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This study proposes a novel method to compress and decompress the 3Dmodels

for safe transmission and storage. The 3Dmodels are first extracted to become 3D

point clouds, which would be classified by the K-means algorithm. Then, these

nearby 3D point clouds are converted into a computer-generated hologram

(CGH) by calculating the point distributionon the hologramplane using theoptical

wavefront propagation method. The computer-generated hologram (CGH)

contains the spatial coordinate information on point clouds, which can be

decompressed using the convolutional neural network (CNN) method. The

decompression accuracy of 3D point clouds is quantitatively assessed by

normalized correlation coefficients (NCCs), reflecting the correlation between

twopoints and influencedby the hologram resolution, the convolution kernel, and

the diffraction distance. Numerical simulations have shown that the novelmethod

can reconstruct a high-quality 3D point cloud with an accuracy of 0.1mm.
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1 Introduction

With the rapid development of 3D data acquisition equipment and technology, the

location information on 3D objects and scenes can be collected and transmitted in real

time [1–4]. Since discrete point clouds in 3D space contain depth information and can

accurately reproduce real-world scenes, they can be used to record and reconstruct 3D

scenes [5–7]. Those 3D point clouds can be used in visual displays such as city modeling

[8,9] and mobile applications of interaction [10,11]. In particular, the point clouds

consisting of a large number of 3D points can accurately represent 3D environments and

enable more immersive visual experiences. It will give rise to many new multimedia

applications, such as virtual reality and augmented reality [12].

However, the accurate reconstruction of point clouds is positively related to the total

amount of data in the point clouds, so the reconstructed point cloud data that can meet

the visual needs require huge storage space and transmission bandwidth [13]. It is

important to develop a 3D point cloud compression (3PCC) algorithm with high secrecy,

low complexity, and high decompression accuracy for real-time applications. In the last
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decade, many attempts have been made to improve the

compression efficiency. Jae Kyun et al. [7] proposed an

adaptive technique of range image coding for compressing

large-scale 3D point clouds, which adaptively predicts the

radial distance of each pixel using its previously encoded

neighbors. Queiroz et al. [14] investigated a technique to

compress point cloud colors based on hierarchical

transformations and arithmetic coding. Vicente Morell et al.

[15] proposed a 3D lossy compression system based on plane

extraction. These proposed methods mainly reduce the number

of point clouds or improve the presentation of point clouds. With

the current hardware conditions, it is difficult to store and

transmit a large amount of point cloud data.

In this article, we propose a highly encrypted 3D point cloud

compression and dimensionality reduction algorithm for 3D

point cloud transmission and storage. Figure 1 shows an

overview of the compression and decompression algorithm.

2 Methods

In a 3D coordinate system, the outer surface of a 3D object can

be represented by point clouds, which are a series of data points

defined by X, Y, and Z coordinates. The point cloud acquisition is

from 3D scanners or directly from 3D applications. Figure 2 shows

the two point clouds using each of the aforementioned two

FIGURE 1
Flow diagram of the proposed compression and decompression algorithm.

FIGURE 2
Point clouds from (A) the 3D scanner and (B) 3D application.
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methods. Figure 2A is generated by using a 3D scanner (FARO

Focus3D X130), and Figure 2B is created by a 3D application.

This studymainly focuses on the compression and encryption of

point cloud positions and does not consider the color values of the

point clouds. We first segmented the point cloud using an

unsupervised clustering segmentation method (the K-means

algorithm). It can divide the point cloud into k clusters to ensure

that each point is located in a cluster. The clustering of point clouds

is the grouping of points by specific features. We initially needed to

determine the number of clusters (k) and the centers of k clusters

randomly. The simple Euclidean function, Minkowski function, and

Cityblock function were applied to calculate the distance between

each point and the cluster center. The point would be moved to the

particular cluster to keep the shortest distance from the cluster center

[16]. Figure 3 shows the flow chart and diagram of the K-means

algorithm.

To achieve point cloud data encryption and compression, we

calculated the point distribution on the hologram plane by the

propagation of the optical wavefront method, which needs to be

carried out in two steps: 1) the points in the point cloud can be

assumed to be point sources, as shown in Figure 4, whose

distribution in the plane in front of the Fourier lens needs to

be calculated. 2) The Fourier lens phase data, which are optical

transmissions between two parallel planes, also need to be added to

the distribution of the final hologram plane [17–19]. The phase

distribution is crucial in the reconstruction process of the 3D point

cloud since the phase data contain the direction information.

In the propagation of the optical wavefront method, the phase

distribution on the final hologram plane precisely records the real-

world object. It can calculate and simulate the optical transmission

process from the point source to the hologram plane [20,21]. The

complex amplitudeH(x, y) on themidplane of the point clouds can

be calculated and simulated by the optical wavefront.

H x, y( ) � ∑k
j�1

Aj

rj
exp ikrj( ), j � 1, . . . , k, (1)

where k is the sparse point number of a point cloud after

segmentation, Aj is the wave amplitude, and in our work, Aj =

1, and k � 2π
λ is the wave number in space. The distance rj

FIGURE 3
(A) Flow chart and (B) diagram of the K-means algorithm.

FIGURE 4
Schematic diagram of point cloud hologram generation. The
hologram includes depth information.
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between the point (xj, yj, zj) in the point cloud and the point (x, y,

0) in the midplane is given by

rj �
���������������������
x2 − x2

j( ) + y2 − y2
j( ) + z2j

√
. (2)

The convolutional neural network (CNN) can be used to deal

with the input fluctuations and obtain the invariance

characteristics. It is commonly used in image data and is a

variation of the MLP that evolved from the idea of biology.

There is a complex distribution of cells in the visual cortex that

are sensitive to external inputs, called the “receptive field.” These

cells are locally sensitive to the input image and are able to mine

images for targets, functioning like a filter. Each filter is

superimposed over the entire receptive field. The CNN can

identify the local information on objects by enhancing the local

connectivity patterns (LCPs) of nodes between adjacent layers.

Although the CNN has dominated many tasks in computer

vision [22–25] and object detection [26–28], the application of

the CNN in point cloud processing is still lacking. Most of the

approaches are still based on the TIN framework, which leads to

limited accuracy and processing speed.

In this work, we apply the CNN algorithm to recognize the

hologram and reconstruct the point clouds. In our approach, we

need the weight of each feature as a code to find the position of

the point cloud. The data must first be preprocessed using the

following techniques: data regularization and data degradation. It

can increase the recognition rate because the non-zero mean of

the training sample does not match the non-zero mean of the

testing sample. Also, different image features can be obtained by

using different convolution kernels. These convolution kernels

are similar to different types of filters and are the core of the

CNN. A pooling layer follows the convolutional layer to reduce the

dimension. In general, the size of the original convolution output

matrix is transformed to half of its original size. The pooling layer

would increase the robustness of the system and turn the original

detailed description into a coarse description (originally, the

matrix size was 28 × 28, and now, it is 14 × 14, but the

boundary would lose partial information). Two pooling

FIGURE 5
Process of the CNN based on the trained dictionary.

FIGURE 6
Point clouds are segmented by the K-means algorithm with
k = 20.
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operations (max pooling and mean pooling) would improve the

variance of the extracted features. However, the error in feature

extraction would come from two ways: 1) the estimate variance

increasing caused by the limited size of the neighborhood. 2)

estimated mean shifting caused by the convolutional parameter

error. Specifically, mean pooling can reduce the first error and

preserve the background information about the image. Max

pooling can reduce the second error (the derivative does not

affect the other points) and preserve texture information.

As shown in Figure 5, the histogram feature vector (HFV)

needs to be extracted before rebuilding the point cloud from the

hologram. The HFV consists of vertical projection and horizontal

projection of the hologram. Then, convolutions and subsampling

are performed to get a feature map of 8 × 8 pixels. The feature map

is used to reconstruct the feature vector. Also, the computer-

generated holograms can be extracted from the feature vectors and

numbered to form a look-up table. When a point cloud hologram

is decompressed, the CNN method identifies the encoding of

holograms. With the encoding, we can find the unsampled

hologram in the look-up table and calculate its spatial value.

3 Results

Figure 2B is the point cloud given as input to the

preprocessing and K-means algorithms. The algorithm

calculates the clustering of the point cloud using the Cityblock

function. Figure 6 is the output for spatial segmentation by the

K-means algorithm with k = 20.

For the given point cloud, the cluster means mk is calculated

as follows:

mk �
∑n

i k( )di

n
, k � 1, . . . , K. (3)

The distance D(k) between the cluster and each point is

calculated as follows:

D k( ) � arg min di k( ) −mk‖ ‖2, k � 1, . . . , K. (4)

Iteratively compute the preceding two steps until the mean

value convergence is attained.

Four original models are chosen as the compression objects, as

shown in Figures 7A1–A4. The simulation of the models is as

follows: 1) the models first generate four groups of point clouds by

the sampling process, respectively, as shown in Figures 7B1–B4. 2)

The K-means method is applied to simplify the data while

preserving the data information since the point cloud of the 3D

model has a huge amount of data. For example, the point cloud of

the first model (a1) has 10,684 points, the second model (a2) has

1,177 points, the third model (a3) has 35,871 points, and the last

model (a4) has 40,248 points. As shown in Figures 7C1–C4, the set

of points could (b1–b4) be divided into k groups by the principle of

the nearest distance. The k value of (c1), (c2), (c3), and (c4) is 174,

FIGURE 7
3D models and point clouds. (A1–A4) 3D models. (b1–b4) Point clouds generated from the models by the sampling process. (C1–C4) Point
clouds are divided into k groups.
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84, 171, and 130, respectively. 3) The k point is transformed into a

hologram, calculating the point distribution on the hologram plane.

The holograms in Figures 8A1–A4 are generated with the following

parameters: the diffraction distance is z = 240 mm, the hologram

has 512 × 512 pixels, and the wavelength of the laser used in our

experiment is 632.8 nm. 4) Using the CNN algorithm to

decompress the hologram, get the point cloud code, and look up

the table to know the point cloud distribution.

The models and point clouds are shown in Figure 7. The point

clouds are divided by the K-means method and kc1 = 174, kc2 = 84,

kc3 = 171, and kc4 = 130. The k cluster centers are used as point

sources of holograms (see Figures 7C1–C4). The hologram

contains the location information on point clouds. The

compression and decompression results of the models are

shown in Figure 8. The holograms are generated from the

point sources and by the propagation of the optical wavefront

method, as shown in Figures 8A1–A4. Figures 8B1–B4 shows the

decompression points by the CNN method, respectively.

Simulation results (Figures 8C1–C4) show that the

decompression point clouds have high decompression accuracy

and low crosstalk with the number of point clouds increasing.

4 Discussion

The discrete point cloud is compressed using virtual light

with a wavelength of 632.8 nm. The compression layer resolution

is 256 × 256 pixels, and the compression distance is 24 cm.When

compressing a single discrete point cloud in different positions

FIGURE 8
Holograms and decompression of the point cloud. (A1–A4) Holograms generated from the four models. (B1–B4) Point clouds decompressed
from holograms. (C1–C4) Simulation results for comparison.

FIGURE 9
Coding of point sources in different positions.
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(0, 0, 0), (0, 0.1, 0), and (0.1, 0, 0) and analyzing the compressed

data, we can find that the encoding is completely different,

although the difference is only 0.1 mm (Figure 9). Therefore,

the hologram has enough coding expression space to store the

point cloud data, and the three-dimensional space information is

converted into two-dimensional information. Fresnel diffraction

is performed on the discrete point to transform voxels into pixels,

which ensures that the original data and information are

preserved in the case of dimensionality reduction.

In the proposedmethod, the hologram converted from the point

clouds can record the space position through diffraction. When

decompressing the hologram, the accuracy of point clouds is affected

by the hologram resolution, the convolution kernel, and the

diffraction distance. The accuracy of decompression point clouds

can be quantitatively assessed by normalized correlation coefficients

(NCCs). It reflects the correlation between two points and can be

expressed as Eq. 5, where R0(i, j) expresses the feature vector of the

point (0, 0, 0), R1(i, j) indicates the feature vector of the point (0.1, 0,

0), and (I, j) denotes an element in the feature vector. h and l represent

the row and column numbers of the feature vector, respectively.

NCC �
∑h
i�1
∑l
i�1
R0 i, j( ) · R1 i, j( )

∑h
i�1
∑l
i�1
R0 i, j( ) · R0 i, j( ). (5)

The NCCs of the hologram feature vector under different

parameters are shown in Table 1. There are correlations in the

holograms with 512 × 512 pixels, 256 × 256 pixels, and 128 ×

128 pixels; the diffraction distance with 20 cm, 24 cm, and 28 cm; and

the convolution kernel with 3 × 3 pixels, 6 × 6 pixels, and 9 × 9 pixels.

The different correlation coefficients are in the range of

0.0272–0.5944, which show that different parameters have different

correlation coefficients. The smaller correlation coefficient indicates

that the spatial point cloud accuracy is higher. In particular, the

hologram (512×512 pixels and z=24 cm) and the convolution kernel

(3 × 3) can extract point clouds with a spatial resolution of 0.1 mm.

5 Conclusion

In this study, a 3D point cloud compression and

decompression method based on holograms and the CNN is

proposed. The sparse 3D point clouds generated from the 3D

model are transformed into a hologram, and the position of the

point cloud can be extracted by the CNN method in the

decompression process. The hologram can reduce the

dimension of spatial data and realize the three-dimensional

data recording. The accuracy of the decompression point

clouds would be affected by the hologram resolution, the

convolution kernel, and the diffraction distance. Under the

conditions of the hologram with 512 × 512 pixels and z =

24 cm, the point cloud can be reconstructed with an accuracy

of 0.1 mm. Simulation results and quantitative analysis based on

the hologram and CNN method show that the proposed method

can meet the demand for three-dimensional model transmission

and storage.
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TABLE 1 NCC in different parameters.

Hologram Pixel (Z = 2.40 cm and C: 3 × 3) Z (P: 256 × 256 and C:
3 × 3)

K (P: 256 × 256 and Z =
24 cm)

512 × 512 256 × 256 2.0 cm 24 cm 3 × 3 6 × 6

NCC 0.0272 0.0667 0.1416 0.667 0.0667 0.3707
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