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Over the past 2 decades, researches in artificial neural networks (ANNs) and

deep learning have flourished and enabled the applications of artificial

intelligence (AI) in image recognition, natural language processing, medical

image analysis, molecular and material science, autopilot and so on. As the

application scenarios for AI become more complex, massive perceptual data

need to be processed in real-time. Thus, the traditional electronic integrated

chips for executing the calculation of ANNs and deep learning algorithms are

faced with higher requirements for computation speed and energy

consumption. However, due to the unsustainability of Moore’s Law and the

failure of the Dennard’s scaling rules, the growth of computing power of the

traditional electronic integrated chips based on electronic transistors and von

Neumann architecture could difficultly match the rapid growth of data volume.

Enabled by silicon-based optoelectronics, analog optical computing can

support sub-nanosecond delay and ~fJ energy consumption efficiency, and

provide an alternative method to further greatly improve computing resources

and to accelerate deep learning tasks. In Chapter 1, the challenges of electronic

computing technologies are briefly explained, and potential solutions including

analog optical computing are introduced. Then, separated by four photonic

platforms, including coherent integration platform, incoherent integration

platform, space-propagation optical platform, and optical fiber platform, the

recent important research progresses in analog optical computing are outlined

in Chapter 2. Then, the nonlinearity and training algorithm for analog optical

computing are summarized and discussed in Chapter 3. In Chapter 4, the

prospects and challenges of analog optical computing are pointed out.
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Introduction

As one of the most important algorithms of artificial

intelligence (AI), due to its analogy inspired by parallel

signal processing in human brain, artificial neural network

(ANN) has been proposed more than 60 years [1]. However,

until 2006, Hinton [2] demonstrated that the deep ANN model

can be effectively trained, the powerful capability of deep ANNs

has begun to be truly liberated and Hinton’s study has excited

the third development wave of ANNs. Over the past 2 decades,

deep learning (DL) has replaced some traditional computing

models and successfully shown great superiority in solving the

practical problems of pattern recognition, natural language

processing, prediction and intelligent recommendation,

medical image analysis, molecular and material science,

autopilot, intelligent robot and so on. Matrix computation/

multiply accumulate computation (MAC), as the fundamental

and most heavy computation load in the ANN model, used to

be processed by the centralized processing unit (CPU), which

sequentially performs all operations specified by the program’s

instructions and a separate memory. Because CPUs require a lot

of space to place storage units and control units and computing

units only occupy a small part, the parallel computing efficiency

of the CPU is poor and it is quickly replaced by the graphics

processing unit (GPU), which contains massive parallel

computing units to accelerate the matrix computation.

However, due to the continuous increase of information

capacity under the era of big data, it is also insufficient for

GPUs to process AI tasks in complex application scenarios [3].

Therefore, researchers have developed new hardware

architectures, for instance, field-programmable gate arrays

(FPGAs) [4], application specific integrated circuits (ASICs)

[5], neural network processing units (NPUs) [6], and

neuromorphic electronics [7–11], to improve energy

efficiency and computation speed for ANN and DL tasks.

However, with the slowing down and end of Moore’s Law

and the failure of the Dennard’s scaling rules [12], these

traditional von Neumann architectures and CMOS-based

electronic components would suffer from the internal

bottlenecks of electronics, such as the clock frequency,

latency, energy efficiency, and harsh trade-offs between

bandwidth and interconnectivity [3, 13–15]. Therefore, it can

be inferred that the growth of computing power of the

traditional electronic integrated chips based on von

Neumann architecture and electronic transistors would not

meet the demand of super-high-speed and low-latency

processing of massive data [16] in the foreseeable future.

Benefitting from the high speed, broad bandwidth resources,

and highly parallel processing capability, optics has unmatched

advantages for interconnections and communications [17–23],

which can overcome the bandwidth and interconnectivity trade-

offs [24]. Six decades ago, researchers have already recognized

the potential of optics to process information and have tried to

develop optical devices to implement some fundamental

computations [25, 26], which is named “optical computing”

nowadays. Based on the internal difference of computing

method, optical computing can be classified into two

categories: the digital optical computing and the analog

optical computing [25, 27, 28]. The digital optical computing

aims to construct optical transistors which have the similar

mechanism as the general electronic computer to process

Boolean operation, and has been developed more than

30 years [29, 30]. Driven by the intrinsic merits of optics,

such as high bandwidth, negligible heat generation, and ultra-

fast response, the digital optical computing was considered as a

competitive approach to replace the digital computer to

implement efficient computation [31]. However, the criteria

for practical optical logic, including cascadability, fan-out,

logic-level restoration, input/output isolation, absence of

critical biasing, and logic level independent of loss, have not

yet been systematically achieved under the current technologies

[32]. On the other hand, the analog optical computing opened up

an alternative direction to obtain competitive performance

against the state-of-art electronic computers. Firstly, the

analog optical computing can “freely” perform arithmetic or

mathematical operations, such as convolution, matrix-vector

multiplications (MVM), Fourier transforms (FT), and random

projection, as a byproduct of the light–matter interaction or light

propagation [33]. Thus, the energy consumption can be

efficiently reduced due to the low propagation loss and

avoiding the consumption for logic-level restoration existing

in logic circuits [24]. In recent decades, the great progress in

silicon-based optoelectronics and the largely increasing of the

integration density of photonic devices [34, 35] provides a

possible platform that supports sub-nanosecond delay and ~fJ

energy consumption efficiency to implement these operations

[15, 36, 37]. Moreover, the broad bandwidth resources are easy to

be applied in extending the parallel processing of the analog

optical computing by using the wavelength division multiplexing

(WDM) [18]. Although the analog optical computing is also

faced with the challenges of high-bit accuracy, low-power-

consumption nonlinearity, large-scale integration and so on.

With the development of optoelectronics, it is hopeful that

these problem can be solved one after another and the analog

optical computing is still one of the most competitive candidates

for super-high-speed, low-energy-consumption, and low-latency

massive data processing in the post-Moore era [16, 24, 26, 33, 36,

38, 39].

In this article, the challenges of electronic computing

technologies are briefly explained and potential solutions,

including the analog optical computing, are introduced in

Chapter 1. Then, separated into four photonic platforms,

including coherent integration platform, incoherent

integration platform, space-propagation optical platform, and

optical fiber platform, the recent research progresses in analog

optical computing are outlined in Chapter 2. Then, the
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nonlinearity and training algorithms for analog optical

computing are summarized and discussed in Chapter 3. In

Chapter 4, the prospects and challenges of analog optical

computing are pointed out.

Analog optical computing

The analog optical computing is explored to directly

implement arithmetic/mathematical operations such as dot

product [40, 41], MVM [42–44], FT [45, 46], and other

operations [47–50] due to its potential possibilities of high

parallelism and high energy efficiency. In general, the

implementation of these arithmetic/mathematical computations

depends on the physical mechanisms behind optical phenomena,

for instance, they can be realized by interference, diffraction, optical

absorption, and optical nonlinearity, combined with photonics

techniques (such as multiplexing technology, optical

modulation, and optical detection). Based on the realization of

these operations, typical analog optical computing models,

including the optical neural network (ONN) [44, 51, 52], optical

reservoir computing (ORC) [50, 53, 54], and optical Ising machine

(OIM) [49, 55, 56], have been demonstrated via various schemes.

To have a coherent description of these implementations, the basic

principles of these three computation models are firstly explained

in this Chapter, and they are not mentioned anymore in the

following implementations. Then, the recent progresses in

analog optical computing are summarized and introduced

sequentially by classifying them into four dependent optical

platforms, including the coherent integration platform,

incoherent integration platform, space-propagation platform,

and optical fiber platform.

ONN, ORC and OIM

Artificial neural network (ANN) is a kind of parallel

distributed processing model inspired by the information

processing in biological neurons. Due to its outstanding

energy efficiency and computation power, ANN has

become one of the most important computation models in

the field of AI [57]. The basic computing unit of ANN is the

neuron, as shown in Figure 1A. After studying the biological

mechanism of neurons and simplifying their functionality by

researchers [1, 58], the information processing of neuron can

be divided into three steps: the first step is that the dendrite of

the neuron performs the weighting operation on the input

signals (x1, x2, . . . , xN) collected from the previous layer of

neurons; the second step is that the cell body of neuron

performs weighted addition as a combiner; the third step is

that the Soma of neuron performs the nonlinear process f(x)

on the combined signal. As shown in Figure 1B, by cascading

multilayer of neurons and fully connecting each neuron, a

kind of fundamental ANN named “fully connected neural

network” is constructed. In this network, the connection

weight of neurons can learn the “pattern” behind massive

of data by being trained with learning algorithms (such as

backpropagation) to implement complex processing tasks, for

instance, prediction [59], clustering [60], pattern recognition

[61, 62]. In general, the data loaded into the input layer of

ANN is a vector and the connection weight of neurons

between two successive layers can be represented as a

weight matrix. Thus, the major computations of ANN are

the linear operation/MVM and the nonlinear operation

(nonlinear activation in vector). The MVM operation will

be very time-consuming and power-consuming for traditional

FIGURE 1
(A) Schematic of a biological neuron. (B) Themodel of fully connected neural network. (C) Schematic of a standard RC. (D) Schematic of an Ising
machine model.
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electronic devices when the matrix dimension is very large

[39]. However, the optics is very competitive to process large-

scale MVM operations because of its high speed, parallel

processing capability and low energy consumption [18, 44,

48, 63, 64]. Thus, the optical analog hardware implementation

of ANN (ONNs) is an attractive prospect and has motivated

many researchers in recent years. In general, ONNs are

consisted of optical linear operation and optical/

optoelectronic nonlinear operation. The optical linear

operation can be implemented through interference [44],

diffraction [63], optical absorption [48] and so on. And the

nonlinear operation can be implemented through

photoelectric effect [63], electro-optic modulation [53],

nonlinear gain [65], Kerr effect [66], nonlinear absorption

[64] and so on. Until now, the ONNs have been demonstrated

competitive computing speed, accuracy, and power-

consumption against ANNs operated in the state-of-art

computers [44, 48, 63].

Reservoir computing (RC), derived from the concept of

liquid-state machines [67] and echo state networks [68],

belongs to a kind of novel computation model of recurrent

neural network (RNN). Same as ANN, reservoir computing

model consists of three parts, named as input layer, reservoir

(hidden layer), and output layer, as shown in Figure 1C.

However, the weight matrix W in ∈ RN×M between the input

layer and the reservoir, and the internal connections of the

reservoir Wres ∈ RN×N are untrained, and only the readout

weight denoted by Wout ∈ RK×N from the reservoir to the

output layer is updated in the training process of RC [16, 69].

Here,N is the number of the neurons in the reservoir andM is the

input dimensionality of the input information. And K denotes

the output dimensionality of the output layer. In the training

process of RC, the reservoir state is collected at each discrete time

step t, following

x(t) � fNL[W in · u(t) +W res · x(t − 1)], t � 1, 2, ..., T (1)

where fNL is the nonlinear activation function, u(t) is the input
signal at the current time step, x(t) and x(t-1) are the reservoir’s
internal states at the current time step and the last time step,

respectively. The readout y(t) at the current time step is

calculated following

y(t) � Wout · x(t) (2)

when performing off-line training for RC, ridge regression is

usually used to get the readout weights [69].

Wout � (Mx ·MT
x + λ · I)−1Mx · T (3)

where Mx ∈ RN×Q is a feature matrix of horizontally

concatenated state vectors x(t), MT
x is the transposition of

Mx. T ∈ RK×Q is the target matrix corresponding to the

desired optimal computational results, Q denotes the

number of training feature vectors, λ≪ 1 is a small

regularization coefficient and I is the identity matrix. As

the internal parameters of RC are unmodified in the

training process, the training convergence is efficiently

achieved compared to general RNN [70]. Moreover, this

advantage of RC makes it friendly to hardware

implementation, especially the ORC has attracted much

attentions [69, 71, 72] due to the parallelism and high

speed of photons. Based on the connection mechanism in

the reservoir, ORCs can be mainly divided into two categories:

spatially distributed ORCs (SD-ORCs) and time-delayed

ORCs (TL-ORCs) [16]. The SD-ORCs construct spatially

distributed connection topologies of the reservoir layer so

that the parallelism of photons can be maximally utilized [50,

73–77]. The TL-ORCs are mainly implemented by using a

single nonlinear node subject to a delayed feedback, which

reduce the structural complexity of reservoir and reduce the

difficulty for realizing the nonlinearity in optics [53, 65,

78, 79].

Ising machine (IM) is a kind of efficient model to solve the

combinatorial optimization problems and nondeterministic

polynomial time (NP)-hard/NP-complete problems. Solving

these problems are important tasks for various application

areas, including operations and scheduling, drug discovery,

finance, circuit design, sensing, and manufacturing [80, 81].

However, due to the exponential growth of complexity with the

problem size, these problems are very difficult to be solved on

conventional von Neumann-based computers. Ising model

provides an alternative method to efficiently solve these NP-

hard or NP-complete problems by mapping them onto

ground-state search problems of the Ising model with

polynomial resources [82]. As shown in Figure 1D, the

illustrated Ising model has nine spins and each spin

occupies one spin state, either spin-up (σi = + 1) or spin-

down (σi = − 1). The spin-spin interaction is denoted by Ji,j.

The Ising Hamiltonian of the Ising model without an external

magnetic field is given by

H � − ∑
1≤ i,j≤N

Ji,jσ iσj (4)

where N is the total number of spins. When the configuration of

spins minimizes the Ising Hamiltonian, the mapped NP problem

is solved. Benefiting from the nanophotonic hardware of parallel,

low-energy, and high-speed computations [44, 55, 83], the

photonic implementation of Ising model (OIM) is one of the

most promising candidates to simulate the Ising Hamiltonian.

The fundamental of implementing OIMs is to construct optical

spin nodes and their interactions. For example, the optical pulse

in optical fiber systems [49, 84–86], the spatial mode in free-space

systems [87, 88], and the amplitude of coherent light in

integrated systems [55, 56] can be used to represent the spin

nodes of Ising model. And these systems have demonstrated the

advantages of OIMs, such as parallelism, low latency, and nearly

free of environment noise.
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Coherent integration platform

The silicon photonics, by patterning silicon-on-insulator (SOI)

or bulk siliconwafers using lithographic technology, the same silicon

substrate can heterogeneously integrate electronic and photonic

devices. It provides a wide-bandwidth, high-speed, low-loss, low

energy-consumption, and highly compact integration platform for

optical signal processing and computing [26, 89, 90]. Due to the low-

loss, stable, and anti-interference propagation in silicon waveguides,

the silicon integration platform is very suitable to control stable

interferences to implement various optical devices, such as

modulators [91, 92], logic gates [93], optical switches [94],

polarization splitters [95], mode converters [96]. Moreover,

benefiting from great advances in silicon-based integration

technology, the analog optical computing based on silicon

photonic integration has flourished in recent years. Figure 2A

summarizes the development history and milestones of the

analog optical computing based on the integration platform with

coherent photonics. In 1994, Reck et al. proposed an experimental

implementation for realizing N × N arbitrary unitary

transformations, U(N), in a triangular array of Mach-Zehnder

interferometers (MZIs) [97]. Figure 2B shows the schematic of a

2 × 2 reconfigurable MZI, which is the building block for realizingN

×N arbitrary unitary transformations. The 2 × 2 reconfigurableMZI

consists of two 3-dB (50: 50) directional couplers with one phase

shifter (θ) on one of the internal arms of theMZI and another phase

FIGURE 2
(A) The progresses of analog optical computing in the coherent integration platform. (B) Schematic of a Mach–Zehnder interferometer (MZI).
(C) Schematic of a 4 × 4-port universal linear circuit [99]. (D) Schematic of Reck design and Clements design for the unitary implementation [100]. (E)
Schematic of the optical interference unit (OIU) [44]. (F) Schematic of the “FFTUnitary” [46]. (G) Schematic of the complex-valued ONN [51]. (H)
Schematic of the integrated chip diffractive neural network [103]. (I) Schematic of the pseudo-real-value matrix unitary MZI mesh [104]. (J) A
robust architecture for universal unitary [111]. (G) Reprinted from Ref. [51] with permission from Springer Nature: Nature Communications. (H)
Reprinted from Ref. [103] with permission from Springer Nature: Nature Communications. (I) Reprinted from Ref. [104] with permission from De
Gruyter: Nanophotonics. (J) Reprinted from Ref. [111] with permission from American Physical Society: Physical Review Letters.
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shifter (ϕ) at one of the outputs after the second directional coupler

of the MZI. The unitary transformation matrix of the MZI, namely

UMZI, can be described by the product of the transformation

matrices of two 3-dB directional couplers and two phase shifters

as the following

UMZI(θ, ϕ) � RϕBRθB � 1
2
⎡⎣ eiϕ 0

0 1
⎤⎦⎡⎣ 1 i

i 1
⎤⎦⎡⎣ eiθ 0

0 1
⎤⎦⎡⎣ 1 i

i 1
⎤⎦

� ieiθ/2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eiϕ sin

θ

2
eiϕ cos

θ

2

cos
θ

2
−sin θ

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where B is the transformation matrix of the 3-dB directional

coupler. Rϕ and Rθ are the transformation matrices of the phase

shifter (ϕ) and the phase shifter (θ), respectively. The MZI can

perform arbitrary SU(2) transformation to its inputs, by

successively implementing this unitary transformation on two-

dimensional subspaces of the full N-dimensional Hilbert space,

all off-diagonal elements of the given U(N) unitary matrix will

become zero [97]. Thus, the experimental realization of SU(N)
unitary matrix can be constructed by sequentially setting up these

MZI devices as the sequence of the product of SU(2)
transformation matrices. Moreover, by adding a layer of

single-mode phase shifters at the inputs, arbitrary unitary

matrices can be realized [98]. This research was an important

bedrock of the matrix computation approach based on MZI-

based networks and inspired many related researches [44, 46, 51,

55, 56, 99–104].

In 2013, Miller et al. proposed that MZIs can be organized

into a mesh to implement universal beam couplers [105] and

universal linear optical components [106]. At the same time, a

kind of self-configuration method was proposed to progressively

configure these universal beam couplers and linear optical

components, requiring no global optimization and continually

adjusting itself against changing conditions [106]. It further

promoted the application of using the reconfigurable linear

optical components for optical computing. Afterwards, based

on Miller’s self-configuration method, Ref. [99] demonstrated a

silicon implementation of a 4 × 4-port universal linear circuit

consisting of a network of thermally tunable symmetric MZIs.

The schematic of the integrated circuit is shown in Figure 2C, by

the electronic control of phase shifters of MZIs and software

feedback, this MZI-based circuit can perform any linear

operation between its four input ports and output ports. On

the other hand, Clements et al. proposed a brand new

architecture of MZIs network for implementing general

unitary matrix transformation [100]. The basic idea behind

the design was similar to the Reck design [97] that

implemented successive SU(2) transformation of MZI

components to perform arbitrary U(N) transformation. As

shown in Figure 2D, this new design depended on a new

mathematical decomposition and achieved the shallower

optical depth, requiring roughly half the depth of the

triangular design [97], which can effectively minimize optical

losses and reduce fabrication resources. Moreover, the

rectangular symmetry of this new design greatly improved the

robustness to fabrication errors caused by mismatched optical

losses. Since then, the analog optical computing (such as ONNs

and OIMs) based on MZI-networks has developed rapidly. In

2017, Shen et al. proposed a programmable nanophotonic

processor featuring a cascaded array of 56 programmable

MZIs in a silicon photonic integrated circuit for a fully ONN

[44]. The schematic of the core of the 4-port programmable

nanophotonic processor, namely the optical interference unit

(OIU) is shown in Figure 2E. The red-part MZIs array performed

SU(4) transformation in terms of Reck decomposition principle

[97] and performed complete U(N) transformation by cascading

the blue-part diagonal matrix multiplication core (DMMC).

Based on singular value decomposition, the arbitrary real

matrix M can be decomposed into M = U Σ V†. Where U, V†

are unitary matrices that can be achieved by OIU, and Σ is a

diagonal matrix that can be realized by the DMCC of OIU. By

tuning the phase shifters integrated in the OIU, MVM operation

of ANN can be passively performed at the speed of light. This

ONN architecture demonstrated an enhancement in

computational speed and power efficiency over advanced

electronics for conventional inference tasks and motivated the

attentions onONN field. In the same year, this type ofMZI-based

nanophotonic processor was used to simulate the quantum

transport [101]. The low-loss and high-fidelity programmable

transformations of the integrated processor showed its potential

advantages for many-boson quantum simulation tasks. Soon,

Fang et al. proposed another better fault tolerance architecture

named “FFTUnitary” to implement ONN [46]. As shown in

Figure 2F, compared to Reck and Clements design [97, 100],

“FFTUnitary” was composed of butterfly-mesh MZIs, which had

been demonstrated to realize the discrete Fourier transform

(DFT) unitary transformation by Cooley-Tukey FFT

algorithm [107]. Despite being non-universal and lacking a

decomposition algorithm, “FFTUnitary” can reduce the depth

of the unitary multipliers from N to log2(N) so that the

robustness of “FFTUnitary” to fabrication errors was

improved and the overall noise and loss in the network were

reduced. Afterwards, in 2020, the MZI-based silicon photonic

integrated circuit was demonstrated as a fully reconfigurable

signal processor [102]. A self-configurating method was

proposed to program the MZIs without any information

about the inner structure. By using this method, the MZI-

based integrated circuit can implement various functions,

including multichannel optical switching, optical MIMO

descrambler, and tunable optical filter. Besides, the above

mentioned MZI-based unitary implementation was applied in

the photonic recurrent Ising sampler (PRIS) [55, 56], which was a

heuristic method tailored for parallel architectures allowing fast

and efficient sampling from distributions of arbitrary Ising
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problems. Because the recurrent photonic transformation of

PRIS is a fixed function, the machine was compatible with

GHz clock-rate optoelectronic devices that can achieve orders-

of-magnitude speedups in solving NP-hard problems.

Afterwards, some researches for improving the ability of

information expressivity of the single-layer MZI mesh and

reducing the complexity of the MZI-based network have been

demonstrated [51, 103, 104]. In 2021, Zhang et al. proposed

complex-valued ONNwithMZI-based networks [51]. To recover

the natural complex-valued operation ability of optical

computing, on-chip coherent detection method based on

phase-diversity homodyne detection was utilized to determine

the relative phase of the output signal to the input signal. As

shown in Figure 2G, the red markedMZIs were used for the input

preparation, the blue marked MZIs performed the MVM

operation, the green marked MZIs separated the reference

light that will later be used for coherent detection, and the

MZIs marked in grey were used for on-chip coherent

detection. The benchmark results showed that the complex-

valued calculation can provide stronger learning capabilities,

including high accuracy, fast convergence, and the capability

to construct nonlinear decision boundaries. In 2022, Zhu et al.

[103] demonstrated an integrated diffractive neural network and

realized typical computing operations (convolution and matrix

multiplication). As shown in Figure 2H, two ultracompact

diffractive cells were used to implement optical discrete

Fourier transform (ODFT) operation and optical inverse

discrete Fourier transform (OIDFT) operation. Between the

two diffractive cells, the N-array MZIs were used to achieve

the complex-valued modulation. Similar to the principle in

Figure 2F, the overall can perform convolution and matrix

multiplication through programming phase shifters of MZIs.

This implementation resulted in reducing the component

number from N2 to N so that a ~10-fold reduction in both

footprint and energy consumption was achieved compared to

previous MZI-based ONNs [103]. Besides, Tian et al. proposed

another MZI-based implementation that can reduce half of

components of unitary multipliers [104]. The previous MZI-

based ONN mainly relied on SVD algorithm, the real-value

weight matrix of ONN was decomposed into two unitary

matrices and one diagonal matrix. Actually, the real part of

single unitary matrix had enough freedom to express the real-

value weight matrix. The schematic of the pseudo-real-value

matrix unitary MZI mesh for matrix expression is shown in

Figure 2I, U represented a kind of MZI-based unitary

implementation [100], a beam of reference light was split

from the input light and then distributed into N output

branches, the output light of U interfered with the reference

light by the mixer and then was detected by the balanced

photodetector to determine the real part of the multiply

result. By employing the real-part of a unitary mesh to learn

the real-value matrix, the requirement of MZIs was reduced least

toO(Nlog2N) level. As the requirement of MVM scale gets larger,

low level complexity component design will be more competitive

in robustness and power efficiency [46, 103].

On the other hand, due to the natural sensitiveness of MZI-

based networks to the manufacturing errors, researcher tried to

develop other robust architectures to realize unitary matrix

transformation [108–111]. In 2018, Tang et al. proposed a

new integrated architecture [108] consisting of phase shifter

layers and multimode interference (MMI) coupler layers to

perform multi-input-multi-output (MIMO) demultiplexing.

This combination of mode mixing component (MMIs and

multiport directional couplers [109, 110]) and single-mode

phase shifter revealed an alternative method to perform the

unitary transformation or linear transformation and

demonstrated stronger robustness for expressing the unitary

matrix [111]. Besides, Saygin et al. proposed a multichannel-

block robust architecture to implement universal unitary

transformations [111]. As shown in Figure 2J, the unitary

implementation was composed of multiple phase layers Φ(N)

and mixing layers V(N) that introduced interaction between

the channels to realize multichannel interference. They

numerically demonstrated that enough multi-layer Φ(N) and

V(N) can always construct the desired unitary matrix whatever

the unitary matrix of the mixing layer was. Moreover, compared

to that based on the network of two-channel blocks [100], this

architecture was more robust to the fabrication errors. In

conclusion, these new architectures improved the robustness

of the network to the manufacturing errors but lacked

mathematical programming algorithms for the rapid

reconfiguration.

Except for the MZI-based analog optical computing, the

coherent integrated platform with other types of components

can also support the implementation of ONNs [40], ORCs [50,

112], and OIMs [113]. In 2014, Vandoorne et al. firstly

demonstrated a 16-node parallel reservoir on a silicon

photonics chip consisting of feedback loops with a

combination of 1 × 2 and 2 × 2 multimode interferometers

and delay lines with shallow-etched spiral waveguides [50]. The

passive photonic silicon reservoir was used to perform both

digital and analogue computational tasks to show its capacity

as a generic integrated computational platform for wide

applications. Afterwards, in 2020, Okawachi et al. [113]

demonstrated an integrated silicon-nitride photonic circuit

consisting of spatial-multiplexed degenerate optical parametric

oscillators (DOPOs) that can be used to realize a hybrid

temporally multiplexed coherent Ising machine to solve NP-

hard problems [49, 84, 85]. Then, in 2021, Xu et al. demonstrated

a silicon-based optical coherent dot-product chip (OCDC)

capable of completing deep learning regression tasks [40]. The

weighting operation was finished by the independent modulation

of on-chip split coherent light and the summation completed

when all branches matched in phase. Meanwhile, the OCDC

implemented operations in the complete real-value domain

instead of in only the positive domain by introducing the
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reference light. In the same year, Nakajima et al. demonstrated a

scalable on-chip implementation of RC on an integrated

coherent linear photonic processor [112]. Compared to

previous approaches, the input and recurrent weights of RC

were both encoded in the spatiotemporal domain by the

integrated circuit consisting of 1: N splitters, delay lines,

FIGURE 3
(A) The progresses of analog optical computing in the incoherent integration platform. (B) Schematic of MRR-based optical matrix-vector
multiplier [43]. (C) Schematic of an optical B&W network [114]. (D) An experimental setup concept of B&W network [115]. (E) Schematic of the all-
optical spiking neural circuit [64]. (F) Schematic of the dot-product engine based onMRR [41]. (G) The principle of MRR-based complex-valued MVM
[116]. (H) Schematic of the SOAbased weighted addition operation circuits [117]. (I) Schematic of the photonic tensor core [48]. (J) Schematic of
the convolutional photonic computing core using PMCC array [118]. (K) The schematic of an N-input photonic neuron in the integrated end-to-end
photonic deep neural network chip [52]. (G) Reprinted from Ref. 116 with permission from Springer: Frontiers of Optoelectronics. (J) Reprinted from
Ref. 118 with permission from Springer Nature: Nature Communications.
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MZIs, phase shifters, and variable optical attenuators. And the

footprint of the input circuit and reservoir circuit were 41 ×

46 mm2 and 28 × 47 mm2, respectively.

Incoherent integration platform

In above mentioned coherent analog computing

architectures, it is often difficult to independently adjust the

elements of the computationmatrix as they depend on the overall

dependent parameters. For example, the transmission matrix of

the MZI-based network is associated with the configuration of all

the MZIs [100]. An alternative method is to express the elements

of the computation matrix with different wavelengths. Due to

avoiding the interference between different wavelengths, the

calibration of the computation matrix can be discretely

implemented. Thus, the incoherent matrix computation

method based on the wavelength division multiplexing

(WDM) has been widely applied in analog optical computing

[41, 43, 48, 52, 64, 114–118].

Figure 3A summarizes the timeline of advances in analog

optical computing based on the incoherent integration platform.

In 2012, Fang et al. first experimentally demonstrated MVM

operation using a 4 × 4 silicon microring (MRR) modulator array

[43]. As shown in Figure 3B, the input vector B was modulated

on the optical power of N × 1 LD-array with different

wavelengths and the matrix A was represented by the

transmissivity of the M × N MRR modulator array. Then, the

input vector B was multiplexed and broadcasted into each row of

MRR array. In the end, independent modulation of each MRR

executed the multiplication and the photodetector performed the

accumulation process. As the footprint of MRR was more

compact (a diameter of only a few microns) [43] than that of

the MZI (over 10,000 μm2) [44, 51] so that it was promising to

use the broad spectrum resource (hundreds of channels) [17] to

extend the computing density. After that, many MRR-based

analog computing architectures have been proposed [41, 64,

114–116].

In 2014, Tait et al. proposed a protocol named “Broadcast

and Weight (B&W)” [114] that can be applied in scalable

photonic spike processing and optical computing [37, 115].

An optical implementation of B&W protocol on the neural

network model is illustrated in Figure 3C. The multiplexed

signal collected from each neuron node (laser processor) was

equally split and broadcasted into the weight bank (spectral filter

bank) of every neuron node. Then, the weight bank operated

independent weighting for each wavelength signal belonging to

its unique neuron node and the total power detector yielded the

sum of the weighted signals. In the end, the neuron node

performed the nonlinear activation function of artificial

neurons or spiking neurons. This protocol provided a

promising way to construct parallel and scalable

interconnections between photonic neurons for neuromorphic

processing and optical computing. Followed by the protocol, in

2018, Tait et al. demonstrated a recurrent silicon photonic neural

network based on the B&W protocol [115]. In this

implementation shown in Figure 3D, the weight bank was

realized by the MRR array and the photonic neuron was

represented by the voltage-driven Mach-Zehnder modulator

(MZM). After that, in 2019, Feldmann et al. proposed an all-

optical spiking neuron circuit with phase-change material

(PCM)-embedded plastic synapses and neurons [64]. As

shown in Figure 3E, the previous-layer output spikes were

labelled by different wavelengths and weighted through the

PCM-embedded waveguide. Then, the weighted signals were

multiplexed together by the MRR array. Next, the multiplexed

signal was injected into a big ring resonator with PCM embedded

at the crossing. In this architecture, the weighting operation was

performed by the differential absorption for light under the

different phase states (amorphous state or crystalline state) of

PCM. And the MRR-based wavelength-division multiplexing

technology was used to implement the sum operation. Lastly,

the nonlinearity of neurons derived from the PCM-embedded

ring resonator. Benefitting from the nonvolatile weights denoted

by PCM and all-optical nonlinearity, this type of optical network

can process information under ultra-low power consumption.

Moreover, combined with the WDM technology, dense

integrated MRRs and on-chip optical frequency comb

technology [17] provide an ideal platform for large-scale

expansion of networks. Similarly, Miscuglio et al. proposed

photonic tensor cores by utilizing the dot product engine [41].

The schematic of the dot product engine is shown in Figure 3F.

The input vector was loaded on the WDM signals modulated by

high-speed modulators (MZMs) and then weighted by the PCM

between two cascaded MRRs. The weighted WDM signals were

incoherently summed up using a photodetector, which

completed the dot product operation. The numerical

simulations showed that the photonic tensor core unit had

two to three orders higher performance over electrical tensor

core units. Afterwards, in 2022, Cheng et al. improved the MRR-

based MVM to perform complex-valued matrix computation

and demonstrated Walsh-Hardmard transform, discrete cosine

transform, discrete Fourier transform, and image convolutional

processing in a 4 × 4 MRR array circuit [116]. The working

principle of complex-valued MVM is shown in Figure 3G. In

order to process full complex MVM, the input matrix I was

divided into four matrices, defined as the positive real, positive

imaginary, negative real, and negative imaginary parts of the

matrix I. The weight matrix X was also divided into the real and

imaginary parts and loaded on the MRR array. Moreover, the

balanced photodetectors (PDs) were used between the add-drop

port and drop port to cover the real number field expressed by the

transmission coefficient of MRRs.

Except for using MRRs and B&W to realize matrix

calculation, the PCM, SOA, and optical attenuator have been

used to implement MVM operations and ONNs [48, 52, 117,
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118]. In 2020, Shi et al. proposed another integrated weighting

component (semiconductor optical amplifier, SOA) to perform

the MVM operation in a WDM network [117]. The schematic

diagram for the SOA-based weighted addition operation circuit is

shown in Figure 3H. In the input vector selection stage, WDM

inputs were fan-out to multiple weight matrix multiplication

blocks, followed by an input vector selection unit. Then each

arrayed waveguide grating (AWG) of the weighted addition

block de-multiplexed the selected WDM inputs and assigned

each wavelength channel to an independent SOA to perform the

weighting operation, followed by a fan-in unit to addition

operation. Compared to MRR-based weight matrix

multiplication, SOA avoided the complicated calibration

procedure because of the thermal cross-talk between adjacent

elements, and monolithic or hybrid integration of gain and non-

linear components was very promising to realize the on-chip

nonlinearity and all-optical connectivity [119]. Afterwards, in

2021, Feldmann et al. demonstrated a highly parallelized

integrated photonic hardware accelerator (tensor core) that

operated at speed of 1012 MAC operations per second [48].

The schematic of the tensor core for performing four parallel

MVM operations is shown in Figure 3I. The input vectors (V1 to

Vn) were modulated by variable optical attenuators (VOAs) on

the frequency combs generated by a high-Q Si3N4 photonic-chip-

based microresonator and then de-multiplexed into four

channels. Combs (X1 to Xn) belonging to the same group of

vectors (in the same color asVn) were parallelly input into the on-

chip MAC unit consisting of a 4 × 4 crossing Si3N4 waveguide

array and side-coupled PCM array. Four columns of PCMs

(weight matrix) synchronously performed the dot product

operation with the input vectors (V1 to Vn) so that four

complete MVM operations finished at the same time. Then,

the four output vectors were demultiplexed and detected in the

following procedures. Due to the nonvolatile and zero-energy

maintained features of PCM, the tensor core can achieve parallel,

fast, and efficient photonic in-memory computing as the optical

analogue of an application-specific integrated circuit (ASIC). In

the same year, Wu et al. proposed another PCM-based

convolution computing scheme by using phase-change

metasurface mode converters (PMMCs) to express the matrix

element [118]. PMCC was a programmable waveguide mode

converter (TE0 to TE1) controlled by the tunable material phase

of phase-gradient metasurface (GST). The schematic of a PMMC

array for convolution is shown in Figure 3J. A patch of pixels of

an image was encoded as optical pulses and input into k2 optical

channels. The weight element was mapped into the mode

contrast value of PMCC. The output in TE0 and TE1 were

summed incoherently and measured by PDs to calculate the

convolution result. By measuring the mode contrast, the value of

weight can reach a 6-bit resolution, including both positive and

negative values, which had an improvement compared to that of

measuring the transmission of the optical input data through the

programmed PCM [64]. In 2022, Ashtiani et al. demonstrated an

integrated end-to-end photonic deep neural network (PDNN)

that consisted of the whole functionality of artificial neurons [52].

The schematic of anN-input photonic neuron in PDNN is shown

in Figure 3K. The array of P-doped–intrinsic–N-doped (PIN)

current-controlled attenuators was used to individually weight

the input signal. Then, the outputs of attenuators were converted

into photocurrents by PDs and combined as the weighted sum of

the neuron inputs. The weighted sum current drove a PN

junction MRR modulator to perform the nonlinear activation

function. In the on-chip PDNN, the linear operation was

performed optically and the nonlinear operation was realized

opto-electronically. Moreover, the inference time for the

classification task was under 570 ps which was comparable

with a single clock cycle of state-of-the-art digital platforms.

In conclusion, the incoherently driving analog optical computing

mainly depends on the mechanism that different wavelength

channels perform independent multiplication and WDM

technology performs the fan-out of inputs and the fan-in of

outputs. Due to the rich spectrum resources and stability for

independently controlling the weights, the WDM-based

incoherent integrated circuit is an alternative platform to

implement reconfigurable and scalable analog optical computing.

Space-propagation optical platform

Apart from modulating information-carrying light in

waveguides to realize analog optical computing, the

propagation and interconnection of light in free space can be

utilized to achieve high-speed, high-parallelism optical linear

operation for analog optical computing. Specially, the density of

interconnection can be easily extended to hundreds and

thousands. Based on various space optics components, such as

the lens, mirror, spatial light modulator (SLM), diffractive-

optical element (DOE), digital micro-mirror device (DMD),

diffractive layer, most analog optical computing models,

including ONNs [47, 63, 120–125], ORCs [74], and OIMs

[88], have been widely implemented.

Figure 4A summarizes the timeline of advances in analog

optical computing based on the space-propagation optical

platform. In 1971, Bieren et al. firstly demonstrated that the

Fourier transform operations can be performed without

restriction in optical lens system [45]. After few years, a fully

parallel, high-speed optical MVM (discrete Fourier transforms)

systemmodel was first proposed by Goodman [42]. The principle

of optical MVM is depicted in Figure 4B. Firstly, the input vector

A was modulated on the intensity of N light-emitting diodes

(LED’s) array. Then, the input light beams were collimated by

L1 and duplicated in the vertical direction by the cylinder lens

(CL1). After passing through the CL1, the duplicated input

vectors parallelly performed multiplication operation with

each raw vector of the matrix mask B (SLM). Next, the beams

from a given raw passed through the lens CL2 and converged
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FIGURE 4
(A) The progresses of analog optical computing in the space-propagation optical platform. (B) Schematic of the optical MVM model. (C)
Schematic of the optical convolutional layer based on 4f system [47]. (D) Schematic of the linear operation in the all-optical neural network [120]. (E)
The procedure for characterizing optical vectorvector dot products [121]. (F) Schematic of the optical recurrent neural network using SLM and DOE
[74]. (G) Schematic of the diffractive deep neural network [63]. (H) Schematic of the reconfigurable diffractive processing unit (DPU) [123]. (I) An
array of programmablemetasurfaces for constructing the programmable artificial intelligencemachine [124]. (J) Theworking principle of the onchip
multiplexed diffractive neural network [125]. (K) Principle of the spatial-photonic Isingmachine [88]. (C) Reprinted from Ref. 47 with permission from
Springer Nature: Scientific Reports. (E) Reprinted from Ref. 121 with permission from Springer Nature: Nature Communications. (J) Reprinted from
Ref. 125 with permission from Springer Nature: Light|Science and Applications.
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(addition operation) on one element of the vertical

photodetectors array. By copying the input vector and

mapping the duplicates on the matrix mask, the MVM

operation was naturally performed in the propagation process.

Afterwards, Athale et al. proposed three implementations using

outer product decomposition to realize optical matrix-matrix

multiplier [126]. These methods mainly utilized the light source,

the light modulators (electro-optic modulations, direct driven

LED array, and acoustooptic Bragg cells), and the 2-D detector

array to construct the product operation. However, the optical

Fourier transform was not fully explored to be applied in optical

computing in the past. In recent years, due to the activity of

analog optical computing, optical Fourier transform has

flourished again and promoted its applications in analog

optical computing [47, 103, 120–122].

In 2018, Chang et al. proposed a hybrid optical-electronic

convolutional neural networks with 4f system implementing

optical convolution [47]. Based on the convolution theorem,

the convolution of two-dimensional continuous functions in the

space domain can be obtained by the inverse transformation of

the product of their corresponding two Fourier transforms. The

optical convolutional layer design based on 4f system is depicted

in Figure 4C. The input image was encoded on the intensity of

coherent light by the DMD and converted into the Fourier space

after passing through the first lens. The convolution kernel was

mapped into the point spread function (PSF) of the phase mask

that placed on the common Fourier plane of two lenses. When

the input beam passed through the phase mask and the second

lens, the convolution result was naturally imaged on the camera

sensor. By tiling the multiple kernels, multiple parallel

convolutions were performed simultaneously so that the

computational burden in CNN was greatly reduced. After

that, in 2019, Zuo et al. proposed an all-optical neural

network using SLM and Fourier lenses for linear operation

and using laser-cooled 85Rb atoms for nonlinear operation

[120]. The schematic of the linear operation is shown in

Figure 4D, the input coupling laser beam was collimated and

illuminated onto the first SLM (SLM1), which selectively

reflected separate beam spots as the input vector Xj. The flip

mirror (FM) and the first camera (C1) were used to monitor and

measure Xj. Then, the incident light beam Xj was split and

modulated by SLM2 into different directions i with weight

Wij. In the end, the Fourier lens L4 summed all diffracted

beams in the same direction onto a spot at its front focal

plane as the linear summation Yi = ∑j Wij Xj. After the linear

operation, the laser-cooled 85Rb atoms in a dark-line two-

dimensional magneto-optical trap (MOT) implemented an

electromagnetically induced transparency (EIT) nonlinear

activation function. Under the motivation of figuring out the

clean and quantitative investigation of the limits of optical energy

consumption in large-scale ONNs. In 2022, Wang et al.

demonstrated a sub-photon consumption ONN using spatial

mode to perform the optical dot product [121]. The schematic for

implementing sub-photon optical vector-vector dot product is

shown in Figure 4E. The elements of the input vector were

encoded in the intensity of independent spatial modes

illuminated by an organic light-emitting diode (OLED). And

the SLM was used to represent the weight by encoding the

transmissivity of the modulator pixel. The scalar

multiplication was performed when the emitting beam passed

through the SLM. Lastly, a lens was used to focus the transmitted

light onto a detector, where the total number of photons

impinging on the detector was proportional to the dot

product result. The result of the sub-photon consumption

successfully proved that the energy consumption of ONNs

can reach to an extreme low level.

Different from using optical Fourier lens to implement MVM

operation, the direct phase/amplitude modulation on the

diffractive lights also can implement highly parallel MVM

operation. In 2015, Brunner et al. proposed a diffractive-optical

network consisted of diffractive orders of a diffractive-optical

element (DOE), imaging lens, and vertical-cavity surface-

emitting lasers (VCSELs) array, allowing for constructing the

parallel ORC [73]. The diffractive optical coupling in this

diffractive-optical network was used to achieve the connection

of different neuron in the reservoir and the connection weight was

implemented by the coupling between individual lasers of the

VCSEL. Based on this concept, in 2018, Brunner’s team further

proposed a large scale recurrent neural network with

2025 diffractively coupled photonic nodes by using a SLM and

DOE [74]. The schematic of the recurrent neural network is shown

in Figure 4F. Firstly, the beam of the illumination laser passed

through the beam splitter (BS) and focused on the first microscope

objective’s (MO1) back focal plane and illuminated the SLM.

Then, the pixel of SLM operated the intensity modulation on

the illumination field, which represented encoding the RNN state.

After that, the transmitted field was imaged on a mirror through

MO2, then imaged on the camera after a double-pass through the

λ/4-plate and the reflection of the PBS. The DOE adding to the

beam path was used to implement the internal connection weight

WDOE in RNN. The network’s new state was denoted by the

intensity transmitted through the PBS. Lastly, the computational

result was read out after summing the network’s state according to

weight matrix WDMD, which was loaded on the DMD. After

learning the readout weight of WDMD, the 900-node recurrent

neural network can implement low-error chaotic Mackey–Glass

sequence prediction despite the Boolean readout weights.

In 2018, an important novel spatial optical computing

architecture named “diffractive deep neural network (D2NN)”

was proposed by Lin et al. [63]. This research opened up the

study direction of using the successive modulation of diffractive

plane layers to implement MVM operation and ONNs. As shown

in Figure 4G, the D2NN was consisted of multiple diffractive

layers, whose every pixel acted as a neuron of artificial neural

network, with a complex-valued transmission (or reflection)

coefficient. According to the Huygens-Fresnel’ equation, the
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diffraction of wave between the successive layers can represent

the fully connection of neurons. These transmission/reflection

coefficients of each layer would be fixed and the diffractive layers

would be physically fabricated after training the whole network

by simulation, then the D2NN can passively perform the

computing function in the speed of light. Due to the dense

connections (millions of neurons and billions of connections),

the phase-only modulated D2NN can realize 91.75% and 81.1%

classification accuracy for MNIST and Fashion-MNIST,

respectively, without implementing nonlinear activation

function. Next year, Yan et al. demonstrated that the D2NN

placed in the Fourier space can obtain better performance in

advanced computer vision tasks, including all-optical saliency

detection and high-accuracy object classification [122].

Compared to the real-space D2NN, the Fourier-space D2NN

was more natural to preserve the spatial correspondence by

incorporating a dual 2f optical system, which was helpful for

those tasks that required an image-to-image mapping. Moreover,

a photorefractive crystal (SBN:60) was used after D2NN to

further improve the ability of the network to extract features.

After training, the Fourier-space D2NN realized 98.6% and 91.1%

classification accuracy for the MNIST and Fashion-MNIST

dataset, respectively. In conclusion, the D2NN framework

provided a unique all-optical processing platform that

efficiently operated at the speed of light using passive

components and optical diffraction. Meanwhile, the scale of

D2NNs can be easily extended to provide extreme parallelism

by using high-throughput and large-area 3D fabrication methods

or on-chip integration. After that, in 2021, Zhou et al. [123]

proposed using the reconfigurable diffractive processing unit to

implement large-scale neuromorphic optoelectronic computing.

The basic computing unit for constructing different types of

ANN architectures was a reconfigurable diffractive processing

unit (DPU) whose schematic is depicted in Figure 4H. Here, the

design was used to process large-scale visual signals that feed in

images and videos. Thus, the DMD and SLM were used as the

modulators to implement the input nodes due to its high data

throughput. Different input nodes were physically connected to

individual output neurons by the diffraction, where the

connection weights were determined by the diffractive

modulation of the wavefront. The COMS sensor was used to

as the photodetector to implement the optoelectronic neurons.

By temporally multiplexing these DPUs, three complex ANN

architectures were demonstrated, including the diffractive deep

neural network (D2NN), diffractive network in network (D-NIN-

1), and diffractive recurrent neural network (D-RNN). Soon

after, Yan et al. proposed to realize all-optical graph

representation learning by using integrated diffractive

photonic computing units (DPUs) [127]. The DPU was

consisted of the successive diffractive layers to transform the

node attributes of graph network into optical neural messages.

The proposed diffractive graph neural network (DGNN) opened

up a new direction for designing application-specific integrated

photonic circuits for high-efficiency processing large-scale graph

data structures.

On the other hand, improving the reconfigurability and

integration of D2NN became another promising research

direction nowadays. In 2022, Liu et al. proposed a new kind

of diffractive deep neural network by using multi-layer digital-

coding metasurface array, which was named as the

programmable artificial intelligence machine (PAIM) [124].

As shown in Figure 4I, the pre-designed diffractive layers in

Ref. [63] were replaced by digital-coding metasurfaces consisting

of multiple programmable nodes. By using field-programmable

gate arrays (FPGAs) to control these nodes, the metasurfaces can

manipulate reflected or transmitted electromagnetic waves in real

time. Compared to previous diffractive deep neural network, the

PAIM was fully reprogrammable and re-trainable owing to its

weight-reprogrammable nodes, which facilitated the flexible

configuration in different applications. In the same year, Luo

et al. proposed on-chip multiplexed diffractive neural network

(MDNN) by metasurface [125]. The schematic of the MDNN for

polarization-dependent object classification task is depicted in

Figure 4J. The input light was encoded with different information

of a handwritten digit and a fashion product in x-polarization

and y-polarization, respectively. By tuning the structural

parameters of each meta-unit, the metasurface can implement

polarization-dependent phase responses in x-polarization and

y-polarization. Then, the final diffractive results of different

polarizations converged on the corresponding photoelectric

detection region on the CMOS chip. The polarization

multiplexing scheme opened up a novel way to implement

massively parallel computing tasks.

Besides, the space-propagation optical platform can be

used to implement OIMs. In 2020, Pierangeli et al. proposed a

spatial-photonic Ising machine by using SLM and demonstrated

the adiabatic evolution of frustrated Ising models [88]. The

experimental setup of the spatial-photonic Ising machine is

shown in Figure 4K. The SLM2 encoded Ising spins

σi = ±1 on a continuous beam by 0-π phase-delay values.

The SLM1 was used to implement the intensity modulation

on ξi to control spin interaction. The CDD was used to

measure the difference between the pre-determined target

image and the image detected. Based on the feedback of CDD,

the system was firstly optimized to reach the minimum of a

Hamiltonian with homogeneous couplings, then the

adiabatic evolution was simulated. This spatial-photonic

Ising machine based on SLM provided an alternative

method to support large-scale systems consisting of millions

of spins.

Optical fiber platform

As above mentioned, many integrated optoelectronic devices

have been demonstrated in recent decades, including optical
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filters [128], optical couplers [129], logic gates [130], modulators

[91, 131], polarization splitters [95], mode converters [96],

photodetectors [132] and so on, and they have been applied

in analog optical computing systems [44, 64, 103, 115]. However,

the monolithic integration or heterogeneous integration of

passive and active devices is still challenging [133, 134].

Meanwhile, the technological path and architecture design for

analog optical computing just have started to flourish and still

been developed. Thus, innovative ideas are still being encouraged

compared to mature prototypes for commercial products. Due to

FIGURE 5
(A) The progresses of analog optical computing in the optical fiber platform. (B) Experimental set-up of the optoelectronic RC based on a single
non-linear node and a delay line [53]. (C) Schematic of the optoelectronic implementation of RC [78]. (D) Schematic of the alloptical RC using the
SOA as non-linearity [65]. (E) Schematic of the setup for delay-based RC using a photonic integrated circuit as nonlinearity [79]. (F) The experimental
setup of the MRR-based RC [54]. (G) The principle of generating artificial Ising spins based on DOPOs [49]. (H) Schematic of the setup of the
coherent Ising machine with measurement and feedback [84]. (I) Schematic of the coherent Ising machine by using PPLN to form the timedivision-
multiplexed pulsed DOPOs [85]. (J) The principle of the time-stretch electro-optical neural network [135]. (K) The working principle of the photonic
convolutional accelerator [18]. (F) Reprinted from Ref. 54 with permission from Springer Nature: Scientific Reports.
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the flexibility for restructuring with the optoelectronic devices

and measuring instruments in the optical fiber communication

field, many computation prototypes based on the optical fiber

platform also have been proposed for realizing high-performance

analog optical computing [18, 49, 53, 54, 65, 78, 79, 84, 85, 135].

The development history of the analog optical computing

based on the optical fiber platform is summarized in Figure 5A.

These researches mainly focus on the implementation of ORCs

and OIMs, and fewer are related to ONNs. In 2012, three

associated researches of optoelectronic and all-optical RCs by

using a single nonlinear node subject to a delayed feedback were

successively proposed [53, 65, 78]. At first, Paquot et al.

demonstrated an optoelectronic implementation of RC [53]

based on a previous proposed similar architecture [136] that

consisted of a single nonlinear node and a delay line. The

experimental setup of the optoelectronic RC is shown in

Figure 5B. The core of this RC implementation was the closed

loop consisting of Lithium Niobate Mach-Zehnder modulator

(M-Z) and a fiber spool, which performed as a nonlinear node to

provide a sine nonlinearity and acted as a memory to store the

delayed states of the nonlinearity, respectively. Besides, the input

signal was fed into the system using arbitrary waveform

generator (AWG), the response of the system was recorded

through the readout photodiode, and the feedback signal was

converted from optical field to electronic field by the feedback

photodiode and was rejected into the system combined with

input signal after being scaled by optical attenuator. By using

computer to optimize the readout weight, the performance of the

optoelectronic RC in nonlinear channel equalization and speech

recognition tasks was comparable to state-of-the-art digital

implementations. Soon, Larger et al. demonstrated a similar

experimental scheme for optical information processing using

a nonlinear optoelectronic oscillator subject to the delayed

feedback [78]. The schematic of the optoelectronic

implementation of RC is shown in Figure 5C. It can be seen

the major component of the setup was similar to that of Ref. [53]

but the nonlinearity derived from the Mach-Zehnder modulator

turned into a sin2-function. After employing spoken digit

recognition and time series prediction tasks as benchmarks,

the optoelectronic RC also achieved competitive performance,

which proved that the particular type of the nonlinearity seemed

not to be crucial for RC. After that, Duport et al. improved the

optoelectronic RC [78] and demonstrated the first all-optical

experimental implementation [65]. The experimental set-up of

the all-optical RC is shown in Figure 5D. The all-optical

nonlinear feedback loop was consisted of an isolator, a SOA, a

variable optical attenuator, and a fiber spool that acted as delay

line. Different from the design of Ref. [78], the nonlinearity was

provided by the saturation of the optical gain in SOA, where the

characteristics of nonlinearity can be adjusted by controlling the

injection currents of the SOA. The utilization of all-optical

nonlinearity avoided the loss of velocity suffered from the

conversion from optical field to electronic field. Thus, this

implementation constituted a significant step towards the

possible development of analog optical computing.

Afterwards, some researchers aimed to the integration of

ORC and demonstrated some methods. In 2018, Takano et al.

proposed a compact delay-based RC [79] by using a photonic

integrated circuit (PIC). Here, the nonlinearity of RC was

implemented by the nonlinear dynamics in the PIC with short

external cavities. The structure of the RC and PIC is

demonstrated in Figure 5E. The reservoir was implemented

through the PIC with time-delayed optical feedback, and the

input signal was injected into the reservoir using a semiconductor

laser diode (LD) and a phase modulator (PM). The output signal

was sampled from the temporal waveforms of the PIC using a

photodetector and digital oscilloscope. As shown in Figure 5E

(bottom), the PIC was consisted of a distributed-feedback (DFB)

semiconductor laser, a SOA, a PM, a passive waveguide, and an

external mirror for optical feedback. By the optical fiber

connected to the PIC through a lens, the output of the PIC

can be detected and input signal can be injected into the PIC. As

the delay time of the PIC-based feedback loop was very small, two

method were proposed to increase the number of virtual nodes of

RC, namely reducing of the node interval and using of multiple

delay times. After training, this RC with the PIC demonstrated

successful performance in time-series prediction and nonlinear

channel equalization tasks. After that, Borghi et al. demonstrated

an implementation of RC based on a silicon MRR and time

multiplexing [54]. The schematic of the experimental setup is

depicted in Figure 5F. The input signal was encoded in the

intensity of a pump laser and resonantly coupled to the input port

of an MRR. Then, the input information was nonlinearly

transferred from the pump light to a continuous wave probe

laser by generating carriers through two photo absorption (TPA)

and free carrier dispersion in the MRR. In this implementation,

there was no external feedback and the virtual nodes were

realized by time-multiplexing method. Besides, the

nonlinearity was naturally provided by the TPA and carrier

dynamics served as the connections between the virtual nodes.

After computing, the probe light carried the results and exited

from the drop port of the MRR. The reservoir achieved a

minimum detectable bit error rate (BER) of 1.4 × 10–3 for

bitrates up to 30 MHz in 1-bit delayed XOR task and 99.3%

accuracy in the classification of the Iris dataset. In conclusion, the

proposed method of using a single nonlinear node subject to

delayed feedback for implementing RCs [53, 54, 65, 78, 79, 136,

137] was an inspiring attempt to reduce the complexity of the

reservoir and the difficulty for realizing the nonlinearity in optics.

However, the method creates many virtual nodes by using time

dimension to exchange space dimension so that the bandwidth of

components is challenging compared to that of RCs with parallel

nodes.

On the other hand, OIMs based on the degenerate optical

parametric oscillator (DOPO) attracted much attention and

many researches have been reported [49, 84, 85]. In 2016,
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three important related works were successively reported.

Inagaki et al. demonstrated >10,000 time-division-multiplexed

DOPOs and simulated a one-dimensional Ising model [49]. The

experiential setup by using DOPOs to generate Ising spins is

shown in Figure 5G. As mentioned in Eq. 4, the elements with a

binary degree of freedom is required to model the spins of Ising

machine and the coupling between spins can be programmable in

some way. In this implementation, the stable artificial spin was

realized by a DOPO that took only the 0 or π phase relative to the
pump phase. To obtain larger number of spins, dual-pump four-

wave mixing (FWM) in a highly nonlinear fibre (HNLF) placed

in a fibre cavity was utilized. As the number of independent

DOPO was proportional to the cavity roundtrip time, increasing

the pump repetition frequency or by increasing the cavity

roundtrip time can get larger number of spins. Moreover, the

spin–spin interaction can be simply implemented with mutual

injections of DOPO lights using delay interferometers. Then,

Inagaki et al. improved the coherent Ising machine (CIM) [49]

and increased the number of spins to 2048 with full spin-spin

couplings [84]. And the measurement and feedback (MFB)

scheme was used to implement all possible connections

among 2048 spins, which provided the foundation to solve

200-node maximum cut problems on arbitrary graph

topologies. The schematic of the CIM with MFB is shown in

Figure 5H. The periodically poled lithium niobate (PPLN)

waveguide placed in a 1-km fiber cavity was used as a phase-

sensitive amplifier (PSA) to generate DOPO pulses. The coupler

one extracted the DOPO pulses into the balanced homodyne

detection (BPD) to measure the phase components {~ci} of the

signal DOPOs for every circulation of the DOPOs. The specified

spin-spin connection matrix {Jij} and measured {~ci} were input

the FPGA to calculate the feedback signal for every DOPO

circulation. Then, the feedback signal was modulated on the

coupling pulses by the push-pull modulator and reinjected into

the cavity through the coupler 2. For the 200-node maximum cut

problems with complete graph, the CIM outperformed simulated

annealing in terms of accuracy and computation time. At the

same time, McMahon et al. presented a 100-spin CIM [85] based

on the DOPOs system and MFB scheme as shown in Figure 5I.

Dirven by the same principle of CIM, the experimental setup was

basically consistent with that of Ref. [84]. Thus, the research

focused on discussing the solving of different Ising problems

(undirected and unweighted graphs) and the relation between the

performance of CIM and the problem size. The results revealed

that the total computation time required to obtain ground states

(100% accuracy) grows rapidly with problem size N. However,

the growth in total computation time was far less severe when the

required solution accuracy was reduced. In conclusion, the

coupled DOPOs system was demonstrated as an alternative

and promising physical system to solve the large-scale Ising

problem with scalability and full programmability.

Besides, the optical fiber platform has inspired some novel

ideas to implement efficientMVMoperations for ONNs. In 2020,

Zang et al. proposed an electro-optical neural network using

time-stretch method [135]. The time-stretch method was applied

to optically perform the linear operation (MVM) in the electro-

optical neural network and the nonlinear operation was

implemented after converting into the electronic signal. The

principle of the time-stretch method is depicted in Figure 5J.

Firstly, the ultrashort periodic pulses generated by amode-locked

laser was broadened by the dispersion fiber 1. Then, the

broadened pulses were reshaped to flatten by the waveshaper.

Afterwards, the flattened broadened pulses were modulated with

each row of elements from weight matrix and the input vector in

succession. After the modulated pulses passed through the

dispersion fiber two and PD, energy of each pulse that

implied the result of multiplication of each row of elements

from the weight matrix and the input vector was accumulated

and then processed with the DSP. By circularly using the setup to

implement MVMs and performing nonlinear activations by

post-processing, a three-layer electro-optical neural network

was constructed and tested in the handwriting digit

recognition task with 88% accuracy under considerable noise.

In 2021, Xu et al. demonstrated a photonic convolutional

accelerator (CA) [18] operating at more than 10 TOPS

(trillions of operations per second) by using the dispersion of

optical fiber and time multiplexing. The operation principle of

the CA is shown in Figure 5K. As first, the input vector X to be

processed was modulated by the electro-optical Mach–Zehnder

modulator (EOM) on the optical power of multiple frequency

combs, whose initial powers were independently reshaped

according to the elements of the convolution kernel W. Then,

these modulated sequence replicas were delayed at regular

intervals after passing through the standard single mode fibre.

Ingeniously, the delayed interval caused by the dispersion was set

as same with the symbol period of the modulation. Thus, each

time slot yielded a convolution between X and W for a given

convolution window when the delayed and weighted replicas

were summed via high-speed photodetection. Except for the

convolution, the CA can realize MVM operations by

multichannel wavelength division multiplexing. This

architecture sufficiently utilized the advantages of the high-

speed modulation of EOMs by simultaneously multiplexing

the wavelength dimension and time dimension. Based on the

CA, an optical CNN was constructed and showed an accuracy of

88% of the handwritten digit MNIST dataset. In conclusion,

although the computing systems based on the optical fiber

platform are bulky, these prototypes play an important role in

the fast validation of innovative ideas, which is essential for the

develop of the analog optical computing.

Nonlinearity and training algorithm

In the previous section, the principle of typical applications

(ONNs, ORCs, and OIMs) of analog optical computing was
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briefly explained and their implementations were discussed when

introducing the development history and milestones of analog

optical computing by four platforms. In general, the computation

of analog optical computing includes two-part operations,

namely the linear operation and nonlinear operation. As

previous section mentioned, the linear operation can be

realized by the coherent interference [44, 51, 103], incoherent

summation in WDM system [43, 48, 64, 115], 4f system [47],

diffraction [63, 123, 125] and so on. However, the

implementation of the nonlinear operation, particularly for

ONNs, is not emphatically discussed. In fact, the nonlinearity

is crucial for enhancing the computing power of ONNs and

accelerating the convergence speed of the network. For example,

multiple hidden layers in ONNs are equivalent to a single linear

layer without nonlinear activation function so that ONNs cannot

learn the nonlinear models and problems. Besides, the

nonlinearity in ORCs enables the ability to process sequence

problems and complex classification tasks. In recent years, the

attention on studying the optical nonlinearity activation

functions is focused and many computing architectures with

all-optical nonlinearity have been demonstrated [64–66, 120,

122, 138, 139]. On the other hand, the training is a crucial and

indispensable step for ONNs and ORCs. By applying the training

process to adjust the internal connections and parameters of the

network, the network shows the adaptation for different

computation tasks. In this section, the implementations of

TABLE 1 The performance and characteristic for different optical nonlinearities.

Implementation OEO/
All-
optical

Mechanism Nonlinearity
function

Power
consumption/
Activation
threshold

Reconfigurability Integratability References

PD OEO Photoelectric effect Quadratic function nW–mW NO Compatible [63, 74]

MZM OEO Electro-optic
modulation

Sin -function; Sin2-
function

Vπ: ~V NO Compatible [53, 78]

MRM OEO Electro-optic
modulation

ReLU; Sigmoid; Radial
basis function;
Quadratic function

PN junction
voltage: 0–1 V

YES Good [52, 142, 151]

Vπ: ~2 V

EAM OEO Electro-optical
absorption

Mirrored sigmoid-like
function

Bias voltage: −4
to 4 V

NO Good [140, 141]

MZI OEO Electro-optic
modulation

ReLU-like function;
Clipped function

~10 mW YES Excellent [143, 144]

Laser BOTH Excitable Behavior;
Fano resonance

Excitability dynamics Pulse energy: NO Compatible [37, 152, 153]

1 pJ–200 nJ

Photonic crystals All-
optical

Optical bistability Bistable switch ~133 mW NO Good [154]

SOA All-
optical

Nonlinear gain Convex function;
Sigmoid-like

~ mW NO Compatible [65, 146, 148]

SESAM All-
optical

Saturation of
absorption

Sigmoid-like function 50 μW–10 mW NO Good [138]

MRR All-
optical

Two photon
absorption; Kerr
effect

\ 0.5–11 mW NO Excellent [66, 155]

Atoms All-
optical

Reverse saturated
absorption; Light-
induced quantum
interference effect;
Saturation of
absorption

Mirrored sigmoid-like;
Electromagnetically
induced transparency;
ReLU-like

10−2–102 μJ/cm2 NO Poor [120,
145, 150]600 µW

16 μW/mm2

Nanoparticle All-
optical

Induced
transparency

Mirrored sigmoid-like 102–107 W/cm2 NO Compatible [145]

Photorefractive
crystal

All-
optical

Photorefractive
effect

\ 0.1 mW/mm2 NO Poor [122]

Phase change
Materials

All-
optical

Nonlinear
absorption

ReLU-like; Sigmoid-
like

Pulse energy: NO Excellent [64, 139]

90 pJ–430 pJ

MZI + MRR All-
optical

Free-carrier
dispersion (FCD)
effect

Sigmoid-like; ReLU-
like; Radial-basis;
Softplus

~25 mW/π YES Excellent [147, 149]
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optical nonlinearity in analog optical computing are

summarized. Then, the training algorithms used in analog

optical computing, particularly in ONNs, are discussed.

Nonlinearity in analog optical computing

In analog optical computing, the implementation methods of

nonlinear activation functions can be into two categories, namely

optical-electrical-optical (OEO) method and all-optical method.

Due to the flexibility and simple implementing, the OEOmethod

was widely applied [37, 140–144]. However, the requirement for

the computing speed and power consumption has promoted all-

optical nonlinear activation functions in recent years [66, 139,

145–150]. Here, we summarized the implementations of the

OEO and all-optical nonlinear activation functions in recent

years, and the characteristics of each implementation are

depicted in Table 1, including the physical mechanism, the

type of nonlinearity function, power consumption/activation

threshold, reconfigurability, and integratability.

For the OEO nonlinear activation functions, photodetector

(PD) is a common device to realize a quadratic nonlinear

function with I = |E|2 (I: intensity of light; E: electric field

intensity) when encoding the information on the electric field

intensity [63, 74]. Besides, the nonlinear transfer function of

electro-optic modulations is widely applied in ONNs and ORCs

[52, 53, 78, 140–142, 151]. For example, the transfer function

(sin-function and sin2-function) of MZMs was used to

implement the nonlinearity of RCs [53, 78]. As the

requirement for the type of nonlinearity is not specific, the

unchangeable but stable transfer function of MZMs is suitable

to consider as the nonlinearity of RC. At the same time, MZMs

can provide GHz of bandwidth to implement highly parallel

computation. However, the power consumption of maintaining

the bias voltage of modulators and loading the modulation signal

is relatively higher. Besides, other modulators such as electro-

absorption modulators (EAMs) and silicon microring

modulators (MRMs) have been used to implement nonlinear

activation functions in ONNs [52, 140–142, 151]. In Ref. [140],

Amin et al. demonstrated an EAM based on an indium tin oxide

(ITO) layer monolithically integrated into silicon photonic

waveguides, and its dynamic range was used as the nonlinear

activation function in ONNs. The weighted optical signal was

converted into photovoltage through a balanced photodiode and

then drove the EAM to nonlinearly modulate the laser power

mimicking an activation function. Moreover, the ONN based on

the nonlinear activation function of the ITO modulator achieved

an accuracy of 97% in handwritten classification prediction tasks.

In Ref. [142], Tait et al. proposed a silicon photonic modulator

neuron consisting of two PDs connected electrically to an MRM.

By setting different biasing conditions, the modulator neuron

showed six response shapes, including sigmoid shapes widely

used in RNNs, ReLU shapes used in feedforward-machine-

learning networks, i.e., in multilayer perceptrons (MLPs) and

convolutional neural networks (CNNs), radial basis functions

(RBFs) applied in machine learning based on support-vector

machines, and quadratic transfer functions. This nonlinear

configurability demonstrated the potential of the modulator

neuron to be applied in a wide variety of neural-processing

tasks. In Ref. [52], the MRM was used to implement the

ReLU activation function in an on-chip photonic deep neural

network, and facilitated 93.8% and 89.8% accuracies in two-class

and four-class classification of handwritten letters, respectively.

Meanwhile, Williamson et al. proposed an OEO scheme for

realizing reprogrammable nonlinear activation functions for

ONNs [143]. In this implementation, a silicon MZI was used

to modulate the weighted signal by splitting part of the weighted

signal and then converting to electrical field to control the

modulation phase of the MZI. By adjusting the electrical

transfer function, the ReLU-like response and clipped

response can be obtained via the interference of MZI. Besides,

laser systems can be used to implement the OEO and all-optical

nonlinearity via the nonlinear dynamics. In Refs. [37, 152, 153],

the excitable dynamics (threshold characteristics) were

demonstrated in graphene-based lasers, distributed feedback

lasers, and Fano lasers, respectively, which can be applied in

optical neuromorphic computing.

Attracted by the energy efficiency and lossless processing

speed, all-optical nonlinear activations have begun to appear in

recent years with the development of optics and materials

science. In early stage, the optical bistability, as a common

optical nonlinearity, was proposed to realize the nonlinear

activation function [154]. However, the requirement of the

operation power was high. In 2012, Duport et al. used the

nonlinearity of SOAs to construct all-optical RCs [65]. After

that, Alexandris et al. demonstrated an all-optical neuron with

sigmoid activation function based on the SOA [146]. The

sigmoid function was derived from a deeply saturated

differentially-biased SOA-MZI followed by an SOA that

performed as a cross-gain modulation-wavelength converter.

Then, this SOA-based neuron was used to implement non-

gated and gated RNNs and got scores of 41.68% and 41.85% in

FI-2010 financial dataset, respectively [148]. However, the

integration of SOAs and the power requirement is

challenging. In 2014, Dejonckheere et al. proposed the first

passive all-optical RC based on a semiconductor saturable

absorber mirror (SESAM) [138]. Different from the

nonlinearity of SOAs, that of SESAMs performed nonlinear

for low values of its input power and performed linear at higher

input power. Moreover, SESAMs were passive elements without

extra energy to maintain the nonlinearity. Due to the strong

nonlinearity in MRRs, the TPA and Kerr effect of MRRs have

been used to implement integrated RCs [66, 155]. In 2015,

Mesaritakis et al. proposed and modeled an all-optical reservoir

computing scheme consisting of randomly interconnected

InGaAsP MRRs [155]. Different from the SOA, the

Frontiers in Physics frontiersin.org18

Dan et al. 10.3389/fphy.2022.1064693

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1064693


computation efficiency benefited from the ultra-fast Kerr effect

and TPA of MRRs. Afterwards, in 2018, Miscuglio et al.

proposed two independent approaches for implementing

nonlinear activation function of ONNs based on

nanophotonic structures [145]. The system consisting of a

single quantum dot (DQ) between a pair of gold

nanoparticles (MNP) demonstrated a classical analogue of

plasmon-exciton coupling induced transparency. And the

extinction ratios were 1.5 dB and 2.9 dB for single MNP/DQ

system and array of MNP/DQs, respectively. Besides, the high-

concentration C60 in a polyvinyl alcohol host thin film provided

a mirrored sigmoid-like nonlinear function via the reverse

saturable absorption with extinction ratio of 6.6 dB. Then in

2019, Zuo et al. demonstrated an all-optical neural network

with the electromagnetically induced transparency (EIT)

nonlinear function in laser-cooled 85Rb atoms [120]. The

EIT effect of the resonant probe beam appeared via the

quantum interference between the transition paths in the

presence of the coupling beam. After that, Ryou et al.

introduced the nonlinear function to the diffraction-based

ONNs with the saturable absorption of thermal 85Rb atoms

[150]. By the simulation and experiment, their proposed ONNs

with a single layer obtained 6% improvement of classification

accuracy in image classification of handwritten digits after

adding the optical nonlinearity. In 2019, Yan et al.

introduced the nonlinearity of the photorefractive crystal

(SBN:60) to diffractive deep neural networks for improving

the performance [122]. The required incident light intensity for

the SBN crystal to excite the nonlinearity effect was about

0.1 mW/mm2, which showed stronger nonlinearity than

other optical nonlinear effects, such as the Kerr effect.

However, the implementations of nonlinearity with the atom

systems and photorefractive crystals are bulky and difficult for

integration. In 2019, Feldmann et al. demonstrated an all-

optical integrated ONN with the spiking neuron enabled by

the nonlinearity of the PCM [64]. By embedding the PCM cell

in a silicon ring resonator, the optical resonance condition of

the ring was controlled by the phase state of PCMs and a ReLU-

like nonlinear activation function was obtained with a contrast

ratio of 9 dB. Afterwards, Teo et al. demonstrated a passive all-

chalcogenide ONN scheme consisting of Sb2S3-programmed

MZI weights and the nonlinear response of Ge2Sb2Te5 [139].

The nonlinear component was consisted of an MRR

sedimentated with a piece of Ge2Sb2Te5 thin film that

performed a sigmoid-like activation function with a contrast

ratio of 9.7 dB. Moreover, a three-layer ONN model with this

FIGURE 6
(A) The principle of the simulating and mapping (S&M) method. (B) The workflow of the forward propagation method for in situ training of
ONNs. (C) The workflow of in situ backpropagation and gradient measurement in MZI-based ONNs [157]. (D) The in situ training of diffractive optical
neural networks via backpropagation [159]. (E) The principle of in situ training of ONNs via neuroevolution [161].
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nonlinearity obtained a maximum training accuracy of 94.5% in

MNIST dataset. Due to its nonvolatility and integratability,

PCM is a promising platform to realize the low-power-

consumption and high-speed optical nonlinearity for analog

optical computing. Besides, Jha et al. demonstrated a kind of

reconfigurable integrated all-optical nonlinearity by using the

MRR-coupled MZI and Mach–Zehnder coupler (MZC) [147,

149]. The nonlinearity was mainly enabled by the free-carrier

dispersion (FCD) effect in silicon MRRs, which reacts as a

nonlinear phase response to optical power. By pairing with the

tuning biases on the MZI, the shape and threshold of the

nonlinear activation functions can be programmed. Finally,

four types of activation functions, namely sigmoid, clamped

ReLU, radial-basis, and softplus were experimentally

demonstrated and showed consistency with the theoretical

results. And the benchmark simulation obtained accuracies

of 100% and 94% in XOR and MNIST handwritten digit

classifications with the experimentally measured activation

functions, respectively. This integrated and reconfigurable

manipulation of nonlinear activation functions is very

attractive for being applied in ONNs and different

neuromorphic tasks.

Training algorithm

For the electronic artificial neural networks (DNNs, CNNs,

RNNs and so on), the training process is used to update the

connection weights of network by minimizing the cost function.

In general, the gradient descent (a kind of optimizer) is widely

used to update the weight parameters after applying the back

propagation to calculate the gradient of the cost function with

respect to weights parameters. Besides, other improved

optimizers such as the stochastic gradient descent (SGD),

mini batch gradient descent, momentum, Adagrad, Adam

[156], are applied for updating the weight parameters.

However, it is difficult to transfer the gradient descent and

back propagation into the training of ONNs. Because the

gradient of the cost function with respect to weights

parameters that related to the physical model is hard to

calculate explicitly. In order to solve this problem, different

training methods have been proposed and they can be mainly

divided into two categories, namely simulating and mapping

(S&M) and in-situ training.

The principle of the S&M is shown in Figure 6A, which is

modeling the light-matter interaction by computer and using the

training methods applied to electronic artificial neural networks

to update the weight parameters, then mapping the optimized

weight parameters into the physical optical model. For example,

MZI-based ONNs are suitable to use the S&M method as the

transformation matrix can be precisely derived by the phase

configurations of MZIs in the network. In Ref. [44], Shen et al.

constructed a two-layer ONN by using the programmable

processor (OIU) four times. In the training process, the

optimality of the ONN parameters was obtained by

conventional back propagation with computer. Then,

according to the decomposition mechanism of the unitary

matrix [44, 100], the weight matrix was programmed

(mapped) into the nanophotonic circuits by controlling the

phase of each interferometer (MZI) of OIU. For the vowel

recognition task, the two-layer ONN achieved the 76.7%

accuracy under the limit of the tradeoff between encoding and

photodetector noise. Moreover, Miller’s team developed anMZI-

based ONN simulator that embedded two training algorithms for

training the simulated ONNmodel, namely Adam optimizer and

in-situ backpropagation algorithm [143, 157]. This simulator

allows researchers to construct multi-layer and arbitrary size of

ONNs via Reck [97] or Clements design [100] and train the

constructed ONNs with different optimizers. Afterwards, Ref.

[51] used the simplest Stochastic Gradient Descent (SGD)

training algorithm to train the complex-valued ONN and then

implemented the complex weight matrices on the photonic

chip. The phase and magnitude encoded complex-valued

ONN realized the 97.4% accuracy for Iris classification

dataset, 98% and 95% accuracy for Circle and Spiral

classification dataset, and 90.5% accuracy for MNIST dataset.

Besides, the numerical model of diffractive deep neural networks

can be simulated well by using the Rayleigh-Sommerfeld

diffraction equation (63). In Ref. [63], the phase and

magnitude configuration of the diffractive layers was

optimized by using the stochastic gradient descent

algorithm, Adam, to back-propagate the errors and

minimize the cost function. After training with computer,

the diffractive layers were 3D-printed by Poisson surface

reconstruction method. Despite 3D-printing errors, the

experimental 5-layer D2NN design showed 88% matched-

degree of the accuracy with that (91.75%) of numerical

testing of MNIST classification and 90% matched-degree of

the accuracy with that (96.7%) of numerical testing of fashion

product classification. On the other hand, the ONNs that are

difficult to rapidly program and adjust the weight parameters

are mainly used to implement the computing tasks with fixed

weights, such as convolution [18, 47, 48, 118].

Forward propagation is a kind of in-situ training method that

is suitable for ONNs which are easy to implement the forward

propagation and detection process, and easy to program/adjust

the weight parameters. We take the MZI-based ONNs as an

example and depict its training workflow in Figure 6B. For MZI-

based ONNs, the related weight parameters are the phases of the

internal and external phase shifter of MZI. Firstly, all phases of

MZIs of the network are randomly initialized. Then in step 1, a

specified phase θi is adjusted to θi
’ = θi + Δθ with a small phase

shift Δθ. Benefitting from the ultra-fast speed of forward

propagation, the cost function can be rapidly calculated before

and after adjusting. If the cost function CF(θi
’) related to θi

’

decreases compared to that of θi in step 2, then the θi is updated to
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θi
’. Otherwise, the θi is adjusted to θi

’ = θi − Δθ within step 3 and

redoing the step 2. After processing the step 2 and step 3 for θi,

other phases successively perform the same procedure. When all

phases finished the procedure from step 1 to step 3, the traversal

of all phases is performed repeatedly until the cost function

converges. Ref. [44] firstly proposed that MZI-based ONNs can

implement the on-chip training by using the forward

propagation and the finite difference method, and

implemented a simulation on a computer. It should be noted

that this method is not favoured on a computer as the

computation expense of forward-propagation (massive MVM

calculation) is very high. After that, Ref. [102] demonstrated the

self-configuring on a reconfigurable silicon photonic signal

processor by using the forward propagation method. The

silicon processor was consisted of a 4 × 4 MZI-network

derived from Reck design [97] and can implement the linear

transformation and nonnegative MVMoperation [158]. The self-

configured processor realized various optical signal processing

functions, including multichannel optical switching, optical

multiple-input-multiple-output descrambler, and tunable

optical filter. In 2018, Hughes et al. proposed a highly

efficient, in-situ training method for ONNs through adjoint

variable methods to derive the photonic analogue of the

backpropagation algorithm [157]. The workflow of the in-situ

backpropagation and gradient measurement method is depicted

in Figure 6C. In step 1, the original field amplitudes Xl-1 were

input into the network and the intensities at each phase shifter

were stored as eog. Then sending the adjoint mode amplitudes δl
through the output port to record the XTR* from the input port

and the intensities eaj at each phase shifter in step 2 and step 3.

Next, calculated time-reversed adjoint input field amplitudes and

the original field amplitudes Xl-1 were both input the device and

measuring again the resulting intensities eog + eaj* at each phase

shifter. In the end, the gradient of the cost function versus the

weight parameters (permittivity of phase shifter) was recovered

by subtracting the constant intensity terms from steps 1 and

2 and multiply by k0
2. By using the backpropagation, all weight

parameters can be updated simultaneously in once iteration,

which was highly efficient compared to that of the forward

propagation method. Besides, Zhou et al. also demonstrated

that the gradient of the cost function with respect to the

weights of diffractive layers can be accurately calculated by

measuring the forward and backward propagated optical fields

in D2NN [159]. The principle of the in-situ training method of

diffractive ONNs is shown in Figure 6D. At first, the coherent

light was modulated and then forward propagated through

multilayer SLMs with phase modulation coefficients, then the

forward propagated optical field was measured by the image

sensors with phase-shifted reference beams at the output image

plane as well as at the individual layers. Next, the error optical

field was calculated from the residual errors between the network

output optical field and the ground truth label. Further, the

backward propagated optical field was measured by propagating

the error optical field from the output image plane back to the

input plane. Based on the measured forward and backward

propagated optical fields, the gradients of the diffractive layers

can be calculated, and the modulation coefficients of SLMs were

successively updated from the last to first layer. Finally, the in-

situ optical training of a 10-layer diffractive ONN for MNIST

dataset realized the blind testing accuracy of 92.19% and 91.96%

without and with errors, respectively. Expect for measuring the

gradient to minimize the cost function, gradient-free algorithms

can be utilized to train ANNs [160–162]. In 2019, Zhang et al.

proposed using neuroevolution algorithms to efficiently train

ONNs on an on-chip integration system [161]. Two typically

evolutionary algorithms, genetic algorithms (GA) and particle

swarm optimization (PSO) were demonstrated to determine the

hyper-parameters of ONNs and to optimize the weights (phase

shifters) in the MZI-based ONN. The flowcharts of the learning

algorithms for the ONNs based on GA and PSO are depicted in

Figure 6E. In the preparation stage, multiple individuals and

particles were randomly generated for GA’s initial population

and PSO’s initial location, respectively, where each individual/

particle encoded the information of the weights and the hyper-

parameters of N layers ONN. Then, the fitness of individuals/

particles was calculated by configuring their parameters on the

device and calculating the cost function between the practical

output and the ground truth. Based on the fitness and

neuroevolution strategies, the new population of GA and new

particles of PSO were updated. After that, re-evaluating the new

population of GA and new particles of PSO and then re-evolving

until the cost function converged or the iteration time reached

maximum. In the end, the optimal configuration parameters of

ONN were decoded from the optimal individual/particle. By the

numerical training of MZI-based ONNs with the neuroevolution

training method, the classification accuracies of GA for the test

datasets were 97% (Iris plants dataset), 89% (wine dataset), and

92% (modulation format recognition dataset). And the

classification accuracies of PSO for the test datasets were

100% (Iris plants dataset), 100% (wine dataset), and 93%

(modulation format recognition dataset). Afterwards, Zhang

et al. experimentally demonstrated the in-situ training of

MZI-based ONNs with GA on an integrated hybrid optical

processor [162]. And the proposed ONN obtained the highest

accuracy of 94.2% on the training data set and 93.3% on the

testing data set for Iris classification. In conclusion, due to the

mature training algorithms in computers, the S&M method can

quickly obtain the weight parameters of ONNs in advance and

the difficulties in the experiment are avoided. But the

environment noises and manufacturing errors may cause a

decline to the accuracy of the practical ONNs. On the other

hand, the in-situ training method can the real performance of the

implementation of ONNs because the training process runs

under the practical environment noises and manufacturing

errors. Realizing the efficient and scalable in-situ training is

one of the most promising directions in the future.
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Discussion and outlook

In Chapter 2, we summarized various architectures and

implementations in recent years for typical applications of

analog optical computing, including the optical neural network

(ONN), optical reservoir computing (ORC), and optical Ising

machine (OIM). A large number of different types of ONNs

have been proposed based on different optics platforms

(integrated optics, free space optics, and fiber optics) and optical

phenomena (interference, diffraction, nonlinearity and so on).

Then, we introduced the common optical nonlinearity activation

functions and training algorithms in analog optical computing.

Here, we will discuss the current challenges of analog optical

computing and the possible development directions in the future.

The potential and advantage of using optics to implement

computation have been demonstrated [18, 33, 44, 48, 52, 55, 56,

63, 103, 121], which shows competitive performance with that of

state-of-the-art electronic computing hardware. It should be

noted that the current implementations of analog optical

computing mainly focus on performing specific computation

operations, e.g., dot product, MVM, convolution, and FT, and

specific computation models, such as the neural network (NN)

model, reservoir model, and Ising model. Besides, although the

optical computing shows prominent advantage of negligible

energy consumption when performing multiplication in

optical domain. The modulation of the input signal, loading

and maintaining the weights, detecting of the output signal, and

performing the training algorithm are still highly dependent on

the electronic equipment. Moreover, the computation module

(mainly optical) and control/auxiliary module (mainly electrical)

mostly are separated and the data flow in these computation

systems is not optimized technically. In fact, the hybrid

optoelectronic computing has been pointed out as the main

existing form for analog optical computing [16, 26, 33, 38],

which fully takes advantage of the low power consumption,

high speed, and high parallelism of optical computing and the

convenience of controlling of electronics, respectively. Thus,

realizing a complete, highly efficient, and universal hybrid

optoelectronic computing system is an important direction

worth studying. In Ref. [123], Zhou et al. proposed to

implement different computation models (DNNs, RNNs,

weight-shared NNs) for large-scale neuromorphic

optoelectronic computing by assembling diffractive processing

units (DPUs) with different topological structures. It was a

forward step to implement the universality of the

optoelectronic computing system via reprogramming the basic

computing unit. On the other hand, Shastri et al. depicted a

blueprint for neuromorphic photonic processor architecture that

adopted commercially available photonic packaging technology

and some emerging ideas in the field of integrated photonics [38].

The concept of the neuromorphic photonic processor is shown in

Figure 7A. It can be found that the system-in-package was

consisted of on-chip laser source that provided carrier or

generated optical frequency comb for ONNs, I/O that was

compatible to optical signal, RF signal, and digital signal for

modulators and detectors, the COMS application-specific

integrated circuit (ASIC) that was used to drive/configure the

photonic elements of photonic integrated circuit, digital memory

FIGURE 7
(A) The concept of the neuromorphic photonic processor with commercially available photonic packaging technology and some emerging
ideas in the field of integrated photonics [38]. (B) The schematic and workflow of an electro-photonic computing system [163]. (C) The principle of
the hardware error correction in large-scale MZI networks [165]. (D) The schematic of the space-efficient optical integrated diffractive neural
networks [103]. (B) Reprinted from Ref. 163 with permission from arXiv preprint. (D) Reprinted from Ref. 103 with permission from Springer
Nature: Nature Communications.
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(volatile, RAM) and analog memory (non-volatile),

microcontroller, CPU and so on. The realization of this

system-in-package depended on the fusion of advanced

photonics and packaging technologies, for instance, active on-

chip electronics, on-chip light sources, Lithium niobate-on-

insulator modulators, and optical frequency combs. This

blueprint provided us a promising way to fully exploit the

advantage of photonics for accelerating computation in system

level. Besides, Demirkiran et al. proposed an electro-photonic

system for accelerating DNNs in system-level perspective [163].

The electro-photonic system consisting of an electronic host

processor, dynamic random-access memory (DRAM), and a

custom electro-photonic hardware accelerator called ADEPT

is depicted in Figure 7B. In ADEPT, the photo-core was used

to implement the dominant general matrix-matrix multiplication

(GEMM) and a digital electronic ASIC was used for storage and

for performing non-GEMM operations. The host CPU combined

with DRAM performed the data scheduling via the PCI-e port

connected with weight static random-access memory (SRAM)

and activation SRAM. To improve the operational efficiency, the

pipeline operation was adopted for GEMM and non-GEMM

operations, and an optimized buffering method was used to

maximize the batch size stored in the activation SRAM

without ever spilling back to the DRAM during runtime. By a

head-to-head comparison of ADEPT with systolic array

architectures, the ADEPT can provide, on average, 7.19×

higher inference throughput per watt. Besides, Sunny et al.

proposed a novel cross-layer optimized neural network

accelerator called CrossLight [164]. In the device-level, the

MRR for performing the NN computation was optimized to

be more resilient to process variations and thermal crosstalk; In

circuit-level, an enhanced tuning circuit was proposed to

simultaneously support large thermal-induced resonance shifts

and high-speed device tuning; In architecture-level, the WDM

technology and matrix decomposition were optimized to

increase throughput and energy-efficiency. Based on the deep-

level optimization, CrossLight can support 9.5× lower energy-

per-bit and 15.9× higher performance-per-watt than state-of-

the-art photonic deep learning accelerators. It can be found that

the computation power of the hybrid optoelectronic computing

system not only depends on the photonic computing core, but

also depends on the highly efficient fusion of electronics and

optics at the system level and architecture level. Thus, the high-

efficiency hybrid optoelectronic computing architecture is an

important studying direction in the future.

Due to the natural parallelism of light, analog optical

computing would show bigger advantage as the scale of parallel

computing, i.e., the scale of matrix/vector. However, some

methods for implementing the MVM suffer from the extension

of scale due to the fabrication error, especially in coherent

integrated platform. As Refs. [46, 98, 111, 165] demonstrated,

affected by the fabrication error of the splitting ratio and phase

error in MZI, the fidelity of the unitary matrix represented by the

MZI network and the classification accuracy of MZI-based ONNs

sharply decreased with the growing of the number of modes. Thus,

improving the robustness of the analog optical computing

architecture to the fabrication error is also crucial. In Ref. [46],

the MZI network for representing unitary matrix based on SVD

was simplified into the more compact FFTNet based on Cooley-

Tukey FFT algorithm [166]. With fewer components and

shallower optical depth, the ONNs constructed by FFTNet

demonstrated better fault tolerance to the error of components

compared to that of SVD method. Afterwards, Ref. [103] also

proved that the FFT-based ONNs can provide a ~10-fold

reduction in both footprint and energy consumption, as well as

equal high accuracy with previous MZI-based ONNs. Besides,

more robust architectures for programmable universal unitary

have been developed in recent years. In Ref. [111], the unitary

matrix was decomposed into multiple mode mixing layers and

phase layers, where the transfer matrix of the mixing layer can be

arbitrary unitary matrix. Even if adding random perturbations to

the mode mixing layers, the fidelity of the unitarymatrix can reach

a high level, which demonstrated the resilience of its architecture to

practical constraints and errors. In Refs. [108, 110, 167], multiport

directional couplers (MDCs) were used to implement the mode

mixing to realize multi-input-multi-output (MIMO)

demultiplexing, unitary optical processor, and unitary converter.

Compared to the optical unitary converter based on MZI, the

MDC-based optical unitary converter showed outstanding

robustness against waveguide deviations and fabrication errors.

Moreover, Bandyopadhyay et al. proposed an optimization

approach to correcting circuit errors in MZI network by locally

correcting hardware errors within individual optical gates [165].

The procedure of correcting method is depicted in Figure 7C. The

realistic MZI implemented on a photonics platform leaded to

splitting errors α, β for the two directional couplers within the

interferometer. At first, the θ was corrected to set the magnitudes

of the elements of the realistic unitary matrix Tij
’ equal to that of

the target unitary matrix Tij. Then, the phase corrections were

implemented to the input and outputs of the device to correct

phase errors between Tij and Tij
’. With this correction, the ONNs

remained resilient to component error well beyond modern day

process tolerances without using additional components. This

method pointed out a potential way to scale up programmable

photonics to hundreds of modes with current fabrication

processes. In conclusion, the scalability and robustness of the

analog optical computing architecture are important criteria

worth being explored in the future with fewer components,

compact structures, calibration schemes and so on.

Apart from the innovation at the system-level and

architecture-level, the development of the underlying photonics

devices and the application of advancedmanufacturing process are

also critical. In early stage, the lens system is used to implement FT

and convolution. However, this equipment is bulky so that it is

hard for extension and integration. Ref. [103] proposed using

diffractive cells (slab waveguides) shown in Figure 7D as equivalent
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lens to implement FT. Due to the ultracompact footprint of

diffractive cell, the footprint and energy consumption of the

integrated ONNs greatly reduced. Ref. [168] inversely designed

an integrated-nanophotonics computing unit consisting of a

multimode interference (MMI) coupler with nanopatterned

coupler region to implement the parallel convolution.

Moreover, Ref. [169] proposed an integrated ONN based on

on-chip cascaded one-dimensional metalines, which can

perform MVM in parallel and with low energy consumption

due to intrinsic parallelism and low-loss of silicon metalines.

Meanwhile, Ref. [125] proposed integrated diffractive neural

networks enabled by metasurface. Besides, Ref. [170] proposed

a nanophotonic medium consisting of matrix material silicon

dioxide and a large number of dopants to perform NN

computing. The passive NN computing was implemented by

light passing through the nanostructured medium with both

linear and nonlinear scatterers. Based on these progresses, it

can be found that the integration is a unified trend for analog

optical computing. Driven by the advanced material and

integrated technique in optoelectronics, analog optical

computing will play an essential role in the post-Moore era.

Conclusion

In this paper, we systematically review and discuss the advanced

field—analog optical computing in different aspects. Firstly, we

introduce the challenges of the modern electronic computing in

the post-Moore era, with slowing down of Moore’s law and growing

demands of massive data processing, analog optical computing

becomes a promising way to break through the bottlenecks of

electronics. Then, the recent processes of analog optical

computing are summarized by dividing its implementations into

four typical optical platforms. Afterwards, the nonlinearity and

training algorithm of analog optical computing are independently

discussed in detail. At last, we point out the current challenges and

potential development directions in the future. It can be seen from

the development history that the integration of computing

architectures is a distinct direction to fully liberate the computing

power for optical computing. At the same time, due to the

complementary advantages of electronics and optics, the

optimization of the hybrid optoelectronic computing is also

crucial. Besides, the new materials and advanced manufacturing

process also play an important role to explore the limits of

performance of analog optical computing. It is believed the

analog optical computing has a promising prospect in the post-

Moore era by the improvement of optoelectronic technology and

photonic integrated circuits.
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