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Single-receiver motion parameter estimation is an effective and economical

technology for passive source localization and train-bearing fault diagnosis, in

which time-consuming time-frequency analysis (TFA) methods are widely used

to suppress noise when extracting the continuous Doppler shift of the overhead

pass. Cross-spectrum processing is a potential way to improve the

computational efficiency of TFA methods, but its application is

overshadowed by the phenomena of unknown Doppler shift offset and

power spectrum estimation error. In this paper, conventional cross-

spectrum processing is proven to be an approximation trick for power

spectrum estimation in a small frequency interval, and the two phenomena

are fully explained by the frequency aliasing of bandpass sampling and the

approximation error. On this basis, an revised framework for applying the cross-

spectrum processing is provided. Processing results of the SWellEx-96

experiment data demonstrate that the computational efficiencies of

spectrogram and a parameterized TFA method could be improved up to

85% and 88.2%, respectively, without a noticeable impact on the accuracy of

parameter estimates.
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1 Introduction

Received single-frequency noise, which frequency changes with time dramatically

during the overhead pass, contains lots of information about the moving target. By fitting

the observed time-varying instantaneous frequency (IF) curve of these tones with the

model of Doppler shift under the nonlinear least squares criterion, the Doppler-related

parameters, e.g., the radiated frequency, the moving speed, and the shortest distance

between the receiver and the target, can be estimated easily and economically with only a

single receiver. The conventional application of this single-receiver parameter estimation

method are source recognition, classification and localization [1]. In addition, this method

is also able to be jointed with the bearing fault identification methods [2, 3] and serves for
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train-bearing fault diagnosis [4, 5] through an non-contact way

in wayside during the running of a train.

Many studies have addressed the estimation of Doppler-

related parameters from the line spectrum with a single

receiver, where the key point of these studies is how to

extract the IF curve from the received tones. The earliest

approach may be the phase interpolation method, Ferguson

[6] used it to observe and compare the variation with time of the

aircraft’s blade rate from the received tones of a microphone on

land and a hydrophone beneath the sea. Then Ferguson and

Quinn [1] introduced time-frequency analysis (TFA) methods

to obtain an more accurate estimation for the aircraft’s blade

rate. Because the parameter estimation precision is primarily

determined by the accuracy of the extracted IF curve, many of

the advanced TFA methods [7–11] have been investigated to

suppress noise and concentrate energies for IF contents.

Nevertheless, against the classical short-time Fourier

transform (STFT, also called a spectrogram), these more

effective TFA methods are highly inefficient in computation

[10, 11].

Cross-spectrum processing is a potential way to improve

the computational efficiency of TFA methods. Rakotonarivo

and Kuperman [12] have shown that the radial velocity feature

between a moving tone source and a fixed receiver can be

quickly ascertained from the cross-spectrum of sound

pressures. Yang et al. [13] derived the same results in a

different way. Build on this knowledge cross-spectrum

processing has been extended to scenarios of a single vector

hydrophone [14] and a multi-tone source [15]. However, this

method requires precise knowledge regarding the frequency of

radiated tones to determine the time interval of the cross-

spectrum processing, which should be strictly an integer

multiple of the period of the tone signal. If a time interval of

a non-integral multiple of the period of the tone signal is

utilized, an unknown offset, which has been confirmed by

Wang et al. [16], will be brought into the estimates of the

radial velocity and will prevent the motion parameter

estimation. In addition, it is found that false IF curves of

Doppler shift exist occasionally and can not be predicted by

the cross-spectrum theory. Apparently these two phenomena

leads to the inability of this cross-spectrum method to general

applications.

This paper analyzes reasons behind the two unwelcome

phenomena and tries to perfect the way of applying cross-

spectrum processing in parameter estimations. The main

content is organized as follows. Section 2 discusses reasons

behind the two unwelcome phenomena. Section 3 outlines the

revised framework of applying the cross-spectrum processing for

the fast parameter estimation and explains its details for

implementation. Section 4 verifies the computational efficiency

of the revised framework with the received tones in the event

S5 of the SWellEx-96 experiment. Finally, Section 5 draws some

conclusion.

2 A deep understanding about the
cross-spectrum method

2.1 Conventional cross-spectrum method

Conventional cross-spectrummethod [12] is proposed in the

community of underwater acoustics. According to the normal

mode theory [17], the expression of sound pressures in ocean

waveguide under general conditions is:

p r, z( ) � ∑M
m�1

Am exp jkrmr( ), (1)

where

Am � Q
ψm 0, zs( )ψm r, z( )����

krmr
√ , (2)

Q is a constant, r is the horizontal distance between the

receiver and the point source, z is the receiver depth, zs is the

source depth, M is the number of propagating modes, and ψm

and krm are the modal depth function and the horizontal

wavenumber of the mth mode, respectively.

Assume that r is the distance between a moving source and a

receiver at time t, and the corresponding radial velocity is vr,

which satisfies Δr = vrΔt in a small time interval. Then, sound

pressures at t + Δt
2 and t − Δt

2 can be expressed as:

p t + Δt
2

( ) � p r + Δr
2

( ) � ∑
m

Am exp jkrm r + Δr
2

( )( )
p t − Δt

2
( ) � p r − Δr

2
( ) � ∑

m

Am exp jkrm r − Δr
2

( )( ) . (3)

The cross spectrum of these two sound pressures p(t + Δt
2 )

and p(t − Δt
2 ) is [12]:

Ic t, f0,Δt( ) � p t − Δt
2

( )p* t + Δt
2

( )
≈ exp −j�krΔr( )∑

m,n

AmAn* exp jΔkmnr( ) , (4)

where �kr � 2πf0/cp at frequency f0, cp is the average modal phase

speed and can be approximated by the (average) sound speed of

water cp ≈ c in practical applications, and Δkmn = krm − krn is the

difference between the horizontal wavenumber of the nth mode

and that of the mth mode.

Because the oscillations of exp(−jΔkmnr) exhibit a much

longer period than those of exp(−j�krΔr), Ic(t, f0,Δt) should be

dominated by the latter term, i.e.,

Ic t, f0,Δt( )∝ exp −j�krΔr( ) � exp −j2π f0vr
c

Δt( ). (5)

In cross-spectrum method, the sound pressures of a given

frequency f0 at different times are extracted from the spectrogram

of the received time series. Then, oscillation frequency f0vr
c at time

t can be determined simply by the Fourier spectrum of cross-

spectrum series Ic(t, f, nΔ), where n is the positive integer and Δ
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is the time difference between two adjacent segments in the

spectrogram. Since f0 and c are known, one gets the value of radial

velocity vr at time t. Finally, Doppler-related parameters can be

obtained by fitting the observed time-varying vr curve with its

mathematical model under the nonlinear least squares criterion.

2.2 Phenomenon of Doppler shift offset
and its interpretation

A problem in applications of the conventional cross-

spectrum method is that the method requires precise

knowledge regarding the frequency of the tone signal, i.e., f0,

to determine the time difference Δ between two adjacent

segments in the spectrogram, where Δ should be a strict

integer multiple of the period of f0. However, in general

applications, f0 is often not accurately known and the

sampling frequency fs may be a non-integral multiple of f0. As

a result, an appropriate Δ is hard to be determined and f0 will not

appear in the frequency axis of the spectrogram, one can only

extract sound pressures from the closest frequency point to f0. In

such a case, as shown in Figure 1, slight changes of Δ produce an

remarkable offset to the oscillation frequency f0vr
c . Because the

quantity of offset cannot be predicted by the theory of cross-

spectrum processing, further processing for parameter

estimation is prevented.

Loosely, the procedure of extracting sound pressures from

the spectrogram can be regarded as a procedure of resampling to

the received time series with sampling rate fs = 1/Δ. Bandpass
sampling theorem [18] shows that, if a tone is sampled at a

frequency that less than the Nyquist sampling rate, its real

frequency f0 will be misrepresented by an aliased frequency f′ �
f0 − round(f0/fs) × fs that do lie within the range [ − fs/2, fs/2)

because

exp j2πf0t( ) � exp j2π f′ + round f0/fs( ) × fs( )t( )
� exp j2πf′t + 2πround f0/fs( ) × fst( )
� exp j2πf′t( ) (6)

at any sampling time t = nΔ, where n is the positive integer and

the function round(x) rounds x to its nearest integer. Therefore,
for the received IF curve of Doppler shift f � f0(1 − vr/c)
(i.e., Eq. A7 in Appendix), if the time difference Δ between

two adjacent segments in the spectrogram is a strict integer

multiple of the period of f0, i.e., f0/fs � round(f0/fs), we have
the aliased frequency f′ � f0vr

c . On the other hand, if Δ is not an

FIGURE 1
The SWellEx-96 signal used in Section 4 is employed to illustrate the phenomenon of Doppler shift offset. The sampling rate of the signal is fs =
1,500 Hz. (A–C) illustrate, respectively, the TFDs produced by the conventional cross-spectrum method (i.e., the step R2.3 of F-STFT without
compensation) with different lengths of the spectral window Nw1 = [1,500, 1,510, 1,515] in sound pressures extraction. Black curves represent the IF
curves of each TFD predicted by the bandpass sampling theorem. Frequency axes of these TFDs represent oscillation frequency f0vr

c . For a
comparison, (D) shows the TFD produced by STFT and the theoretical IF curve given by Eq. A7. It can be seen that a slight increase of Nw1 brings a
significant offset for the aliased IF trajectories.
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integer multiple of the period of f0, i.e., f0/fs ≠ round(f0/fs),
we have the aliased frequency f′ � f0vr

c + foffset, where foffset �
f0 − round(f0/fs) × fs denotes the quantity of offset.

The black curves in the Figures 1A–C represent the aliased IF

trajectories predicted by the bandpass sampling theorem. One

can see that these curves are consistent well with the IF

trajectories of each TFD.

2.3 Phenomenon of power spectrum error
and its interpretation

As shown in Figures 2A,D, the TFD of the cross-spectrum

method and that of the spectrogram may be different sometimes.

Although bandpass sampling theory provides a well

interpretation for the offset phenomenon, the theory can not

interpret such a difference because power spectrum of the real

frequency and the aliased frequency should be equal according to

Eq. 6. Therefore, technically the procedure of extracting sound

pressures from the spectrogram is not a procedure of bandpass

sampling.

In the cross-spectrum method, the radial velocity is

estimated from the cross-spectrum of pressures (i.e., p(t +

Δ)p*(t), p(t + 2Δ)p*(t), / ). According to the linearity

property of Fourier transform, the Fourier spectrum of

p(t + Δ)p*(t), p(t + 2Δ)p*(t), / equals the weighted (by

p*(t)) Fourier spectrum of p(t + Δ), p(t + 2Δ), / . Because

multiplying a constant p*(t) does not induce useful

information of radial velocity, the information of radial

velocity should be included in the Fourier spectrum of

p(t + Δ), p(t + 2Δ), / . Therefore, the cross-spectrum

processing (i.e., multiplying the p*(t)) is unnecessary and

can be omitted to simplify processing steps. In addition,

note that the pressures p(t + Δ), p(t + 2Δ), / are extracted

from the spectrogram of the received time series in practice

but are not directly time-sampled from the received signals as

a conventional manner of sampling does, these two sampling

manners are not of equivalence as analyzed below.

Suppose that x(q) is a discrete signal and q = 0, 1, . . ., NM −

1, where N and M are two positive integers. Its discrete Fourier

transform (DFT) at frequency k
NM is given as:

Y k( ) � ∑NM−1

q�0
x q( )e−j2π k

NMq, (7)

where k = 0, 1, . . ., NM − 1.

FIGURE 2
The SWellEx-96 signal used in Section 4 is employed to illustrate the phenomenon of power spectrum error. (A–C) illustrate, respectively, the
TFDs produced by Eq. 9 (i.e., the step R2.4 of F-STFT) with different compensations, where the length of the spectral windowNw1 = 500. The aliased
IF trajectories has been mapped into the real frequency band by a contrary procedure of aliasing. (D) Shows the TFD produced by STFT. The green
rectangles show the changes of an aliased IF trajectory with the increase of compensation points, and the red rectangles show the changes of
the target IF trajectory with the increase of compensation points. It can be seen that a few compensation points are able to give a good
approximation for the spectrogram if the phenomenon of power spectrum error occurs.
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Defining X(n,m) � x(n +Nm), i.e., we reshape the discrete
signal x(q) to anN ×Mmatrix. Then, the DFT of columnm of X

at frequency k1
N is given as:

Y1 k1, m( ) � ∑N−1

n�0
X n,m( )e−j2πk1N n, (8)

where k1 = 0, 1, . . ., N − 1. If f0 ≈ k1
N, then the row k1 of Y1

represents the pressures p(t + Δ), p(t + 2Δ), / according to the

cross-spectrum processing.

Further, the DFT of row k1 of Y1 at frequency
k2
M is given as:

Y2 k2( ) � ∑M−1

m�0
Y1 k1, m( )e−j2πk2Mm

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2πk1N ne−j2π

k2
Mm

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NMej2πmk1

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NM

� ∑M−1

m�0
∑N−1

n�0
x n +Nm( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NM

� ∑NM−1

q�0
x q( )ej2π k2

NM mod q,N( )[ ]e−j2π Mk1+k2( )
NM q,

(9)

where the function mod (q,N) denotes the remainder after the

division of q by N. Due to the presence of the term

ej2π
k2
NM mod (q,N), Y2(k2) equals to Y(Mk1 + k2) only when k2 =

0. However, ej2π
k2
NM mod (q,N) ≈ 1 when k2 approaches 0,

considering the periodicity of the term we have

Y2 k2( )≈ Y Mk1 +k2( ), 0≤k2< M−1( )/2
Y Mk1 +k2 −M( ), M−1( )/2≤k2≤M−1{ . (10)

Eq. 10 shows that the Fourier spectrum of pressures p(t +

Δ), p(t + 2Δ), / can be regarded as only an approximation

for that of the received time series in a narrow frequency

band, where the frequency band corresponds with that

indicated by the bandpass sampling theory (i.e., Eq. 6).

Therefore, one can safely map the aliased IF trajectories

into the real frequency band by a contrary procedure of

aliasing. Obviously, this approximation allows for the

improvement of the computational efficiency by using

shorter N-point DFT and M-point DFT to substitute a

longer NM-point DFT.

As is shown in Figure 3A, because Y2 = Y holds true only

when k2 = 0 and the effect of the term ej2π
k2
NM mod (q,N)

increases with the growth of values of k2, directly applying

Eq. 9 gives good approximations around zero-frequency, and

relatively bad approximations far from zero-frequency. To

FIGURE 3
Power spectrum of an random sequence given by Eq. 7 (green curves) and Eq. 9 (black curves) with N = 64, M = 128. (A) No compensation,
default k2 = 0. (B) Four-point compensation, k2 = −48, −16, 15, 47. Note that the horizontal axis, i.e., k2, is limited to [−M/2,M/2 − 1] rather than
[0,M − 1] to shift zero-frequency component to the center of spectrum with the purpose of fitting the axis of green curves.
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improve the degree of accuracy, one can multiply x(q) by the
complex conjugation of the term ej2π

k2
NM mod (q,N) in advance to

compensate its effect. When each of the points of k2 are well-

compensated, the results of Y2 (Eq. 9) will be exactly equal to

the results of Y (Eq. 7). However, because the spectrum of the

adjacent points in a small interval of k2 can be well-

approximated by the spectrum of the centre point,

compensating for all of the points of k2 is not very

necessary. As shown in Figure 3B, compensating a few

points of k2 is sufficient to approximate the real spectrum.

In practice, sharing the same compensation in adjacent

points is a useful trick for maintaining high computational

efficiency. One can balance the demand for computational

efficiency and the demand for the degree of accuracy by

simply adjusting the number of compensation points from

1 to M.

Figures 2B,C depict the TFDs computed by Eq. 9 with 2-

point compensation and 4-point compensation, respectively. As

the green rectangles and the red rectangles show, a few

compensation points are able to significantly reduce the TFD

difference between the approximate method and the

spectrogram.

FIGURE 4
Flowcharts to illustrate the conventional framework (the left flowchart) and the suggested framework for fast parameter estimations (the right
flowchart). The tags R1-R5 and L1-L5 indicate each step of the two flowcharts.
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3 An revised parameter estimation
framework of applying cross-
spectrum processing

The processing framework for fast parameter estimations

based on Eq. 9, together with the conventional framework of

motion parameter estimations, are shown in Figure 4, where

STFT and Doppler chirplet transform (DopplerCT) [10] are

employed as the representatives of the conventional and the

advanced TFA methods, respectively. For ease of description,

these two TFAmethods implemented based on Eq. 9 are denoted

below as F-STFT and F-DopplerCT. Note that the first iteration

of parameterized TFA methods (DopplerCT and F-DopplerCT)

needs some configuration parameters, these parameters are

initialized by the estimates of the conventional non-

parameterized methods (STFT and F-STFT) in Figure 4.

Therefore, STFT can be regarded as the 0th iteration of

DopplerCT, and consequently, the processing with STFT is

always faster than the processing with DopplerCT. Same goes

for the relationship of F-STFT and F-DopplerCT.

FIGURE 5
TFDs of the 112Hz tone that given by different methods : (A) STFT, (B) F-STFT, (C) DopplerCT, (D) F-DopplerCT. It is clearly shown that the two
fast methods is able to generate almost the same TFDs as STFT and DopplerCT.

FIGURE 6
Comparison of the source range given by GPS records and
that estimated from the IF curves depicted in Figure 5.

Frontiers in Physics frontiersin.org07

Liang et al. 10.3389/fphy.2022.1070920

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1070920


Figure 4 shows clearly that the main difference of the

proposed framework to the conventional framework is the

way of computing the TFD, where only the spectrum on a

narrow band around f0 is computed (in an approximate

manner) through the steps R2 and R4, instead of computing

the Fourier spectrum in the whole frequency band of Nyquist

(±fs/2) through the steps L2 and L4. The main parameters

involved in the two frameworks are the length of the spectral

window, the number of overlapped samples, and the number of

DFT points to compute the TFD, they are denoted as {Nw, No,

NF}, {Nw1, No1, NF1}, and {Nw2, No2, NF2} in different steps.

Without a loss of generality, the number NF is assumed that can

be resolved (strictly or just approximately) into two factors NF1

and NF2, i.e., NF =NF1NF2, so that the conventional and proposed

frameworks perform with the same time-frequency resolution

and are comparable. NF1 determines the bandwidth of a TFD

(e.g., the bandwidth in Figure 5 is fs/NF1 = 1 Hz). To hold true for

Eq. 9, Nw1 should be equal to NF1 and No1 to 0, i.e., no zero

padding and overlapping in step R2.1. NF2 determines the

frequency resolution of a TFD, which are fs

NF1NF2
. Zero

padding and overlapping are allowed for the steps R2.3 and

R4.1, where NF2 ≥ Nw2 > No2 ≥ 0.

4 Experimental example

The SWellEx-96 experiment [19] was conducted in 1996 in

the littoral waters outside the port of San Diego. The

FIGURE 7
Changes of the NCC coefficient (A,B), the mean deviation between source range estimates and GPS records (C,D), and the runtime of
computing a TFD (E,F) with the increase of the number of compensation points. Results of F-STFT are shown in the left three panels (A,C,E), while
that of F-DopplerCT are shown in the right three panels (B,D,F). Dash lines in (C–F) represents the corresponding results of STFT and DopplerCT.
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experimental data of event S5 are used to validate the

effectiveness of the proposed framework. In S5, a source was

towed at a constant speed of five knots (2.5 m/s) along a linear

track. It transmitted numerous tonals of various source levels

between 49 Hz and 400 Hz. The first five tones of the “High

Tonal Set” (49 Hz, 64 Hz, 79 Hz, 94 Hz, and 112 Hz), which were

projected at maximum level of approximately 158 dB and

received by the shallowest element (at a depth of 94.125 m) of

a vertical line array, are analyzed below. The sampling rate of the

signal is fs = 1,500 Hz.

Figure 5 illustrates, respectively, the TFDs of the 112 Hz tone

produced by STFT, F-STFT, DopplerCT, and F-DopplerCT. The

parameters used for computing these TFDs are Nw1 =NF1 = 1,500,

No1 = 0,Nw2 = NF2 = 200,No2 = 180,Nw = NF = Nw1Nw2, and No =

Nw1No2. Note that only one iteration is performed to render a high

energy concentration by DopplerCT and F-DopplerCT because in

this example the signal-to-noise rate is very high. It is obvious that

F-STFT and F-DopplerCT generate TFDs that are almost the same

as STFT and DopplerCT. Following the frameworks shown in

Figure 4, the source ranges estimated from the IF trajectories

depicted in Figure 5, together with the GPS records, are shown in

Figure 6. It can be seen that these estimated source ranges are in

good agreement with the GPS records.

Figure 7 depicts the processing results for all five tones. In

Figures 7A,B, normalized cross correlation (NCC) is used to

quantify the similarity between two TFDs,

NCC �
1

MN∑M
m�1∑N

n�1 S1 m, n( ) − �S1( ) S2 m, n( ) − �S2( )������������������������
1

MN∑M
m�1∑N

n�1 S1 m, n( ) − �S1( )2√ ������������������������
1

MN∑M
m�1∑N

n�1 S2 m, n( ) − �S2( )2√ ,

(11)

where �S represents the mean value of a TFD S. Figure 7A

shows that, with the increase of the number of compensation

points, the NCC coefficient between the TFDs of F-STFT and

STFT quickly approaches 1, i.e., the TFD of STFT can be well

approximated by the TFD of F-STFT. Same goes for the

circumstance of F-DopplerCT and DopplerCT as Figure 7B

shown, where, affected by the complexity of computing the

advanced TFA method, the NCC coefficient finally

approaches a number very close to 1 but not exactly 1. In

Figures 7C,D, mean deviation is used to quantify the

difference between the estimated source range and the

GPS recording. F-DopplerCT has less deviation than

F-STFT in the mass. In addition, the mean deviation of

F-STFT and F-DopplerCT is very close to that of STFT

and DopplerCT (dash lines), indicating that power

spectrum approximation hardly affects the accuracy of

estimates in practice. Figures 7E,F show the run time of

computing the TFD. It can be seen that the run time of

F-STFT and F-DopplerCT increases linearly with the

number of compensation points. When the number is

small enough, power spectrum approximation significantly

improves the computational efficiency of TFD. The average

run time of computing TFDs of the five tones are tabulated in

Table 1. Obviously, the average run time of DopplerCT is

longer than that of STFT due to the complicated

computation of the advanced TFA method. But the

average run time of F-DopplerCT (one iteration) is only

slightly longer than that of F-STFT. Comparing with the two

conventional methods STFT and DopplerCT, the run time

can be saved up to 85% and 88.2% by the approximation

processing, respectively. The high performance of

computational efficiency of the suggested framework is

confirmed in this example.

5 Conclusion

This paper perfects the application of cross-spectrum

processing in accelerating Doppler-related parameter

TABLE 1 Average run time of computing TFDs of the five tones. The percentage of run time of F-STFT and F-DopplerCT are computed referring to the
average run time of conventional methods STFT and DopplerCT. As the two bold numbers indicate, the average run time of conventional
methods STFT and DopplerCT is able to be dropped to 15% and 11.8% by applying the framework shown in Figure 4, respectively.

Run time STFT F-STFT with n-point compensation

1 2 3 4 5 6 8 10 15 20 30

Average (s) 2.68 0.40 0.79 1.10 1.56 1.96 2.37 3.16 3.95 5.86 7.90 11.86

Percentage (%) 100 15.0 29.5 40.8 58.2 73.1 88.4 117.9 147.0 218.2 294.4 441.9

Run time STFT F-DopplerCT with n-point compensation

1 2 3 4 5 6 8 10 15 20 30

Average (s) 3.33 0.40 0.79 1.11 1.58 1.99 2.43 3.19 4.01 5.93 7.97 11.94

Percentage (%) 100 11.8 23.8 33.4 47.5 59.8 72.8 95.8 120.3 178.0 239.2 358.7
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estimation for a tone source that travels past a single receiver in

a straight line at constant speed, where time-consuming

advanced TFA methods are widely used to suppress noise

when extracting the continuous Doppler shift of a overhead

pass. The conventional way of applying cross-spectrum

processing is overshadowed by the phenomena of unknown

Doppler shift offset and power spectrum estimation error. In

this paper, the conventional cross-spectrum processing is

proven to be an approximated estimation of the power

spectrum in a small frequency interval, instead of exactly

computing power spectrum over the total Nyquist frequency

interval. This fact not only interprets why the method is highly

computational efficiency but also reveals that reasons behind

the two phenomena are the frequency aliasing and the

approximation error, respectively. Based on these

understandings, an revised framework of applying the cross-

spectrum processing to accelerate the computation of TFDs is

provided especially for TFDs of advanced TFA methods.

Processing to the SWellEx-96 experiment data supports the

above explanations for the two phenomena and demonstrates

that the computational efficiencies of STFT and DopplerCT

could be improved up to 85% and 88.2%, respectively, without a

noticeable impact on the accuracy of parameter estimates. The

feature of this proposed framework is apparent: a similar

function of bandpass filtering is achieved with only FFT

operations. This framework can be applied to accelerate the

computations of most TFA methods. In addition, due to the

feasibility of parallel computing in precision compensation, this

framework is very meaningful in practical applications where

the execution time is an important performance index. For

future work, as this study focuses on only the narrowband case

of applying cross-spectrum technique [12], relationships and

applicability of the proposed framework to the broadband case

is worth examining.
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6 Appendix Doppler frequency shift

Consider an ideal case where a pure-tone source travels along

a straight line at a constant speed v and passes by a fixed receiver,

as shown in Figure A1. The sound speed is given by a constant c

(the average sound speed of a propagation medium in practice).

The time when the source passes through CPA is denoted by τc,

and at the very moment, the distance between the source and the

receiver is represented by dc.

Due to the propagation delay, the acoustic signal emitted by

the source at time τ (source time) arrives at the receiver node at a

later time t (receiver time), given by:

t � τ + R τ( )/c, (A1)

where R(τ) represents the slant range between the source and the
receiver at time τ. According to the geometry relationship shown

in Figure A1, R(τ) can be derived as:

R τ( ) �
�������������
v2 τ − τc( )2 + d2

c

√
. (A2)

Combining Eqs A1, A2, we obtain:

τ � c2t − v2τc −
���������������������
v2c2 t − τc( )2 + d2

c c2 − v2( )
√

c2 − v2
. (A3)

Especially, when τ = τc, we have:

tc � τc + R τc( )/c
� τc + dc/c , (A4)

where tc denotes the moment that sounds emitted at τc have

propagated to the receiver.

Suppose that the phase of a tone signal with a frequency f0
emitted at time τ is:

ϕ τ( ) � 2πf0τ + ϕ0, (A5)

where ϕ0 denotes a constant initial phase. Then, after the

propagation over the slant range R(τ), ϕ(τ) will be sampled

by the receiver at time t. Combining Eq. A3, the phase of the

received signal at time t can be expressed as

ψ t( ) � ϕ τ( ) � 2πf0τ + ϕ0

� 2πf0

c2t −
���������������������
v2c2 t − τc( )2 + d2

c c2 − v2( )√
c2 − v2

+ ψ0

, (A6)

where ψ0 � −2πf0
v2τc
c2−v2 + ϕ0 is a constant.

Further, the IF of this tone signal received at time t is given

by [20]:

f t( ) � 1
2π

zψ t( )
zt

� f0
zτ t( )
zt

� f0
c2

c2 − v2
1 − v2 t − τc( )���������������������

v2c2 t − τc( )2 + d2
c c2 − v2( )√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦. (A7)

Eq. A7 represents the regular of the Doppler frequency

shift. By fitting the extracted IF curve of the received tone

signal with Eq. A7, one can thus obtain the estimates of the

Doppler-related parameters, i.e., f0, v, c, τc and dc. Note that if

we denote the radial velocity of the source that is observed at

the receiver as

vr t( ) � zR t( )
zt

� zR τ( )
zτ

zτ t( )
zt

� − v2c

c2 − v2
1 − c2 t − τc( )����������������������

v2c2 t − τc( )2 + dc
2 c2 − v2( )√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (A8)

then Eq. A7 can be reformulated as:

f t( ) � f0 1 − vr/c( ), (A9)

where the term of the Doppler frequency shift f0vr/c appears

with an expression that is the same as the expression of the

oscillation frequency in the cross-spectrum

processing (Eq. 5).

FIGURE A1
The trajectory of a tone source as it travels past the receiver
node in a straight line at constant velocity v. R gives the slant range
between the receiver and the source. The distance from the
receiver to the CPA is denoted by dc.
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