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As an important tool for monitoring the marine environment, safeguarding

maritime rights and interests and building a smart ocean, underwater

equipment has developed rapidly in recent years. Due to the problems of

seawater corrosion, excessive deep-sea static pressure and noise interference

in the marine environment and economy, the applicability of manufacturing

materials must be considered at the beginning of the design of underwater

equipment. Piezoelectric metamaterial is widely used in underwater equipment

instead of traditional materials because the traditional materials can not meet

the application requirements. In this paper, according to the application range

of piezoelectric metamaterials in underwater equipment, the current

application of piezoelectric metamaterials is reviewed from the aspects of

sound insulation and energy conversion. On this basis, the future

development prospect of piezoelectric metamaterials in underwater

equipment is introduced.
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1 Introduction

In recent years, with the rapid development of the world economy, land resources are

becoming more and more scarce. Researchers have turned their attention to the ocean for

resource exploitation. The development of marine resource exploration has become more

and more rapid. Many marine technologies and underwater equipment (UE) have been

rapidly developed. As UE continues to operate in the ocean for longer periods, researchers

have found that a large number of equipment cannot meet the requirements because the

equipment is made of traditional materials. The emergence of piezoelectric metamaterials

(PMs) has solved many problems with their unique properties, so it has been rapidly

applied to UE.

Metamaterial is a kind of artificially designed material with special structure, which

can achieve singular or anomalous properties that ordinary materials do not have through
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a certain spatial arrangement. Metamaterials generally have such

characteristics as band gap, waveguide, negative refraction,

negative modulus, negative density, hyperlens, acoustic

focusing, acoustic stealth and topological states [1, 2]. In the

past few decades, left-handed materials [3], photonic crystals,

phononic crystals [4], time crystals and evenmetasurfaces [5] can

be classified as metamaterials. They have a very promising future

in many fields such as communication, medicine, defense and

military, aerospace and remote sensing. Metamaterials generally

select existing materials and design new microstructures to

achieve superior and anomalous functions. The selection of

materials should follow the following rules. High modulus

generally corresponds to high operating frequency, low

modulus generally corresponds to low operating frequency

and the large impedance difference between different

component phases generally corresponds to a wider

bandwidth gap. In order to carry out active control, intelligent

materials such as piezoelectric material and shape memory alloy

are generally selected. Compared with other smart materials,

piezoelectric materials have outstanding advantages such as fast

response speed, high control precision, small size and large

market. The excellent electro-mechanical coupling effect of

piezoelectric materials makes it possible to use different

external circuits to change the mechanical properties of

piezoelectric materials and then regulate and control various

aspects of metamaterials [6].

The structure of PM is a kind of intelligent structure and

its local resonance band gap has the characteristics of active

tunability, which can meet the requirements of structural

vibration frequency changing with the environment. The

structure of PM has the characteristics of small additional

mass and intelligently tunable band gap, which makes it have

obvious advantages compared with other types of materials

[7]. PM is a kind of acoustic metamaterial, and acoustic

metamaterial is a medium composed of multiple materials

with negative mass density, negative bulk modulus and other

properties designed based on the principle of local resonance

[8]. When the elastic wave in a specific frequency range

propagates in the structure, it will cause the resonance

phenomenon in the local resonance unit [9], which hinders

the propagation of the elastic wave and generates a band

gap. The band gap properties of PMs can be used to make

sound insulation materials for UE. At the same time, the band

gap characteristic is used to collect the vibration energy of

elastic waves within a specific frequency range, and the

vibration energy is confined to the local resonance unit and

converted into electric energy by piezoelectric materials. The

piezoelectric conversion properties of this PM can be used for

piezoelectric sensors, underwater transducers, hydrophones

and other equipment.

This paper is organized as follows. Section 2 introduces the

band gap properties and piezoelectric conversion properties of

PMs; Section 3 presents the research on the use of PMs as

sound insulation and energy conversion functions in UE;

Section 4 concludes and discusses the future directions of

PMs in UE.

2 Piezoelectric metamaterials

Acoustic metamaterial is a kind of artificial composite

structure material, which is obtained by combining a variety

of materials with different elastic modulus. It is a new functional

material. When the elastic wave in a specific frequency range

propagates in the structure, the elastic wave band gap will be

generated as shown in Figure 1 [10]. The band gap can inhibit

and absorb the elastic wave propagation in the relevant frequency

range. The elastic band gap of acoustic metamaterial is generated

by two main mechanisms, Bragg scattering mechanism and local

resonance mechanism respectively. According to the different

principles of band gap generation, acoustic metamaterial can be

divided into Bragg scattering phononic crystals and local

resonance acoustic metamaterial. Bragg scattering phononic

crystals due to the Bragg reflection of the structure. When the

wavelength of the propagating elastic wave is close to the lattice

coefficient of the structure, the band gap will be generated, which

has a strong inhibition and absorption effect on the elastic wave.

For the local resonance metamaterial, the band gap is mainly

generated by the local resonance element inside it. When the

frequency of the elastic wave propagating in the local resonance

element is close to its resonance frequency, the local resonance

element will resonate under the action of the vibration energy of

the elastic wave. Resonance will absorb vibration energy, so that

elastic waves cannot continue to propagate forward and form

band gap [11–15].

2.1 Band gap properties of PMs

The PM is a type of acoustic metamaterial, so it has the

properties of an acoustic metamaterial. This will cause resonance

phenomenon in its local resonance unit, resulting in band gap

that hinder the propagation of elastic waves. PMs are smart

materials with excellent electro-mechanical coupling effect that

allow the band gap of PMs to be regulated by changing the

mechanical properties of the PM with different external

circuits [6].

The tunable band gap of PMs allows them to better adapt

to environmental changes, broaden the operating frequency

range and overcome the serious drawbacks of passive

metamaterials working at a single frequency or narrow

band [16]. According to the material and structural

characteristics, the bandgap performance of metamaterial

structures can be generally classified into fixed bandgap

characteristics and tunable bandgap characteristics [17].

Fixed bandgap metamaterial structures have been studied
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for many years [18–22]. The materials and structures

required are some common ones, such as beam-plate

composite metamaterial structures [23] and rod-beam

composite metamaterial structures [24]. However, once the

structure and model parameters of the metamaterial are

determined, the position and width of the band gap are

determined, which greatly limits its application in UE.

Therefore, the metamaterial structure must have band gap

tunability and this property is also very useful in practice.

Tunable band gap of metamaterial structures has been

studied. Generally, the stiffness or inertia of the metamaterial

structure is adjusted by special technical means and thus the

position and width of the band gap can be adjusted. The first

studies on tunable metamaterials started by Goffaux and

FIGURE 1
(A) phononic crystal (B) The contour of the phononic crystal is composed of Helmholtz resonator (C) Low resonant frequency band gap
showing negative stiffness (D) Frequency position corresponding to band gap.

FIGURE 2
Schematic of the basic folding mechanisms in a rigid kagome network. The basic unit cell for each folding mechanism is outlined in black. The
color of the triangles corresponds to their rotation. (A)Modewith a basic cell of size 1 × 1; (B)Modewith a basic cell of size 2 × 1; (C)Modewith a basic
cell of size 4 × 1; (D) Mode with a basic cell of size 2 × 2; (E) Mode with a basic cell of size 2 × 2 [36].
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Vigneron [25], who proposed to rotate a non-axisymmetric

solid scatterer by a certain angle to change the band gap width

for fluid-solid phonon crystals. In addition to adjusting the

mechanical properties of metamaterials by rotating scatterers

[26–28], changing the stiffness or shape of structures by

applying external loads is also an effective method [29–32].

For example, Wang et al. [33] used post-buckling deformation

to realize the regulation of the local resonance type band

gap. Bertoldi et al. [34, 35] increased the bandgap width by

compression of porous soft material structures with negative

Poisson’s ratio. As shown in Figure 2, Shan et al. [36] studied

the porous structure of triangular circular hole array and

effectively tuned the elastic wave propagation in the

structure by controlling the loading direction to enhance

the tunability of the system’s dynamic response. Meaud

[37] studied the propagation of elastic waves in a lattice

with alternating linear and nonlinear springs.

The band gap can also be controlled indirectly through the

properties of the piezoelectric material. Active control of the

band gap of a nonlinear piezoelectric spring model using

positive and negative proportional control strategies is

proposed. Nimmagadda proposed a composite structure

composed of periodic lattice and local resonators. The two

element structures have different dependence on temperature.

The opening and closing of the band gap can be controlled by

controlling the temperature, because the elastic modulus of

the two element structures will change with temperature. Xia

et al. [38] studied the effect of water temperature on the local

resonance band gap and negative bulk modulus of acoustic

metamaterials, and the local resonance band gap and negative

bulk modulus were regulated by adjusting the water

temperature.

PMs are metamaterials that use piezoelectric materials to

design metamaterial structures. Metamaterials with the desired

bandgap position and width can be obtained by an active control

strategy. Piezoelectric materials not only give metamaterials

intelligence but also expand the functional scope of

metamaterials, so that related equipment has a variety of

superior properties at the same time, which can effectively

promote the multi-functionalization of equipment.

2.2 Piezoelectric regulation of PMs

Among many intelligent materials, piezoelectric materials

have a special electro-mechanical coupling effect and the

equivalent circuit of piezoelectric materials is shown in

Figure 3. They can be found in alloys or piezoelectric

ceramics, soft polymers and conductors or semiconductors.

There is no doubt that it is the most well-researched, the

most mature and the most widely used intelligent material

[39]. Common piezoelectric materials can be divided into

three categories: piezoelectric crystals (such as quartz crystals),

piezoelectric ceramics and piezoelectric polymers. They are used

in different fields and play different values according to their

different properties and states. The electro-mechanical coupling

effect of piezoelectric materials is that under the action of

mechanical pressure, surface charges will appear and form an

electric field in the body, which is called the positive piezoelectric

effect. Piezoelectric materials can also deform in response to an

electric field, which is called the inverse piezoelectric effect. The

electro-mechanical coupling effect of piezoelectric materials is

that surface charges will appear under the action of mechanical

pressure and an electric field will be formed in the body, which is

called the positive piezoelectric effect and it can also deform

under the action of the electric field, which is called the inverse

piezoelectric effect. The mechano-electric coupling

characteristics give piezoelectric materials the ability to

convert electrical energy and mechanical energy, which can be

used in applications such as transducers, sensors and

actuators [6].

The excellent electro-mechanical coupling effect of

piezoelectric materials makes it possible to use different

external circuits to modify the mechanical properties of the

piezoelectric material and thus modulate various aspects of

the metamaterial. The key is to find a way to control the

vibration of the structure. Piezoelectric shunt technology is an

important means of vibration suppression, especially in the

vibration control of smart structures. Because of the

advantages of relatively low added mass, it is widely used in

the field of vibration and noise control. According to the

operating characteristics, piezoelectric shunt circuits can be

divided into linear circuits and nonlinear circuits [7].

For linear circuits, the piezoelectric shunt damping technique

was first proposed in 1979 and this technique [40] uses a

resistive-inductive (RL) shunt circuit for vibration damping. If

the resonance of the circuit is equal to the resonance of the

mechanical system, the circuit is in the resonant state and will

generate a considerable control force against the vibration of the

mechanical system. The simplicity and ease of implementation of

RL-based piezoelectric shunt damping techniques have attracted

more and more attention [41–43]. The circuit control effect

mainly depends on RL resonance. The traditional RL resonant

shunt circuit has the following problems. For example, the

vibration attenuation capability of the circuit under the

FIGURE 3
Equivalent circuit model of piezoelectric material.
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condition of multi-modal vibration is not ideal [44], the

realization of low-frequency vibration requires a hundred

Henry-level inductance [45] and the circuit control effect is

very sensitive to the change of circuit parameters [46]. In

addition to the RL piezoelectric shunt damping circuit, the

negative capacitive damping technology can also effectively

avoid the narrow band gap and achieve the effect of

broadband vibration control. On the one hand, the negative

capacitance shunt circuit can effectively change the equivalent

stiffness of piezoelectric materials [47], and on the other hand, it

can produce a good damping effect [48, 49]. In particular,

changes in the environment may cause dramatic changes in

the structural resonance frequency. At the same time, the

temperature will also change the capacitance in the control

circuit, which will affect the performance of the shunt circuit.

Based on the proposal of an accurate model for constructing

piezoelectric materials, the problem of how to reduce or avoid the

instability of the negative capacitance piezoelectric shunt

damping circuit is solved [50].

In terms of nonlinear circuits, the most representative one is the

synchronous switch damping (SSD) shunt circuit [51–54]. The

synchronous switch damping shunt circuit is a semi-active

control method, which is equivalent to providing a nonlinear

impact load. The voltage of the piezoelectric material will

continuously flip with the change of the structural displacement

under the action of the nonlinear switch of the SSD circuit. Among

SSD circuits, synchronous switched inductive damping circuit

(SSDI) has attracted wide attention because of its excellent

stability and good low-frequency vibration suppression effect

without very large inductors [55, 56]. However, the

manufacturing process and other factors will affect the quality

factor of the inductor, which will affect the vibration suppression

effect of SSDI circuit. To reduce this detrimental effect, Xu et al. [57]

improved the vibration suppression effect of the circuit by adding

negative capacitance to the circuit to improve the electromechanical

coupling coefficient of the piezoelectric element. In addition, a

voltage source is connected in series in the SSDI circuit to form

the enhanced SSDV, which can also effectively improve the vibration

suppression of the circuit. However, this method tends to cause

circuit instability and a synchronous switching damping circuit

based on a negative capacitance (SSDNC) structure has also been

developed. This circuit can counteract the equivalent capacitance

value of piezoelectric material by adjusting the value of negative

capacitance, so as to improve the electromechanical coupling

coefficient of piezoelectric material, increase the flipping voltage

of piezoelectric material, and achieve better vibration suppression

effect. This shunt circuit does not require precise system

identification of the controlled structure. The vibration control

effect is better and more stable. Changes in the external

environment have a low impact on the control system. Most

importantly, the control system is simple and can be

implemented with only a few electronic components [58].

3 Research progress of PMs used
in UE

At present, PMs has been widely used in UE, including

underwater gliders, hydrophones, underwater robots, offshore

drilling platforms, submarines and underwater communication

equipment [59–61]. It is also used to improve ultrasonic sensors

and special equipment for detecting underwater explosives and

underwater pollution [62, 63]. PMs has a very broad application

prospect. For underwater equipment, the most prominent feature

is that the hard boundary of sound field meets the need for

hydrostatic pressure. The sound wave in the underwater

equipment flows from the seawater environment to the

underwater equipment. The water to equipment here is the

hard boundary. The hard boundary condition is that the

normal sound pressure is zero. Hydrostatic pressure refers to

the pressure exerted by static liquid on adjacent contact. The

band gap characteristics of PMs can be used for sound insulation

of UE. To sum up, the application of piezoelectric metamaterial

in underwater equipment can be developed in two directions.

First, the band gap characteristics are used for sound insulation of

underwater equipment. Second, piezoelectric conversion

characteristics are used for energy harvesting in underwater

devices. The application prospect of PMs in UE will be very

broad.

The following describes the research content and research

progress of PMs in terms of sound insulation and piezoelectric

conversion of UE.

3.1 Sound insulation

PM structures have good applications in the field of sound

insulation and vibration damping due to their unique elastic

wave band gap properties, i.e., elastic waves cannot propagate in

their band gap frequency range [64, 65].

FIGURE 4
(A) Structure of PM (B) Side view of the cell.
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Zhou et al. [66] used a new method to verify and deduce a

new type of piezoelectric composite metamaterial, which has

both viscoelastic and piezoelectric properties. The viscosity of the

viscoelastic material dissipates the mechanical energy of

vibration and absorbs the sound waves to achieve passive

noise reduction. The properties of piezoelectric materials can

achieve the effect of active noise cancellation, by emitting the

opposite phase of the sound wave to a known sound source to

cancel out the sound wave. This material is applied to the coating

of submarines. The reflection is eliminated by applying a

controlled periodic voltage to the piezoelectric material layer

to create a corresponding stress, which in turn emits sound waves

that are in the opposite phase of the vibration. The concealment

of submarine is improved, and the feasibility of using this new

material for UE sound insulation is discussed theoretically. Yi

et al. [67] proposed a general method for designing multi-

resonant PMs, as shown in Figure 4. This metamaterial

contains periodically distributed piezoelectric patches bonded

to the surface of the main structure, the shunt circuit works with

the patches in a self-inductive mode. By studying the effective

bending stiffness of the multi-resonance metamaterial plate, the

mechanism of multi-band gap generated by the transfer function

is explained. When the effective bending stiffness becomes

negative, the transfer function induces multiple frequency

ranges, resulting in multiple band gaps The characteristics of

these bandgaps can be studied, and their coupling and merging

phenomena can be observed and analyzed. The elastic wave

isolation effect of the material in multiple frequency bands is

verified by numerical results in the frequency domain, which

proves the functionality of the material and provides a new

choice for sound insulation and vibration reduction of

underwater equipment.

He et al. [68] designed a tunable thin-film metamaterial

based on piezoelectric materials for the isolation of low-

frequency noise. The material is made of a piezoelectric mass

embedded in an elastic film, and it is verified by experiments that

the material has good sound insulation performance in the

frequency range of 20–1,200 Hz. Moreover, the external

circuit of the piezoelectric mass block is explored to form an

LC oscillating circuit, and the resonant frequency of the circuit

can be adjusted by changing the parameters of the external circuit

to realize the adjustability of the sound insulation performance.

The results of this study provide a reference for the design of

sound-insulating tunable PMs and support for the material to be

used in UE.

To realize the sound insulation and vibration reduction of

UE, Wang et al. [7] overcome the shortcoming of the relatively

narrow band gap of PM structures by externally connecting

different shunt circuits, and realized the adjustment of the

band gap of metamaterials. The synthetic impedance

technology is proposed, and the synthetic impedance

equivalent control loop is designed. Through simulation

research, it is shown that the method can flexibly adjust the

band gap range of PMs using software programming, which

provides a new way for the vibration and sound insulation of

PMs in UE. With its unique piezoelectric properties, the PM is

used in the sound insulation of UE, overcoming the problem of

poor isolation of low-frequency sound by traditional materials,

reducing the impact of underwater noise on UE and improving

the data accuracy of the equipment.

3.2 Piezoelectric conversion

Vibration energy in water mostly exists in the form of low

frequency and broadband sound waves, and the vibration energy

in water can be converted into electric energy through

piezoelectric conversion characteristics.

The PM structure is designed to capture the underwater

vibration energy of broadband and low frequency. The model of

elastic wave propagation in PM structure is established, and then

the characteristics of elastic wave propagation are solved by

simulation. The band gap of the PM structure is solved and

analyzed, and the energy output of PMs using different

piezoelectric materials is simulated and experimentally

analyzed to demonstrate the effectiveness of the material

structure [8]. Experiments show that the PM structure can

effectively absorb elastic wave vibration energy in a specific

frequency range and convert it into electrical energy, which

can realize energy storage and power supply for underwater

robots and other equipment. Khan et al. [69] studied and

FIGURE 5
(A) Schematic diagram of the structural plane of the local
resonance type PM sheet (B) Schematic diagramof the structure of
the local resonance type PM resonant subunit.
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proposed a modeling framework based on micromechanical

finite element, which was used to calculate the

electromechanical characteristics of 3–3 PMs based on

honeycomb structural variants. The hydrostatic quality factor

of the longitudinal polarization network is increased by four

orders of magnitude and the acoustic impedance is reduced by

one order of magnitude, which is very suitable for the design of

hydrophones. Hydrophones are made of new PMs with higher

hydrostatic quality factors. An active gradient metamaterial

based on the composite structure of conventional piezoelectric

materials was proposed to achieve acoustic impedance matching

and underwater acoustic focusing [70]. The active focusing and

broadband focusing behaviors of this PM are demonstrated by

simulation and experiments, which can replace acoustic

metamaterials used in UE.

To solve the power problem of underwater low-power

wireless sensors, Zhang et al. [71] organically combined

elastic wave fluctuation characteristics with piezoelectric

energy-harvesting structures to improve the vibration energy

capture efficiency of broadband low-frequency environments.

As shown in Figure 5, a local resonant piezoelectric

metamaterial thin sheet is designed and manufactured for

test verification. The test results show that the optimized

circuit can effectively improve the energy harvesting

efficiency and provide a choice for long-term uninterrupted

power supply of underwater low-power equipment. Sayed Saad

Afzal et al. [72] proposed to create a completely battery-free and

scalable underwater sensor network. By developing a

backscattering underwater sensor using PMs, backscattering

sensors can simply collect energy from environmental signals in

the environment and then reflect them to communicate with

near-zero power consumption, which is called piezoelectric

acoustic backscattering. It is an underwater backscatter

network system that uses underwater transducers to provide

energy for communication and has made great progress in

power-free underwater communication.

Figure 6 is a structural diagram of a PM, which is used to

fabricate a mechanical antenna that can be used for UE

communication. The antenna has high radiation efficiency,

multiple frequency bands and small size [73]. Through the

structural parameters and materials of the piezoelectric

radiation unit, the three operating frequency bands of 22, 24,

and 26 kHz can be independently adjusted and the modulation

range exceeds 15 kHz. The experimental results show that the

proposed piezoelectric metamaterial antenna has great

application potential in underwater communication equipment.

Xiao et al. proposed a two-dimensional local resonance

metamaterial acoustic energy collector for the problem of

sound energy harvesting. The acoustic energy density and

conversion efficiency are improved by studying and utilizing

piezoelectric energy harvesting technology of acoustic

metamaterials. The sound energy conversion and sound

insulation performance of the plate are studied from the

acoustic point of view, so that the utilization rate of sound

energy into electric energy can reach the highest [74]. Ma

et al. designed a single cavity underwater acoustic metasurface

unit with subwavelength thickness that simultaneously achieves

high refractive index in underwater environment. By arranging

several metasurface elements with gradient refractive index

distribution along the radial direction, a 3D planar

underwater acoustic lens with gradient refractive index is

constructed. In addition, a lens-based acoustic concentrator is

proposed to greatly increase the acoustic energy gain over a wide

frequency range. It has potential application value in acoustic

energy harvesting [75]. Kim et al. designed spherical and

ellipsoidal metamaterial lenses based on Luneburg lenses and

transform optics for underwater ultrasound imaging. It can

enhance the signal over a wide frequency range and detect

objects at wide angles. The lens has a wide frequency

characteristic and can achieve the half maximum of focal

length and full width in the frequency range of

60–160 kHz.These lenses can be used in sound-guided

ranging, offering the possibility of detecting underwater at

higher resolution at broadband and wide angles [15].

The emergence of PMs improves the efficiency of underwater

elastic wave vibration energy harvesting, so they are mostly used

to improve the traditional underwater energy harvesting

equipment. The emergence of PMs provides a new option for

the fabrication of UE, thus improving the performance of UE. In

conclusion, the emergence of PMs has greatly promoted the

development of UEs.

4 Summary and outlook

PMs can be widely used in UE due to their bandgap

characteristics and piezoelectric conversion characteristics. The

band gap characteristics are mainly related to the absorption of

elastic waves. Under water, PMs are mainly used to absorb sound

FIGURE 6
Material structure of PM mechanical antenna.
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waves, play the role of sound insulation, noise reduction, vibration

reduction and so on. The vibrational energy of elastic waves can be

converted into electric energy by piezoelectric conversion. Under

water, PMs can convert the vibrational energy to electricity to power

UE. In addition, PM has excellent electro-mechanical coupling

effect. The external shunt circuit is easy to be adjusted and

designed in various ways, so that the PM has controllable

characteristics, which can meet the different requirements of the

functional design and application of acoustic equipment. In practical

engineering, the application of PM can reduce noise and vibration of

UE, which is helpful to improve the accuracy of hydrophones. The

energy conversion efficiency of PM can be improved by changing its

piezoelectric structure through the design of external shunt circuit.

In general, the application of PM in UE extends the application

range of UE.

So far, few piezoelectric metamaterial have been used

underwater, or even acoustic metamaterial for underwater

equipment. In recent years, the research of piezoelectric

metamaterials has attracted great interest and attention of many

researchers. At the same time, a lot of scientific research

achievements have been made, but there is still a big gap with

the actual demand and application. In the future, researchers still

need to strengthen the corresponding theoretical, numerical and

experimental research. Most of the existing related research is still

based on basic research, and there is still a great lack of

corresponding applied research. The research results of

piezoelectric metamaterial are transformed into practical

technology to make structures, components and equipment

suitable for practical application. This requires the cooperation

and efforts of theoretical researchers and technicians engaged in

the field of applied research and technology development.

Based on the current research status, there is still room for

future development as follows: 1) The mature application of PMs

in UE is relatively small, and most of them are still in the

theoretical and simulation stage. Experimental research on

PMs should be accelerated, and more applications should be

applied to UE. 2) Piezoelectric materials with better performance

should be developed to power energy storage for larger UEs. 3)

With the rapid development of artificial intelligence, the

structure of PM can be designed by artificial intelligence

algorithm. For example, it can be intelligently designed

according to the range and function of use. 4) The properties

of piezoelectric materials are fully exploited by UE, and

researchers also need to develop equipment that can

accurately process mechanical signals and design better

external control circuits.
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