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An investigation plan of different clustering andmolecular states in neutron rich

isotopes of Lithium, Beryllium, Boron and Carbon, in the context of an

experimental campaign at INFN-Laboratori Nazionali del Sud, is presented.

High statistics and new information on known states and study on new states

will be possible thanks to the high intensities available for the exotic beams,

delivered by the FRAISE facility and thanks to the opportunity of using very

performing experimental apparatus, as well as the detectors CHIMERA,

FARCOS, and NArCOS. Among these, the new hodoscope NArCOS, by

detecting with high efficiency neutrons and providing high energy and

angular resolutions, will allow also a precise study of reaction channels

characterized by neutron emission.
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Introduction

Recent advances in the production of nuclei far from the stability valley provide the

opportunity of studying very fascinating exotic phenomena such as the presence of

neutron halo and neutron skin, the vanishing of the magic numbers, Bose-Einstein

condensation and cluster states in light nuclei. In particular, the study of clustering is one

of the most important subject in nuclear physics because it constitutes a powerful tool to

investigate the nuclear force and the resulting symmetries [1].

A relevant role is played by α correlations in nuclei with N (number of neutrons) = Z

(number of protons) [2, 3], which have also remarkable involvements in astrophysics [4].

For example, the well-known Hoyle state [5], a 3 α structure which characterizes the

second 0+ excited state of the 12C at 7.65 MeV, plays a fundamental role in the carbon

synthesis, during the Helium burning phase in the evolution of the stars. Another peculiar

case is 8Be, which decays into two alpha particles. These alpha cluster structures are

stabilized in the excited states of some nuclei by adding neutrons that play the glue-like

role between the alpha structures; these states, by analogy with the covalent binding for

the electrons, are called molecular states [6]. In fact, 9Be is stable with respect to 8Be,
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thanks to the presence of the extra neutron. Another isotope of

beryllium, 10Be exhibits a molecular structure, constituted by two

alpha particles and two valence neutrons α + α + n + n. Molecular

like states of 3α+xn type are observed in carbon isotopes as for

example 13C→ n+α+α+α and the 14C→ α+α+α+n + n. In neutron

rich nuclei, the appearance of molecular states is observed, with

high probability, for energies close to the threshold for decaying

into neutrons and cluster constituents. This is shown for carbon

and beryllium, in the diagram in Figure 1, adapted from reference

[6], in which an extension of famous Ikeda diagram [7] was

proposed by Von Oertzen.

The existence of exotic clusters structures is predicted in the

ground and excited states of neutron-rich isotopes of beryllium,

boron and carbon. A very interesting case is the study of the 10Be*

→6He + 4He break-up channel, conducted at Laboratori

Nazionali del Sud by the CHIMERA collaboration, which

highlighted the possible presence of a new state at 13.5 MeV

[8]. Cluster configurations are suggested both theoretically and

experimentally in the excited states of 10-12Be and theoretically

predicted in the ground states of 15-17B [9].

In this context, the Antisymmetrized Molecular Dynamics

(AMD) model [10] has been applied to study the 13B isotope by

predicting for the ground state a 3/2- state with a p-shell closure

configuration, while for the excited states of 13B cluster like

structures such as 12Be + p, 9Li + α [11, 12] and 10Be + t, with

large deformations leading to the appearance of rotational bands

kπ = 3/2- and kπ = 1/2+ [13].Other configurations are possible, for

example the CHIMERA group observed the 7Li + 6He state in the

data analysis of the UNSTABLE experiment, but with a very low

statistic for these events because the experiment was focused on

another topic.

Another very interesting case is the one of 16C [14–18] which

presents different cluster states, such as 10Be+6He, α+12Be,
7Li+9Li, 8Li+8Li, 13B + t, 14C+2n, 15C + n, 6He+6He+α and
10Be+ α +2n. All of these are possible configurations with an

excitation energy higher than 16.5 MeV and that can be studied

via break-up reactions.

The experimental campaign

Several experimental and theoretical investigations have

been conducted with the aim of studying cluster and

molecular structures [8, 19–24] and reference therein].

Known and new cluster and molecular states in nuclei

belonging to the isotopic chains of Li, Be, C and B can be

studied in the context of an experimental campaign, in which

break-up reactions of radioactive beams of intermediate

energy will be realized by using mainly CH2 but also CD2

targets (proton and deuteron respectively). The use of a

deuterated target will be important for instance to transfer

a neutron to the projectile and eventually study more neutron

rich systems.

The cross section of break-up reactions on a proton obviously

is lower than the one of reactions on heavy targets, thus it become

essential that the experimental set-up is designed to exploit the

extremely forward-focused kinematics, which characterizes these

reactions, in order to maximize the detection efficiency for this

type of events.

The INFN-Laboratori Nazionali del Sud, in Catania are the

perfect place to carry out these experiments, thanks to the

construction of the new fragment separator, FRAISE

(FRAgment In-flight SEparator) [25–29] to the

implementation of devices for the identification of the

different isotopes that compose the “cocktail beam”, coming

from the fragmentation of the primary beam on the target

production and to the presence and construction of

increasingly performing detectors.

Radioactive beams have long been produced at LNS with the

In-Flight method (fragmentation in flight) by the FRIBs facility,

but nuclei really far from the stability valley were produced with

low statistics due to the low power released by the cyclotron. High

intensity (up to 107 pps) and high quality exotic beams will be

available thanks to the cyclotron upgrade project, currently in

progress.

The use of a cocktail beam could be an advantage, because

thanks to the new expected high intensities available, it offers

the possibility of studying different physical cases with the use

of a single primary beam. The intensity of the beam must be

high enough to use a relatively thin reaction target, thus

avoiding the loss of energy resolution which affects the

excitation energy spectra and which could affect the

observation of discrete levels which will be characteristic of

the cluster structure. At the same time, the intensity should be

such as not to make the tagging system work to the limit and to

avoid radiation protection problems. For example, for the
10Be isotope a good compromise is reached using a beam of

106 pps.

In this case, the experimental plan is to use a18O at 55 MeV/

nucleon as primary beam, that impinges on a production target

of 9Be, 1.5 mm thick. The fragment separator should be set in

order to optimize the transport of 16C and then for the transport

of 11Be and thus to obtain cocktail beams with a good intensity of

the beams of 16,17C, 13,14B, 10,11,12Be, 6He and neutron rich isotopes

of Lithium such as 9Li.

When the cluster constituents are found in coincidence, by

reconstructing their relative energy Erel, it is possible to obtain the

excitation energy of the father nucleus from E * = Erel - Q, where

Q [30, 31] is the threshold for the selected break-up channel.

The search for correlations between the particles in the final

state and the subsequent reconstruction of their relative energy

require a high segmented apparatus with a geometric acceptance

as large as possible.

The advantage of carrying out the experiment at the LNS is

also in the possibility of using a detection apparatus that meets

the needs previously expressed, consisting of the 4 π CHIMERA
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multi-detector [32], coupled up to twenty FARCOS telescopes

[33, 34], placed at selected angles, in order to obtain excellent

angular resolutions.

CHIMERA is a device designed for the detection of charged

particles emitted in heavy ion collisions, thanks to the

implementation of different identification techniques it can be

used in experiments realized in different energy regimes, from

low energy [23, 24, 35–37] domain up to the fermi domain [8, 38,

39], allowing the investigation of different research topics.

The FARCOS (Femtoscope ARray for COrrelation and

Spectroscopy) project consists of telescopes with high angular

and energy resolution for the measurement of particle-particle

correlations and the spectroscopy of emitting nuclei. Each of

these telescopes is actually an independent module, that can be

assembled to form an array of telescopes in various geometric

configurations.

Thanks to the very small amplitude (2 mm) of the strips of

the DSSSD (Double Sided Silicon Strip Detector), that compose

the first two stages of the correlator, respectively 300 μm and

1500 μm of thickness followed by a CsI(Tl) scintillator, FARCOS

apparatus provides very high energy resolutions, fundamental for

the reconstruction of the states under study.

Because the reactions are realized in the intermediate energy

domain, the reaction products have sufficient energy to punch

through the first stage and thus they will be identified by ΔE-E
technique, where the ΔE is the energy loss in the 1,500 μm thick

silicon detector, and the E is the signal of the residual energy

released in the scintillator.

An example of the good performance in the discrimination of

the different clusters components of the level 10Be → 6He+α, is
shown in Figure 2. After the selection of the isotope of interest

(10Be) in the cocktail beam one can observe the lines

corresponding to the products emitted in decays into 6He

and α [40].

By coupling the CHIMERA detector with the FARCOS array

at forward angles, we can extract the Jπ of discrete levels with a

nice statistic, by using the technique of the angular correlation

[41–43].

The correlations between the angle θ (the recoil angle of the

excited projectile with respect to the direction of the beam) and

the angle ψ (angle of the vector velocity with respect to the beam

axis), will show a periodic structure that can be interpreted, using

the Legendre polynomials. The degree of the polynomials will

give the angular momentum of the level.

FIGURE 1
Extended Ikeda Diagram for covalently bound nuclear structures in carbon and beryllium,adapted from the one proposed in reference [6] by
Von Oertzen. The threshold emission energies for neutrons and cluster constituents of molecular states are indicated.
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Moreover, the use of CHIMERA allows a refinement of

the data, not achievable with the use of only FARCOS. In fact,

the coincidences among all the break up fragments, detected

with 20 FARCOS telescopes placed around zero degree and

the recoil proton detected with CHIMERA, allow to

eliminate any background can be produced by the Carbon

present in the target and the one constituted by other

reaction mechanisms. Thus, the detection efficiency of the

reaction products will be maximized and it will be very near

to 100%.

In the context of the UNSTABLE experiment, as described in

the previous section, it was possible to study some of the 16C and
10Be cluster states with proton and deuteron targets, with really

high efficiency, thanks to the first CHIMERA rings, placed at

small angles. In the experimental campaign proposed in this

paper, thanks to the availability of higher beam intensities and

the most performing apparatus, the efficiency is even higher for

break-up events than the one obtained in UNSTABLE

experiment [8].

With the aim of studying the molecular states with low

neutron multiplicity, that is with the emission at most of

2 neutrons, in order to be sure to have the reconstruction

of complete events, the experimental apparatus has to be

completed with neutron detectors, which can be

placed behind FARCOS, at the forward angles. For this

purpose, the NARCOS device [4–46], at the moment in

realization at LNS, will be used. The project provides the

construction of a compact and segmented apparatus,

consisting of plastic scintillators, with excellent neutron

detection capabilities and that combine a great neutron

efficiency (up to 30%) with high angular and energy

resolution. The material of the detectors belongs to the

EJ276 family.

Obviously, in order to recognize the different nuclei of the

cocktail beam, it is necessary to use the so called “tagging

detector”. This device must have very specific characteristics:

as for example to be resistant to high intensities, and allowing the

identification of the different ions that compose the

cocktail beam.

An implementation of the tagging system currently present

on the CHIMERA beam line is at the moment in realization to

satisfy the needs previously described.

Finally, to reconstruct the angular distribution of the events,

it is necessary to know the angle of incidence of the beam on the

target for this purpose a position-sensitive detector, a PPAC

(Parallel Plate Avalanche Counter) can be used to complete the

tracking measurements.

We can start the campaign with the CluB (Clustering

in Boron isotopes) experiment, already approved by the

PAC of LNS and postponed because of the pandemic

emergency.

This experiment will be realized with the aim of the

investigation of exotic clustering configuration and the

calculation of the relative branching ratio in the isotopes of

Boron.

Conclusion

A possible experimental campaign for the investigation of

clustering andmolecular states in nuclei belonging to the isotopic

chains of Li, Be, C and B, has been presented.

The experiments have the aim of improving the information

of known cluster states and to investigate the new states of the

isotopes of interest.

The experiments will be performed at Laboratori Nazionali

del Sud in Catania, by using the exotic beams delivered by the

facility FRAISE.

The isotopes of interest compose a cocktail beam; thus

different cases can be studied with the use of one primary

beam. In order to obtain cocktail beams with a good

intensity of the isotopes of 16,17C, 13,14B, 10,11,12Be, 6He and 9Li,

FIGURE 2
ΔE-E matrix relative to the signals released in the detectors of FARCOS, after the selection of the isotope of 10Be in the cocktail beam [40].
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a primary beam of 18O at 55 MeV/nucleon will be used and the

transport should be optimized for the transport of 16C and

of 11Be.

For the detection of the reaction products the FARCOS

device coupled to the 4π CHIMERA multidetector will be

used. In fact, thanks to the high angular and energy

resolution, a good reconstruction of the states under study

will be obtained.

Moreover, at forward angles, close to the beam direction the

NArCOS detector will be placed.

Thanks to its very high neutron detection capabilities, it will

be possible to investigate the molecular like structures with a low

neutron multiplicity.
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