order of the spectator expansion for 4He,
12C, and 16O. We find that this interaction allows for a good description of
experiment at energies around 100MeV projectile kinetic energy and
slightly lower, provided we focus on regions of momentum transfer where
the analysis of the EFT truncation uncertainty is valid. When considering
the lower energy of 65 MeV, the agreement with data starts to
deteriorate. This is an indication that errors other than the
truncation error in the chiral interaction should come into play,
specifically errors that result from the spectator expansion itself.
Theoretical consideration of the next-to-leading-order term in the
spectator expansion are described in some detail in this work in
order to lay out necessary theoretical and computational

developments for this non-trivial endeavor. At at the next-to-
leading order three-nucleon forces will naturally enter the
effective interaction. At present this step has only been
attempted in approximative fashions, namely by approximating the
next-to-leading order in the propagator expansion via a nuclear mean
field force [54] or by introducing an effective, density dependent NN
potential in the scattering part of the calculation [46]. Since we are not
considering next-to-leading order terms in the spectator expansion, we
restrict our analysis to N2LO in the chiral interaction and only consider
two-nucleon forces. In this case the choice of the EKM interaction with a
semi-local coordinate space regulator of 1.0 fm is advantageous [38], since
this specific interaction gives a slightly better description of the ground
state energies in the upper p-shell compared to other more recent chiral
EFT interactions when using two-nucleon interactions only.

In our study the chiral truncation errors at energies larger than
100 MeV increase considerably and the agreement with experiment

FIGURE 8
Differential cross section divided by Rutherford for proton scattering on 16O at (first row) 65 MeV, (second row) 100 MeV, (third row) 135 MeV, and (fourth
row) 180 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots are experimental data from Ref. [85] (65 MeV) [86], (100 MeV) [87], (135 MeV), and [88] (180 MeV). Figure taken from Ref. [43].

Frontiers in Physics frontiersin.org12

Baker et al. 10.3389/fphy.2022.1071971

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1071971


deteriorates. The increase in the chiral truncation error can simply be
traced back to the expansion parameter in our approach is getting too
large. The deterioration of the agreement with experiment when going

to higher energies is more difficult to answer. One conclusion may be
that the specific EKM chiral interaction employed here in using the
leading-order in the spectator expansion is not well suited to describe

FIGURE 9
Analyzing power for proton scattering on 16O at (first row) 65 MeV, (second row) 100 MeV, and (third row) 135 MeV for LO (left column), NLO (middle
column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [85]
(65 MeV) [86], (100 MeV), and [87] (135 MeV). Figure taken from Ref. [43].

FIGURE 10
Differential cross section divided by the Rutherford cross section (top) and analyzing power (bottom) for proton scattering from 16O at 100 MeV. The first
three columns are the same as the second rows of Figures 8, 9. The additional two rightmost panels are inconsistent calculations with use up to N2LO in the
structure calculations and up to N3LO (fourth column) or N4LO (fifth column) in the reaction calculation. Due to the inconsistency of the calculation the
uncertainty bands are not fully realistic. The data are the same as cited in Figures 8, 9.
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proton-nucleus scattering observables for 4He, 12C, and 16O at higher
energies. For the chiral NN interaction from Ref. [72] this is not the case
as shown in Refs. [40, 41]. Therefore one will have to investigate what

features of a chiral NN interaction are most relevant for a description of
NA scattering observables for light nuclei.

To put this in perspective, let us reconsider the basic ideas of the
spectator expansion. By design, the leading-order term should be
dominant at energies 150 MeV projectile kinetic energy and higher,
since the reaction time of the projectile with nucleons inside the
nucleus is short, and thus an ‘impulse approximation’ is in general
very good. However, we do not want to consider here projectile
energies larger than 400 MeV, where a relativistic treatment e.g. via
the Dirac equation may be preferred [73, 74]. Thus at energies around
200 MeV the leading order term by design should give a reasonably
good description of NA scattering data. This has been the case in the
microscopic calculations of the 1990s (see e.g. [9–14]) and a set of
recent calculations with specific chiral NN interactions [40, 41, 46].
Attempts to go beyond the leading order by incorporating 3NFs in a
density dependent fashion into the many-body propagator [46]
indicate that effects at 200 MeV are only visible at higher
momentum transfer. In a similar fashion, investigations going
beyond the leading order term in Ref. [54] indicate that those
effects become important at around 100 MeV and at higher
momentum transfers. Thus, if the 3NFs inherent in the chiral
expansion are needed to influence calculations with chiral NN
forces in the leading order of the spectator expansion at higher
energies, then a new look at the interplay between NN and 3NFs
in the leading-order spectator expansion must be developed.
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