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Heisenberg guessed, after he established the matrix quantum mechanics, that

the non-commutativity of thematrices of position andmomentum implied that

the position andmomentum of a particle could not be precisely simultaneously

determined. He consequently conjectured that time and energy should also

have a similar relationship. Soon after, Robertson derived an inequality

concerning the space coordinate and momentum, which was thought to be

themathematical expression of the uncertainty relation guessed byHeisenberg.

Since then, people have tried various devices to prove the correctness of these

two relations. However, no one conducted a careful analysis of Heisenberg’s

primary paper. In this work, we point out some serious problems in Heisenberg’s

paper and the literature talking about the uncertainty relationships: the physical

concepts involved in the uncertainty relations are not clear; one physical

concept had more than one explanation, i.e., switching concepts; there has

never beenmeasurement experiment to support the relations. The conclusions

are that the so-called coordinate–momentum uncertainty relation has never

been related to actual measurement and there does not exist a time–energy

uncertainty relation.
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1 Introduction

As soon as Heisenberg founded quantum mechanics (QM) in matrix form [1–3], he

acutely perceived that the matrices of the position and momentum of a particle were non-

commutative. He thought that this non-commutativity should have some physical

meaning. In a later paper [4], he guessed that the physical meaning of the non-

commutativity was that the position and momentum of a microscopic particle could

not be precisely simultaneously determined by experimental measurement. He was unable

to provide an explicit expression for that, but merely presented qualitative discussion,

including the gedanken experiments. He inferred consequently that there was a similar

relationship between time and energy.

Soon after that, Robertson [5] derived an inequality, which was believed the

mathematical expression of the uncertainty relation guessed by Heisenberg. Thus, the
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guess of the uncertainty relationship proposed by Heisenberg was

generally accepted by people, and this was set in stone. Almost all

QM textbooks introduce the coordinate–momentum relation

and time–energy relation [6–30]. The uncertainty relations are

thought of as fundamental ones in QM. They have been

frequently mentioned by researchers and were even promoted

as a principle—uncertainty principle [6–12].

When the present author carefully read the introductions and

explanations of the uncertainty relations in Heisenberg’s primary

paper [4] and the literature, questions emerged. A striking

problem is that the uncertainty relations ought to be related

to actual measurement, but it seems not to be so. Even in [4],

Heisenberg merely talked about idealized experiments. The

narrations connecting the uncertainty relations and the

experiments are farfetched and specious. Confusions between

different conceptions appear frequently. As a matter of fact,

someone has been aware that there exist wrong explanations in

the literature [31, 32]. We think that it is desirable to analyze in

detail all the aspects involved in the uncertainty relations.

In the 1920s, Heisenberg, Schrödinger, Dirac et al. performed

pioneering work in founding QM, which was a completely new

field in physics. A series of new concepts merged. Some new

concepts were formed. Among the new concepts, some were not

very clear to people; they were not very clear even to these

pioneers themselves, which should not be surprising. Hence, no

one could guarantee that their works were flawless.

For example, when Schrödinger proposed his wave equation of

QM, he unknowingly put down the negative kinetic energy (NKE)

Schrödinger equation (33). However, thisNKE Schrödinger equation

was never realized by himself and others and was abandoned since

then. We found that the NKE Schrödinger equation could be

obtained by taking low-momentum approximation from

relativistic quantum mechanics equations (RQMEs), and it was of

explicit physical meanings [34, 35]. Dirac explained the NKE

solutions of his RQME as representing antiparticles. Although

people know that this explanation implied contradictions, no one

could propose the right scenario to resolve the contradictions. We

have given a correct explanation of the NKE solutions [35, 36].

There are two reasons that make people not aware of these

pioneers’mistakes in some aspects. One is that due to their genius

achievements, people think that what they said was right. The

other is that the related mistakes have not brought perceivable

affection up till now. For instance, if there is no so-called

uncertainty relationship, the evaluations and measurements in

QM are not affected. The new theories raised after the uncertainty

relations had been established, such as RQMEs, quantum

electrodynamics (QED), quantum field theory (QFT), and

quantum information, did not resort to the uncertainty

relations. The computation of the band structures in solid-state

materials and of nuclear physics does not need uncertainty

relations. Physical experiments have never been arranged under

the guidance of uncertainty relations, in spite of that, they are

called principles. The uncertainty relations are usually employed to

provide explanatory notes to some known phenomena and results.

After almost one hundred years, as later generations, we have

grasped knowledge much more and wider than the pioneers did.

People nowadays ought to have more sophisticated and rigorous

reasoning. We should be able to recognize what the problems left

by these pioneers are and how to resolve them. With clearer

distinguishing and understanding of physical concepts, we are

able to solve some difficulties left in QM [34–42].

The study of physics obeys physical laws. The physical laws

are represented by fundamental equations and statements. The

conclusions in physics need to be verified by experiments, which

means that quantitative results are necessary. Theoretically,

quantitative results are obtained by mathematical derivation

starting from the fundamental equations. Theoretical

discussions observe rigorous logical reasoning. We believe that

in order to avoid the flaws in physical discussions as far as

possible, some principles related to the physical contents

discussed should be obeyed besides the mathematical

derivation. The principles are presently called the basic

viewpoints of the author.

The basic viewpoints depended on the concrete contents

under discussion. The author’s previous papers [34–42]

concerned some basic problems in QM. When we discussed

one of these problems, certain viewpoints were based on [35, 42].

The uncertainty relationship is believed to be a fundamental

topic in QM. In the present work, we are going to investigate this

topic based on certain points of view. In the author’s following

work, more topics will be touched on, and corresponding basic

viewpoints will be stemmed on.

All the basic viewpoints we have been aware of are listed in

Supplementary Appendix SA. We think that only when these

viewpoints are abided by can one guarantee logical rigorousness

and validity of the conclusions in discussing physical problems.

Or, conception confusion may occur, and subsequently, the

problem may not be solved correctly.

Here we mention one of the basic points of view. In QM, we

always deal with wave functions. Every wave function satisfies a

fundamental QM equation. Explicitly, the fundamental QM

equation is in the form of

iZ
z

zt
ψ(t) � Hψ(t). (1.1)

Here, the coordinate variables are not explicitly shown. In

this paper, we always assume that (Eq. 1.1) is Schrödinger

equation. If the Hamiltonian H is time-independent, the

dependence of the wave function on time can be written as

ψ(t) � e−iEt/Zφ. (1.2)

Thus, the function φ meets the stationary equation

Hφ � Eφ. (1.3)
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Every wave function is necessarily the solution of Eq. 1.1. The

wave functions of stationary states observe Eq. 1.3. In other

words, when one discusses a wave function, he must be able to

put down the corresponding Hamiltonian H. This is important.

In textbooks, some functions are treated as wave functions

because of their seemingly good behaviors. However, they are

not the solutions of Eq. 1.1, i.e., there is no corresponding

Hamiltonian. In Section 2, we will see two examples: the wave

packet and wave train with the finite length for moving particles.

In Sections 2 and 3, we discuss coordinate–momentum and

time–energy uncertainty relations, respectively. We will point out

that physical conceptions are confused in the literature in

discussing the two uncertainty relations. In [4], Heisenberg

proposed the possible relations between the uncertainties of

position and momentum, directed against single particles.

Naturally, the similar relation between time and energy that

he guessed was also for single particles. We stress this because in

the literature, the problems of single-particles are confused with

those of many-body systems. Section 4 is further discussion, and

Section 5 contains the conclusions. Supplementary Appendix SA

lists our basic viewpoints. Supplementary Appendix SB

introduces the derivation of the so-called

coordinate–momentum uncertainty relation.

2 Coordinate–momentum
uncertainty relation

There are confusions of concepts when the

coordinate–momentum uncertainty relation is discussed. The

inequality derived by Robertson [5] was irrespective of

experiments and Heisenberg’s primary paper [4]. This section

presents a detailed analysis.

In this paper, we always consider the case of one dimension.

2.1 Heisenberg’s primary discussion

The paper [4] was the first one to talk about possible

uncertainty relationships. The whole article did only

qualitative discussion with no rigorous mathematical

derivation. Heisenberg, based on his established QM in matrix

form, found that the commutator of the twomatrices q and p had

the following result:

pq − qp � iZ. (2.1)

The nonzero result meant that the two matrices could not

exchange the order in their product. From this, he guessed that

when a particle’s position and momentum were measured, both

had some uncertainties.

“Let q1 be the precision with which the value q is known (q1
is, say, the mean error of q); therefore, here, it is the wavelength of

the light. Let p1 be the precision with which the value p is

determinable; that is, here, it is the discontinuous change of p in

the Compton effect. Then, according to the elementary laws of

the Compton effect, p1 and q1 stand in the relation

q1p1 ~ Z.”[4]. (2.2)

Here, the definition of the uncertainty of q was obvious: “q1
be the precision with which the value q is known (q1 is, say, the

mean error of q)”. q1 is also the measurement precision of q.

Then, its value must rely on the measurement equipment and

measurement process. For instance, he mentioned a special case

where photons were used to impinge a particle. Then, the

uncertainty of the particle’s position was the photon’s wave

length. This example showed that the measurement precision

was indeed closely related to the measurement instrument

chosen.

According to the basic viewpoint I.1 in Supplementary

Appendix SA, every physical concept should have an explicit

mathematical expression, or people would not clearly understand

the conception.

First, in QM, a particle is described by its wave function. The

wave function is the function of the spatial coordinate q, that is to

say, q is an argument in a function, e.g., Eqs. 3, 12–(14) in [4]. In

Heisenberg’s words, “Let q1 be the precision with which the value

q is known”. What is the meaning of the q in this sentence was

not clear. In Eq. 2.1, q and p are matrices. It seems that

Heisenberg unknowingly regarded them as numbers.

Next, we discuss the contents in the QM field. Following the

viewpoint II.2, a wave function must be the solution of a

fundamental QM equation. Heisenberg put down functions

for discussion, but some of them were not the solutions of the

Schrödinger equation for the system under consideration.

“If, for any definite state variable η, we determine the position

q of the electron as q′ with an uncertainty q1, then we can express

this fact by a probability amplitude S(η, q), which differs

appreciably from zero only in a region of spread q1 near q′.
For example, one can write

S(η, q)∝ exp[ − (q − q′)2/2q21 − ip′(q − q′)/Z]”.[4]. (2.3)

This should be a wave function in QM. Such a function was

called a Gaussian wave packet and used in the literature [6,

13–16]. It is time independent. Only the stationary

eigenfunctions of a harmonic oscillator are of the form of

ψ(x)∝ e−αx2 , and the possible parameter is the location of the

center of the oscillator. Otherwise, we do not know what the

Hamiltonian of the wave function Eq. (2.3) is, while describing a

moving particle we are talking about. When the Hamiltonian of a

free particle is acted on this function,

− Z2

2m
z2

zq2
ψ(q) � Z2

2m
⎡⎣ 1
2q21

− ( q

2q21
+ ip′

Z
)2⎤⎦ψ(q). (2.4)
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It is seen that the function (Eq. 2.3) is not a free particle. We

do not know what a potential V(q) enables us to put down the

stationary equation for the wave function (2.3).

[ − Z2

2m
z2

zq2
+ V(q)]ψ(q) � Eψ(q). (2.5)

We are unable to write down a V(q) other than the oscillator

potential, and neither the expression of the corresponding

Hamiltonian H.

In Eq. 2.3, q is the spatial coordinate of the wave function, but

not the position of the electron. Heisenberg confused the concepts.

Eq. 18 in [4] was

S(t, p) � e−αtψ(E2, p)e−iE2t/Z + (1 − e−2αt)1/2ψ(E1, p)e−iE1t/Z.

(2.6)
This was a time-dependent function. When it is substituted

into the left-hand side of Eq. 1.1, the result is

iZ
z

zt
S(t, p) � ( − α − iE2t/Z)e−αtψ(E2, p)e−iE2t/Z

+( αe−2αt

1 − e−2αt
− iE1/Z)(1 − e−2αt)1/2ψ(E1, p)e−iE1t/Z.

(2.7)
We are unable to find a time-dependent Hamiltonian H(t)

such that the function Eq. 2.6 satisfies Schrödinger Eq. 1.1:

iZ
z

zt
S(t, p) � H(t)S(t, p). (2.8)

Therefore Eq. 2.6 is not a wave function in QM.

For the wave function (22) in [4], one was unable to write a

corresponding Hamiltonian as well, and so it was not a wave

function in QM.

Whenwriting down a function, one should first prove that it is the

solution of a fundamental QM equation or has its corresponding

Hamiltonian.Otherwise, it cannot be treated as awave function inQM.

Third, Heisenberg did not present explicit expressions or

rigorous mathematical derivations when he mentioned some

physical conceptions.

For example, he mentioned “statistical error” more than

once, but we do not know what he meant by it.

In Eq. 2.6, a concept of “radiation damping” was used.

However, Heisenberg did not provide the mathematical

derivation for the form in Eq. 2.6. In QM, a single particle

does not have the concept of “radiation damping.” This concept

must belong to a many-body system.

In [4], the argument below Eq. 8 was questionable. A beam of

electrons was arranged to run through two fields successively in

two different manners. In the second manner, no derivation was

presented. Therefore, one could not know how the result Znl �∑
m
cnm�cnmdml

�dml was reached.

Fourth, according to viewpoint I.3, when a gedanken experiment

leads to a positive conclusion, it cannot explain anything. Such a

conclusion could neither be proved nor be disproved.

In short, Heisenberg’s primary paper [4] lacked rigorous

mathematics, was not quantitatively related to real experiments,

and was not very clear in some physical concepts.

Heisenberg’s paper [4] just considered the measurement

precisions of the position and the momentum of a single particle.

2.2 The analysis of the
coordinate–momentum uncertainty
relation

In 1929, Robertson [5] derived the famous mathematical

inequality, see Supplementary Appendix SB. The conclusion was

that the mean square errors of coordinate and momentum

obeyed the following inequality:

ΔxΔp≥ Z/2. (2.9)

This inequality was believed to be the mathematical

expression of the uncertainties of coordinate and momentum

that Heisenberg guessed. So, (2.9) was called the Heisenberg

uncertainty relation.

Here, we distinguish the concepts of the position of a particle

and coordinate. Heisenberg discussed the uncertainties of the

measured position and momentum of a particle, so that his

assumed relation was called the position–momentum uncertainty

relation. However, in QM, a particle at a state is described by a wave

function, which is a function of coordinates. The Δx in (2.9) does

not involve the meaning of a particle’s position. Hereafter, (2.9) is

called the coordinate–momentum uncertainty relation.

According to the current understanding, the Δx and Δp in

(2.9) are two quantities related to measurement. We point out in

Supplementary Appendix SB that (2.9) is irrespective to both

measurement and the content in Ref. [4].

Now, we explain that it is not right to understand the Δx and

Δp in (2.9) as measurement uncertainties of coordinate and

momentum, and as a matter of fact, it is impossible to implement

measurement in the way of (2.9).

Usually, the recognition of (2.9) is that if one measures the

position x and momentum p of a particle, they cannot be

precisely simultaneously measured, and the smaller the

measuring deviation of one quantity is, the greater the other.

This recognition is incorrect.

Since (2.9) is regarded as the relation between the ncertainties

of position and momentum, it ought to be related to the statistics

of measured quantities. This prompts us to explain the

implication of the inequality and the way of statistics of

measured quantities.

2.2.1 The implication of the
coordinate–momentum uncertainty relation

The coordinate is expressed by x, and the momentum

operator is p � −iZ z
zx. Suppose a microscopic system’s
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Hamiltonian H is known, and its wave function ψ is solved

from (1.1).

The inner product of any two functions ψ and φ is defined by

(ψ,φ) � ∫ dxψ*φ � (φ,ψ)*. (2.10)

We perform the following calculations:

�x � (ψ, xψ), (2.11)
Δx � (ψ, (x − �x)2ψ)1/2. (2.12)

�p � (ψ,−iZ z

zx
ψ). (2.13)

Δp � (ψ,( − iZ
z

zx
− �p)2

ψ)1/2

. (2.14)

The four calculated quantities meet (2.9).

Because the forms of 2.11–2.14 seem the same as that of the

definition of mean square error, people mistakenly believe that

2.11–2.14 are of the meanings of the mean square error in the

sense of measurement.

When talking about 2.9, people usually think that the

smaller the one of Δx and Δp, the larger the other. However, it

is seen from 2.11–2.14 that Δx and Δp are uniquely

determined by the given wave function, and their product

necessarily meet (2.9). As a matter of fact, neither of Δx and

Δp is variable.

For a one-dimensional harmonic oscillator, the nth

stationary state wave function is denoted by ψn. It is evaluated

[3, 7, 17] that in ψn, Δx � ������
n + 1/2

√
1
α and Δp � ������

n + 1/2
√

Zα, so

that ΔxΔp � (n + 1
2)Z. Both Δx andΔp increase with the index n.

For the wave functions of hydrogen, we have Δx � a0
2
�
3

√
������
7n2 + 5

√
,

which increases with energy level, and Δp � Z�
3

√
a0
, remaining

unchanged for all the energy levels [3].

We turn to look at the comparison between the ground states

of different systems. A hydrogen atom and an atomic nucleus

have different dimensions. Compared with the hydrogen atom,

the dimension of the nucleus is smaller, and so, the uncertainty

Δq seems smaller and that of momentum Δp seems larger. This is

often used as an example showing that if one of Δq and Δp is

smaller, the other is necessarily larger. However, such a

comparison is incorrect. It is meaningless to compare the

quantities in two different systems. Furthermore, in the

comparison, one confuses the two conceptions: the dimension

of a particle and the uncertainty of the particle’s position, which

will be made clear in Section 2.3.1 below.

Personally, Eq. 2.9 has only one usage: it can be used to judge

if the wave function solved from (1.1) has some error. If the Δx
and Δp calculated through (2.11–2.14) do not meet (2.9), then it

is assured that the wave function is not a correct one in QM.

What if (2.9) is satisfied? Nothing is explained because (2.9) is

originally an inequality that every normalized function ought to

satisfy.

2.2.2 There is no way to implement
measurement according to the uncertainty
relation

People usually say that (2.9) concerns measurement, and it

shows that the position and momentum of a particle cannot be

precisely simultaneously measured. We recall how the statistics

of the measured results are made.

Suppose that there is a sample, Y. We measure its value. The

ith measured value is denoted as yi. After N times of the

measurement, this sample’s averaged value and mean square

deviation are evaluated by

�y � 1
N

∑N
i�1
yi (2.15)

and

Δy � ⎡⎣ 1
N

∑N
i�1
(yi − �y)2⎤⎦1/2. (2.16)

Now, we have a QM system, and amechanical quantity F is to

be measured. Suppose that an appropriate device is designed, and

the value of F can be measured experimentally.

According to QM, the average of the mechanical quantity F

in a state ψ is

�F � (ψ, Fψ). (2.17)

The inner product is defined by (2.10). In order to evaluate

the average (2.17), in principle, at any spatial coordinate x, the

value of F should be measured. Actually, one has to check, if

possible, the measurement at discrete x points. Hence, the

integration is replaced with the form of summation

�F � ∑N
i�1
biF(xi). (2.18)

The coefficients bis are related to the square of the absolute

value of the wave function at point xi, |ψ(xi)|2. If this can be

done, one further measures the values of F2(xi) at point xis. After

these manipulations, one calculates F2 by

F2 � (ψ, F2ψ) � ∑N
i�1
biF

2(xi). (2.19)

In this way, the mean square deviation ΔF � (F2 − �F2)1/2 can
be obtained.

However, what is the meaning of F(xi) in (2.18)—measuring

the value of a physical quantity at individual coordinates? How

can this quantity be measured? The same questions also rise for

F2(xi) in (2.19).

In QM, the state of a particle is represented by its wave

function. The wave function distributes in space at any time. One

cannot say that the wave function is at a point at one instant and

another point at the next instant. The physical quantity F belongs

to the whole QM system and is not fixed to discrete spatial points.
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We do not know how to experimentally measure �x, x2, �p, and

p2 in the way of (2.18, 2.19). In short, Eq. 2.9 cannot correspond

to practical measurement. As a matter of fact, people never apply

(2.11–2.14) to perform measurements.

Furthermore, from Eq. 2.9 itself, we are unable to see the

concepts of “position uncertainty” and “momentum

uncertainty”, since it is irrespective to measurement. That is

to say, the uncertainty relation (2.9) itself does not contain the

concepts of “position uncertainty” and “momentum

uncertainty”, since it does not contain the information related

to measurement.

The relation (2.9) is sometimes called a principle. However,

no one designs an experiment based on this so-called principle.

The conclusion is that Eq. 2.9 is irrespective to measurement.

2.3 The discussions of the uncertainty
relation in the literature

We have pointed out above that in [4], there was no rigorous

argument and mathematical derivation, and some concepts were

confused. However, people a priori believed that the content in

this paper was right and the mathematical expression was what

Robertson [5] provided. Some textbooks presented (2.9) without

explanation [8, 17, 18]. Some others tried various devices in order

to explain that this uncertainty relation was correct.

Because the narration in [4] was not clear, when later people

talked about the uncertainty relation, they did not have fixed

rules, but depended on their own imaginative development.

Different people had different explanations. Each explanation

was unable to overturn others. Therefore, according to the basic

viewpoint I.2, none of the explanations were right. The so-called

examples, that were believed to support the uncertainty relation,

were just farfetched ex-post explanations.

There are three typical examples giving farfetched

explanations: finite-length wave train or a piece of truncated

plane wave, single-slit diffraction, and the ground state of

hydrogen atom. Before analyzing these examples, we

distinguish between two concepts: a particle’s dimension and

the uncertainty of its position.

2.3.1 Distinguishing a particle’s dimension and
the uncertainty of its position

A particle’s dimension and the uncertainty of its position are

two different conceptions.

In QM, a particle at a state is described by a wave function.

For each wave function, we are able to roughly define a range in

space, outside which the wave function can be regarded as zero.

This range is defined as the dimension of this particle at this state.

For instance, in an infinitely deep square potential with width a,

the dimension of a particle is just the potential width a. For a one-

dimensional harmonic oscillator, the ground state wave function

is ψ0 ∝ e−α2x2/2. We define the length of the interval [−
�
2

√
α ,

�
2

√
α ] as

the dimension of this particle in the ground state. In the case that

Eq. 2.3 represents the wave packet of a particle, then the

dimension of this particle is the length of the interval

[− �
2

√
q1,

�
2

√
q1]. As soon as a state is known, the dimension

is definitely determined by its wave function.

The De Broglie relation tells us that as long as a particle’s

momentum is known, its dimension can be roughly estimated by

λ � h/p. (2.20)

Here, we regard De Broglie wave length as the particle’s

dimension. The De Broglie relation tells us that the larger the

momentum of a particle, the less its dimension. It is seen that Eq.

2.2 guessed by Heisenberg was more like the De Broglie relation.

The uncertainty of a particle’s position can be roughly

defined as the precision, or error range, of the measured

position of the particle.

We stress that a particle’s dimension and the uncertainty of a

particle’s position are two different concepts. The former is

uniquely determined by the wave function, independent of

measurement, whereas the latter depends on the measurement

devices and measurement process.

For example, Heisenberg mentioned [4] that when a photon

was employed to collide with a particle, “the highest attainable

accuracy in the measurement of position is governed by the

wavelength of the light.” Thus, roughly speaking, when the light

wavelength is λ, the measuring precision of the particle’s position

is λ; when the light wavelength is 2λ, the precision will be 2λ.

In literature, the two concepts were confused frequently.

In [4], Heisenberg put down a wave packet, Eq. 2.3, and said

that the wave function “differs appreciably from zero only in a

region of spread q1 near q′.” That is to say, 2q1 was the dimension

of the wave packet. Then, he thought that the relation p1q1 � Z

limited the precision of the wave packet, where q1 is the precision

of measuring the position of the wave packet. So, he equated the

dimension and uncertainty. On one hand, the uncertainty q1
ought to be given after measurement and might vary depending

on the measurement. On the other hand, q1 was the half

dimension of the wave packet and was contained in the

function already. In this case, the two concepts were confused.

FIGURE 1
Two wave trains (interrupted sine waves) with finite lengths.
(A) Longer length. (B) Shorter length.
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The confusion of the two concepts, or concept stealing, also

occurred later [14, 19].

2.3.2 Wave train with finite length
Figures 1A,B are often used to represent the two states of a

moving particle. This picture is utilized to explain the

coordinate–momentum uncertainty relation [9]. An intuitive

understanding is that the shorter the particle’s dimension or

its position uncertainty, the greater its momentum uncertainty.

Comparison of Figures 1A,B prompted such a recognition: “we

can see very clearly that the better the position is defined, the

more poorly is the momentum defined” [9].

Here, we are considering a particle with a mass. Figure 1

represents the wave functions of the particle. Following basic

viewpoint II.2, the wave functions should be the solutions of

Eq. 1.1.

The two pictures in Figure 1 are actually the stationary wave

functions in two one-dimensional infinitely deep square potential

wells with different widths. Because the widths are different, the

two wells are of different Hamiltonians. The two wave functions

are in different systems. Comparing the positions and momenta of

the particles in the different systems is meaningless. Furthermore,

the average of momentum in each state is exactly zero. In this case,

discussing the momentum uncertainty is meaningless.

It can be certain that a particle which is marching is not

represented by the functions in Figure 1. Thus, the two pictures in

Figure 1 are not wave functions in QM for describing a moving

particle.

Now, suppose that ψa and ψb are two real wave functions in

QM, instead of those in Figure 1. Assume that the dimension of

ψa is longer than that of ψb. In this situation, we make following

discussion.

First, we should not say that the uncertainty of ψa is greater

than that of ψb, because we have not arranged the measurement.

The discussion of the uncertainties of the functions in Figure 1

actually confuses dimension and uncertainty, which is known as

concept stealing.

Next, since ψa and ψb are two different wave functions, they

may either belong to different Hamiltonians, i.e., different

systems, or belong to one Hamiltonian but two different

states. In either case, comparing the uncertainties of two

different states is meaningless.

Another analysis commonly used is to write a function’s

Fourier transformation and inverse Fourier transformation [9].

ψ(x) � ∫∞

−∞
dpeipxA(p). (2.21)

A(p) � ∫∞

−∞
dxe−ipxψ(x). (2.22)

It was analyzed that the more localized the ψ(x) in space, the

more extended the A(p) in momentum space. An illustration of

it was Figure 4 in [13].

Equations 2.21 and 2.22 are Fourier transformation and its

inverse of each other. This is a general mathematic property, not

a unique property in QM. Furthermore, the localization and

extension of the ψ(x) refer to the dimension, not uncertainty. In

the Fourier components, the ranges of momenta and the

uncertainties of momenta are confused. Since the explicit

form of 2.21 is not given, one does not know if it is a wave

function in QM. If it is, the corresponding Hamiltonian should be

given. This pair of functions should not be used to explain the

uncertainty relation.

2.3.3 Single-slit diffraction
Single-slit experiment is often used to explain the uncertainty

relation of a particle [9, 13, 14].

Let the width of a slit be d and the wavelength of particles be

λ. The particles go through the slit and diffraction occurs as λ>d.
At the moment when a particle just reaches the position of the

slit, its wave function is confined within the slit. Then, the slit

width d is regarded as the uncertainty Δx in (2.9).

Δx � d. (2.23)

This is not correct. When a particle is within the slit, its wave

function is zero outside of the slit. At this moment, the width d is

the dimension of the particle, which is independent of

measurement. However, Δx must be evaluated by the wave

function following 2.12, not simply written in terms of the

geometric dimension of the system. Eq 2.23 is again an

example that a particle’s dimension is confused with its

position’s uncertainty. This confusion also reflects that people

subconsciously do not think of the Δx in 2.9 as a quantity related

to measurement.

If the measurement precisions of the position and

momentum of a particle obey the uncertainty relation, these

precisions ought to be obtained in experimental measurements.

In single-slit diffraction experiment, neither a single particle’s

position nor its momentum is measured. The energy of the

incident particle is already known. Since the slit width d is

known, the diffraction pattern, the distribution of the

outgoing particles with diffraction angle, is determined, which

can be evaluated by means of the diffraction law before the

experiment. The diffraction pattern obtained experimentally is in

agreement with the theoretical calculation, and is stable. The

single-slit diffraction experiment just lets particles go through a

slit, and all the information is known before the experiment.

According to viewpoint I.3, this experiment is not a

measurement.

The single-slit experiment is just an observation of a

phenomenon, not a measuring manipulation. Every wave,

when going through a region, the room of which is less than

the wave length, yields diffraction.Water waves are the same, and

no one would explain the water diffraction by uncertainty

relation. The behavior of water waves is explained by the
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Huygens–Fresnel principle. The wavelength of radio waves can

be as long as kilometers, so that they can diffract in a larger room.

The distribution of the electromagnetic field can be evaluated by

Maxwell equations under specific boundary conditions. These

diffractions are irrespective to uncertainty relation.

Suppose that there are two slits, with widths d1 and d2,

respectively, and d1 >d2. People may say that the first order

diffraction minimum from d1 slit is less than that from d2 slit,

which seems to embody the uncertainty relation. Please note that

the two slits with widths d1 and d2 are two different systems,

because their Hamiltonians are different. Comparing the

quantities in two different systems is meaningless. To verify

the uncertainty relation, one should measure a particle’s position

and momentum simultaneously in one system, which implies

that the slit width d remains unchanged,

In [4], Heisenberg considered using photons to probe

electrons, a measurement of single particle. In the single-slit

experiment, no physical quantity of a single particle is measured.

The single-slit diffraction shows the angular distribution of a

large number of particles after going through the slit. The

distribution is stable, and there is no concept of uncertainty.

Single-slit diffraction is a collective effect of many particles.

Trying to explain the uncertainty relation by the single-slit

diffraction is a confusion of the single-particle system and

many-particle system.

Figure 2.8 in [19] actually showed the distribution of a large

number of particles, and not the uncertainty of a particle’s

position.

2.3.4 The ground state of hydrogen atom
There is a way of estimating the energy of the ground state of

a hydrogen atom [6, 9, 20, 21], which is thought of as an

application of the uncertainty relation. The energy of a

hydrogen atom reads

E � p2

2m
− e2

r
. (2.24)

The dimension of this system is very small, i.e., the r is very

small and Δr is of the same order of magnitude as r. So, r is

replaced by Δr. Because Δp is the same order of magnitude as p, p

is replaced by Δp. Then, the relation

ΔrΔp ~ Z (2.25)
is used to express Δp by Δr. These replacements recast (2.24) to

become

E ~
Z2

2m(Δr)2 −
e2

Δr. (2.26)

By taking the derivative of Δr, the energy minimum is

estimated:

E min � −me4

2Z2
. (2.27)

In this course, it seems that the uncertainty relation (2.25) is

employed. This method is also employed to estimate the ground

state energy of a nucleus.

First, this example is irrespective to measurement. It is just an

estimation of the energy minimum. Second, the above procedure

can be simplified. Using rp ~ Z, which is actually the De Broglie

relation, Eq. 2.24 can be recast to become E ~ Z2

2mr2 − e2

r . Then,

taking the derivative of r leads to the same energy minimum.

There is no need for replacing r by Δr and replacing p by Δp.
That is to say, the so-called uncertainty relation (2.25) is actually

not touched. Third, the r here is actually the dimension of the

hydrogen atom. Replacing r by Δr is substantially again the

confusion of a particle’s dimension and its position uncertainty.

Fourth, taking derivative with respect to Δr is ridiculous, because
Δr is, in the sense of either (2.12) or the position uncertainty, not

a variable. In the course of derivation, the uncertainty relation

(2.25) is used, but a definite result is obtained. This is not a

correct mathematical derivation because wrong logic is involved.

We stress once more that a particle’s dimension is a definite

quantity, whereas its position’s uncertainty relies on

measurement.

2.4 Real measurement experiments

Until now, when discussing the uncertainty relation, often

idealized experiments have been concerned, which are irrelative

to the experiment of measurement.

Actually, there is no such experiment in which the position

and momentum of a particle are measured simultaneously, and

their uncertainties are estimated from the measured information,

so as to meet Eq. 2.9.

To gain the uncertainty of a particle’s position, one first has to

measure its position. Nevertheless, in QM, a particle is described

by a wave function, and has a dimension as having been defined

in Section 2.3.1. In QM, the concept of a particle’s position is not

clearly defined. Because of this fact, in experiments, no

measurement of the so-called position of a particle is carried out.

People did measure a particle’s momentum, and estimate the

uncertainty from the information of the experiment. However,

they did not measure the particle’s position in the same

experiment simultaneously. There are two examples [14].

One is that the momentum of a charged particle is measured

by deflection in a constant magnetic field, the strength of which

is denoted by B. An electron with a charge e enters the magnet

after passing through a diaphragm with width d1, and leaves it

through another diaphragm with width d2 after having suffered

a 180-degree deflection. The trajectory of the electron in the

magnet is a semicircle, the radius R of which is equal to half of

the distance between the two diaphragms. When the

momentum of the electron is measured to be p, the

precision is estimated to be
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Δp � p

R
(d1 + d2). (2.28)

At the instant at which the electron enters the magnet

through the first diaphragm, it moves along the y axis. The

uncertainty is estimated as

Δy ≈
4πZ
eBd1

. (2.29)

Thus, it seems that ΔyΔp ≈ 4πZ(1 + d2
d1
), satisfying the

coordinate–momentum uncertainty relation.

However, the right-hand side of Eq. 2.29 has been already

known before the measurement. In the experiment, the position

of the electron is not detected, and consequently, one is unable to

estimate the precision of the position of the electron from

measurement. This experiment does not need the knowledge

of QM.

Another experiment measuring a particle’s momentum is to

let a photon collide with the particle. Before the collision, the

photon’s frequency ] is precisely known and the momentum of

the particle is p. Let us suppose that before and after the collision,

the photon and the particle move along a line, set as y axis. After

the collision, the measured momentum and frequency are p′ and
]′, respectively. The precision Δp′ of the p′ relies on the Δ]′ of ]′:

Δp′ ≈ mc
Δ]′
]′ + ]

. (2.30)

Assuming that the uncertainty at the time of the collision

is Δt,

Δ]′Δt≥ 1. (2.31)

Within the time, the particle can go a distance of

Δy �
∣∣∣∣p − p′

∣∣∣∣
m

Δt. (2.32)

Substitution of (2.31) into (2.32) leads to the uncertainty of

the position of the particle.

Δy≥
∣∣∣∣p − p′

∣∣∣∣
mΔ]′ � 2πZ

mc

] + ]′
Δ]′ . (2.33)

It seems that ΔyΔp′≥ Z, meeting the uncertainty relation.

This explanation is problematic. The relation 2.31 has neither

rigorous mathematical derivation nor experimental verification.

Eq. 2.32 assumes that within the time uncertainty Δt, the particle
goes with the velocity of about p/m. Unfortunately, Δt is a part of
the time period within which the collision occurs. In this period,

the particle’s momentum changes drastically, such that the

particle’s velocity cannot be estimated in the way of 2.32. This

experiment does not involve the particle’s wave function in QM,

i.e., the particle is treated as a classical one.

The common features of these two examples are as follows:

the measurement of a particle’s position is out of question; the

measured particles are actually treated as classical ones. Though

the momentum is measured, the estimated Δp based on the

measurements has nothing to do with Eq. 2.14. In conclusion,

these two experiments do not embody the uncertainty relation.

3 Time–energy uncertainty relation

3.1 There is no way to derive the
time–energy uncertainty relation

In Ref. [4], having discussed the possible uncertainty relation

between the position and momentum, Heisenberg noticed that

the product of the coordinate and momentum was of the

dimension of angular momentum, and the result was

proportional to the Planck constant. He associated the

commutator of time and energy, and thus postulated the

following commutator:

[t, E] � iZ. (3.1)

Then, imitating the discussion of position and momentum,

he thought that the uncertainties of time and energy obeyed,

similarly to (2.2), the relation

tE ~ Z. (3.2)

Later, people accepted his postulation. Furthermore,

imitating ΔxΔp≥ Z/2, people guessed that there was a similar

inequality,

ΔtΔE≥ Z/2. (3.3)

Since Δt and ΔE in 3.3 are uncertainties, they should be

quantities related to measurement.

Eq. 3.3 is the so-called time–energy uncertainty, but it is even

worse than the coordinate–momentum uncertainty relation.

Heisenberg put forth Eq. 3.1 without any derivation and

proof. He did not even present the concrete form of the

operator E. Hilgevoord [32] thought that “a relation like”

(3.1) “does not occur in quantum mechanics”. His reason was

that “there is no Poisson bracket defined between t and H.

Consequently, in quantum mechanics, one does not have a

relation like” Eq. 3.3. “Accordingly, there is no natural analog

for energy and time of the ‘canonical’ uncertainty relations”

Eq. 2.9.

At the time when QM was established, Heisenberg himself

did not know explicitly what the relation between time and

energy was. The mathematical theory of QM had not been

accomplished yet. In Heisenberg’s paper [4], there was neither

rigorous derivation nor an association with real experiments.

Thus, Heisenberg did not give a convincing conclusion, but

people deemed that what he said was right. Later, many people

tried to show that there was indeed the inequality (3.3). Everyone

raised his own version, without rigorous derivation and

experimental correspondence.
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Until 1961, “there has been an erroneous interpretation of

uncertainty relations of energy and time.” [31] Until 1990, “no

general agreement has been reached. One finds physicists

claiming that ‘there is no energy–time uncertainty relation at

all,’ while others stress, for instance, that the relation is applied

quite effectively to the analysis of individual short-lived

elementary particles (resonances). Even among those who

accept the validity of the relation, there is appreciable

disagreement as to meanings of the relation.” [43] Until 1996,

“It is generally thought desirable that quantum theory entail an

uncertainty relation for time and energy similar to the one for

position and momentum. Nevertheless, the existence of such a

relation has still remained problematic” [32].

As a matter of fact, up to now, there has been no final verdict

with respect to the time–energy uncertainty relation.

It should also be noted that Heisenberg discussed the

measurement of individual particles, which can be inferred

from his examples about the uncertainty relation (2.9).

Subsequently, the discussion of time–energy uncertainty

should be for individual particles. However, later, people often

discuss many-particle systems.

Now we start to carefully analyze the so-called time–energy

uncertainty relation.

First, let the two operators in Eq. (B1) be time and energy,

respectively, F � t and G � H. Nevertheless, the commutator

[t,H] (3.4)

does not have a definite result. When the Hamiltonian H is

independent of time, the result is zero.

[t,H] � 0,whenH is independent of time. (3.5)

The key is that the coordinate and momentum operators on

the left-hand side of (2.1) have explicit forms, no matter what

function they act on. By contrast, the form of Hamiltonian H

depends on the system under investigation. Hilgevoord noticed

that “for a system of particles, one should not demand a

communication relation between t and H as a complement to

the ones between q and p, nor could there be such a commutation

relation.” [32].

Time t is not an operator. According to Pauli, “the

introduction of an operator t is basically forbidden, and the

time t must necessarily be considered as an ordinary number

(‘c-number’).” [12] The average of t in any normalized state is still

the time itself, �t � (ψ, tψ) � t(ψ,ψ) � t, which makes the

average meaningless.

Therefore, there is no way to derive a time–energy

uncertainty relation starting from (3.4) in the way in

Supplementary Appendix SB.

People may think that although the Hamiltonian H in (3.4)

depends on systems, the operator iZ z
zt on the left-hand side of

(1.1) corresponds to Hamiltonian and is independent of systems.

There is a definite commutator

[t, iZ z

zt
] � iZ. (3.6)

It seems, then, that imitating the procedure of deriving (2.9)

can lead to (3.3). It is not so. Obviously, the averages of time t and

its square t2 in any normalized function are still t and t2, so that

Δt � 0. It is easily verified that (ψ, iZ z
ztψ)2 � (ψ, (iZ z

zt)2ψ).
Therefore, along this routine, one is unable to reach Eq. 3.3.

The conclusion is that there is no way to acquire (3.3)

through the procedure in Supplementary Appendix SB. In

[44], Eq. 3.3 was just a hypothesis.

3.2 The operator of taking a derivative with
respect to time

Here we intend to clarify the implication of the operator iZ z
zt.

Someone thought it to be an energy operator and denoted it

by [22]

Ê � iZ
z

zt
. (3.7)

Following this definition, (3.1) could be understood as (3.5),

but this problematic.

When we put down z
zt, it is just an operator taking a derivative

with respect to time, without any other physical information.

When we put down iZ z
zt, we just let the dimension of the operator

become that of energy and make it a Hermitian one, and no

physical information is added yet.

An operator should have its eigenvalues and corresponding

eigenfunctions under appropriate boundary conditions, such as a

momentum operator. The operator iZ z
zt is not of this property. In

[19], an attempt was made to define a time operator, but no

eigenvalue and eigenfunction could be given. One may define an

operator in some way, but it is meaningless if the operator does

not have eigenvalues and eigenfunctions.

Then, why do people think of iZ z
zt as an energy operator? The

reason is based on the fundamental QM equation. In Eq. 1.1, iZ z
zt

is directly connected to HamiltonianH. When, and only when, in

this equation, the operator iZ z
zt represents the Hamiltonian on

the right-hand side of this equation.

It is stressed that iZ z
zt should not be regarded as a

Hamiltonian operator or energy operator carelessly except in

the case of (1.1). The following two points are important: (i)

according to Eq. (1.1), the operator iZ z
zt must be related to a

specific Hamiltonian of the system under investigation; (ii) only

when the operator iZ z
zt acts on the wave function ψ satisfying

(1.1), can it show the meaning of energy, because this action is

just that of this specific Hamiltonian on this wave function ψ.

When these two points are met, the result calculated through

(ψ, iZ z

zt
ψ) � (ψ, Hψ) � �E (3.8)
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is of the meaning of the energy average in this state.

For any function of φ not satisfying (1.1), (φ, iZ z
ztφ) is not of

the meaning of energy.

Since the implication of the operator iZ z
zt is clarified, we are

able to figure out the Pauli difficulty, which is as follows [12, 19].

Let Hamiltonian H be independent of time and its

eigenfunction be denoted as ψE.

HψE � EψE. (3.9)

We construct a wave function e−iαt/ZψE, where α can be any

real number. Let the Hamiltonian act on this functionHe−iαt/ZψE,

and make the Taylor expansion of the factor e−iαt/Z. It follows that

He−iαt/ZψE � (E − α)e−iαt/ZψE. (3.10)

This result shows that for any α, E − α is an eigenvalue of the

H. That is to say, the eigenvalues of the H compose a continuous

spectrum covering the whole real axis. However, the energy

spectrum of the Schrödinger equation (1.1) must have a lower

limit. This contradiction is the Pauli difficulty.

We explain how this difficulty is yielded. When taking the

Taylor expansion of the factor e−iαt/Z on the left-hand side of

(3.10), the commutator [t,H] � iZ is employed [19], which

results on the right-hand side of (3.10). The reason of the

Pauli difficulty is the employment of the relation [t,H] � iZ.

We have pointed out above that there is no such relation. Eq. 3.8

is one for stationary states, i.e., H is independent of time. So, Eq.

3.5 has to be employed. Starting from the left-hand side of (3.10),

one obtains

He−iαt/ZψE � Ee−iαt/ZψE, (3.11)

instead of the right-hand side of (3.10). If

ψ � e−iαt/ZψE (3.12)

is still an eigenfunction of the H, it must meet (1.1).

iZ
z

zt
e−iαt/ZψE � He−iαt/ZψE. (3.13)

Since ψE is independent of time,

iZ
z

zt
e−iαt/ZψE � αe−iαt/ZψE. (3.14)

The right-hand side of (3.11) and (3.14) should be equal. It is

seen that α � E; i.e., α must be an eigenvalue of the H, not an

arbitrary number.

3.3 The derivations and explanations of the
so-called time– energy uncertainty
relation in the literature

In [4], the relation (3.3) between the uncertainties of time and

energy was guessed without derivation, and the discussion was

vague. People believed that what Heisenberg said was right.

Some first assumed (3.3), resembling (3.3), and then, tried to

derive it by supposing various scenarios. Different persons

present the derivation based on their own understanding of

the uncertainties of time and energy. Among different

derivations, none of them could overturn the others.

Therefore, according to viewpoint I.2, none was correct. In

fact, every derivation was apparently right but actually wrong.

Although it was noticed [31, 32] that some of the derivations

were wrong, a thorough analysis is desired.

In the following, we list several derivations and present our

comments. In each case, we extract the concepts of Δt and ΔE,
demonstrating that the concepts differ from person to person.

The common features are that almost every proof has concept

stealing and that no one made the measurements that could

match the formulas.

Before the introduction, we emphasize that in

inequality (B14),

ΔAΔE≥
1
2
|〈[H,A]〉|, (3.15)

and ΔA is defined by

ΔA �
�������
A2 − �A

2
√

� [(ψ, A2ψ) − (ψ, Aψ)2]1/2. (3.16)

It is a definite quantity determined by the known wave

function but not a variable. One more point should be

stressed that ΔA is finite, meaning that it is neither infinitely

small nor infinitely large.

1) Using the concept of wave packet [14, 15, 19]:

This is for a single particle. Suppose that the particle is a wave

packet with width Δx, moving along the x axis with speed v. The

time it passes one point in the x axis is not definitely determined,

but has an uncertainty

Δt ≈ Δx
v
. (3.17)

On the other hand, the wave packet has some extension in

momentum space, so that the particle’s energy has an

uncertainty ΔE.

ΔE ≈
zE

zp
Δp � vΔp. (3.18)

The product of these two equations yields

Δt · ΔE ≈Δx · Δp. (3.19)

Then Eq. 2.9 is used to result in (3.3), “which limits the

product of the spread ΔE of the energy spectrum of the wave

packet and the accuracy Δt of the prediction of the time of

passage at a given point” [19].
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Comment:

Since the right-hand side of (3.19) is just (2.9), the Δx and Δp
ought to be evaluated in the way of (3.16). However, the Δx from

(3.17) is the dimension of the wave packet and the Δp from (3.18)

is the increment of the momentum, both not being the meanings

of uncertainties. The concept stealing is obvious.

The use of (3.19) means that Eqs. (2.9) and (3.3) ought to be

compatible. However, the two relations were thought to express

two different and incompatible viewpoints in [19].

Here, Δt is the time a wave packet needs to pass through a

distance. The ΔE is the increment of energy irrespective to

measurement.

2) Making use of the formulas in Supplementary Appendix SB

[3, 14, 19, 21, 23]:

When a quantity A varies, the time it needs to change ΔA is

Δt � ΔA
|d〈A〉/dt|. (3.20)

We make use of the formula

d〈A〉
dt

� 1
Z
|〈[H,A]〉|. (3.21)

Then, by (3.15)

ΔAΔE≥
1
2
|〈[H,A]〉| � Z

2
d〈A〉
dt

. (3.22)

The combination of these three equations results in

ΔtΔE≥
Z

2
. (3.23)

Comment:

We point out that Eq. 3.20 is strange. In the denominate and

following equations, A is regarded as an operator, and the

numerator should be written as Δ〈A〉. It is not clear from

which fundamental formula (3.20) was derived.

In Eq. 3.20, the Δt is variable and is the time increment when

A has an increment ΔA. In (3.22), both the ΔA and ΔE should be

calculated by (3.16), and are not variable. The ΔA in (3.20) is

different form that in (3.22). The concept confusion happens

from (3.20) to (3.22). Furthermore, both the Δt and ΔE do not

have the meanings of uncertainty.

The authors of [45] recast (3.22) to be the form ΔtΔE≥ Z
2
d〈A〉
dA

by replacement of the ΔA by dA and of the dt by Δt, which
seemed to be a smart way to obtain (3.23), but this was wrong.

The dAwas a variable and could be taken as infinitesimal, but the

ΔA on the left-hand side of (3.22) is calculated by (3.16), so it is

finite and not a variable. This distinction stands also for the dt

and Δt. Therefore, the replacements were illegal. The authors of

[45] addressed that the quantity A in (3.20) could be arbitrary:

“its physical meaning depending thus on the choice of this

quantity.” However, the A could not be t.

Here, the Δt is a time increment when a quantity A changes

ΔA, and the ΔE is calculated by (3.16), both being irrespective to

measurement.

3) Making use of the difference of two energy levels [3, 14]:

Suppose that a particle had two energy levels, E1 and E2.

Their difference is

ΔE � |E1 − E2|. (3.24)

When the two states superpose, the particle oscillates

between the two states and the oscillation period is

τ � Z

ΔE. (3.25)

Then, ΔE is explained as the uncertainty of the energy level,

and τ is explained as the time one needs to observe the system’s

variation. Eq. 3.25 is recast to be

τΔE ≈ Z, (3.26)

which is explained as the time–energy uncertainty relation.

Comment:

Here, the τ is the oscillation period between two energies of

the system, and the ΔE is the difference of the two energies, both

being not of the meaning of uncertainty.

Eq. 3.26 is simply the copy of (3.25), but the concepts are

endowed different connotations, i.e., concept stealing. In Eq.

3.26, the ΔE and τ are respectively said to be the uncertainties of

energy and time, which are created out of nothing.

4) Using the concept of “time packet” [6]:

It was assumed that a particle’s behavior was a pulse or ‘time

packet’.

“We consider the case such that ψ(t) is a pulse or ‘time packet’,

which is negligible except in a time interval Δt.” This time packet

can be expressed as a superposition of monochromatic waves of

angular frequency ω by the Fourier integral

ψ(t) � ∫∞

−∞
dωG(ω)e−iωt, (3.27)

where the function G(ω) is given by

G(ω) � 1���
2π

√ ∫∞

−∞
dtψ(t)eiωt. (3.28)

As the ψ(t) takes only significant values for a duration Δt, it
follows from the general properties of Fourier transformations

that G(ω) is only significant for a range of angular frequencies

such that

ΔωΔt≥ 1. (3.29)

Since
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E � Zω, (3.30)
the width of the distribution in energy, ΔE, satisfies the

time–energy uncertainty relation

ΔEΔt≥ Z.”[6]. (3.31)

In this way, it seems that the uncertainty relation can be

proved.

Comment:

Here, the Δt is the time the particle exists—from its

appearance to its vanishing, and the ΔE is the width of the

distribution of the particle’s energy. Both the concepts are

strange, because we cannot image what the system is and how

its Hamiltonian is written.

It is well known that a light pulse can be produced

experimentally. But what about a massive particle? This

imagined pulse or ‘time packet’ of a massive particle is not

possible. No one is able to find a Hamiltonian H such that

the solution ψ(t) of Eq. 1.1 is a ‘time packet’. If someone knew

such a Hamiltonian, he would have put it down.

5) Making use of the interaction between the measured system

and measuring device [10, 24, 46]:

The measured system and measuring device are combined to

become a larger system. In other words, the whole system is

divided into two parts, measured system and measuring devices,

the energies of which are E and ε, respectively. “We suppose that

it is known that at some instant these parts have definite values of

the energy, which we denote by E and ε, respectively.” “The

energies E, ε, on the other hand, can be measured to any degree of

accuracy at any instant” [10].

Because of the interaction between the two parts, each time

the measurement would cause the energy E to change, say, to be

E′. It was treated as the transition between the energies E and E′.
The transition probability for a system subject to a periodic

perturbation was given by the formula (43.2) in [10]. By taking

ω � 0 in this formula, the transition probability was

sin 2[(E′ − E)t/2Z]
(E′ − E)2 . (3.32)

According to this formula, “The most probable value of E′ −
E is of the order of the magnitude of Z/t.” [10]. Subsequently, it

was believed that

∣∣∣∣E + ε − E′ − ε′
∣∣∣∣Δt ~ Z. (3.33)

This was called the “uncertainty relation for energy.”

Comment:

According to this result, the energy conservation in QM was

understood in an alternative way. “It shows that, in quantum

mechanics, the law of conservation of energy can be verified by

the means of two measurements only to an accuracy of the order

of Z/Δt, where Δt is the time interval between the

measurements.” “The quantity (E + ε) − (E′ + ε′) in (44.1) is

the difference between two exactly measured values of the energy

E + ε at two different instants, and not the uncertainty in the

value of the energy at a given instant” [10]. However, “the

statement that the conservation law of energy may be violated

by an amount δE during a time δt � Z/δE. . .. . . confuses the

energy of the actual system with the energy of the unperturbed

system” [32].

It was believed that the relation ΔtΔE> Z “does not signify

that the energy cannot be known exactly at a given time (for in

that case the concept of energy would have no meaning), nor

does it means that the energy cannot be measured with arbitrary

accuracy within a short time” [10].

This scenario is totally different from the above ones. Here

the energy of a system can be measured in any accuracy, which

contradicts the uncertainty of energy.

According to [10, 46], because the measured system is

interacted by the measuring device, its energy shifts after the

measurement. The amount of the shift and the time interval

between adjacent measurements form the time–energy

uncertainty relation: “the smaller the time interval Δt, the

greater the energy change that is observed” [10]. This brings a

question that why the shorter the time interval, the greater the

energy shift.

In the transition probability formula, the difference of two

energy levels is used, which is not the energy uncertainty.

Furthermore, in [10], Eq. (42.3) was valid under a condition

of (42.1) which required that the frequency ω should not be zero.

It is hard to understand the transition expressed by (3.32)

without releasing or absorbing photons.

Equations (3.32) and (3.33) contradict each other. Eq. 3.32

means that there were two energy levels E and E′ in the system.

The existence of the two energy levels was determined by the

Hamiltonian of the system, independent of whether the

transition happened or not. What is more, it was thought that

Δ(E − E′)> Z/Δt [46], which meant both E and E′ had some

uncertainties. However, Eq. 3.33 reflected that there was only one

energy level E, which, after the measurement, shifted to E′. That
is to say, before the measurement, there was no energy level E′,
and after the measurement, there was no energy level E.

Here, the Δt is the lifetime of an energy level. The ΔE is the

energy shift caused by the measurement, and meanwhile, it is the

difference of two energy levels.

This scenario was criticized in [31].

In [10, 46], following the above content, momentum

variation was discussed by collision as an example.

Nevertheless, Eq. 3.32 was obtained by perturbation theory,

while collision could not be treated by the perturbation theory.

The last part of Section 44 in [10] related the difference E −
E′ to the lifetime of energy level. This recognition, also seen in

other textbooks [6, 7], is going to be expounded in next

subsection.
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All in all, it is seen from the entries 1) – 5) that people

presumed the relation (3.3) and then designed certain ideas to

scrape it together. None of the above scenarios were connected to

a real measurement. All of them are incorrect.

Different people had different explanations of the Δt and ΔE
in (3.3). In one textbook, more than one explanation arose [3, 10,

14, 18]. This fully revealed the serious confusion regarding these

concepts. Some other narrations are as follows.

In [13], the relation (3.3) was given without derivation. The

explanation was that “an energy determination that has an

accuracy ΔE must occupy at least a time interval Δt ~ Z/ΔE;
thus if a system maintains a particular state of motion not longer

than a time Δt, the energy of the system in that state is uncertain

by at least the amount ΔE ~ Z/Δt, since Δt is the longest time

interval available for the energy determination.” Here the Δt had
the implication of the lifetime of the state of the system.

In [14], the ΔE was regarded as the uncertainty of the

measured energy or the change of the energy of the system,

but meanwhile, the ΔE is the difference of two energy levels,

which could be both measured precisely.

In [19], there were contradictory statements. One was that

“the energy of a system can be determined with arbitrary

precision at any time.” The other was that Eq. 3.3, written as

τΔE ~ Z, “is the lifetime–width relation for unstable systems,

i.e., systems which are not stationary and do not correspond to a

well-defined value of the energy but rather to an energy spectrum

with a certain spread ΔE, called the level width. The mean lifetime

τ of the stable (or metastable) state here plays the role of the

characteristic time considered above”. “In this case, the accuracy

ΔE of the energy measurement is connected with the time Δt
required for the measurement itself.”

In [24], the Δt and ΔE were replaced by δt and δE,

respectively. “The time–energy uncertainty relation relates the

rate at which the state of a system changes to the uncertainty δE

of its energy. If the state of the system changes appreciably during

a time interval δt, then the time–energy uncertainty relation

states that δtδE≥ Z. I have written δt and δE, rather than Δt and
ΔE, to emphasize that these are not standard deviations.” Here,

the time interval δt was regarded as the lifetime of the system.

3.4 The concept of the lifetime of an
energy level

One explanation of the Δt in (3.3) was the lifetime of an

energy level [16, 31, 32], and correspondingly, one of

explanations of the ΔE was the width of the energy level [14,

19, 31, 32]. It is necessary to clarify the concept of the lifetime of

an energy level [47, 48].

In Eq. 3.3, the ΔE, as mentioned in Section 3.3, at least has

three explanations: the energy shift, energy width, and difference

of two energy levels. All the explanations concern the real part of

the energy. Unfortunately, the lifetime of a state is irrelative to the

real part of the energy of the state. Let us recall the definition of

the lifetime of a state.

In a wave function, there is a factor containing energy E and

time t, e−iEt. If the energy is a complex number,

E � ε − iγ, (3.34)
then

e−iEt/Z � e−iεt/Ze−γt/Z. (3.35)

The wave function decays with time exponentially. After a

time period of about

τ ~ Z/γ, (3.36)

the wave function almost disappears. Due to this fact, we say that

the lifetime of this state is about Z/γ.

Here, we emphasize the following points: (1) The lifetime τ of

a state is determined by the imaginary part, not the real part, of

the state’s energy. (2) The lifetime is defined by (3.36). It is not the

case that we have first the two quantities ΔE and τ, which then

meet Eq. 3.3. (3) The lifetime of the state is determined by the

state itself, irrespective of the measurement process. (4) The

lifetime reflects the decay of the state wave function, but is not

related to the shift of the energy. From the lifetime, one is unable

to gain the information of energy shift. (5) The lifetime does not

involve energy level broadening, which is a property of the real

part of the energy. From the lifetime, one is unable to gain the

information of the energy level broadening. (6) The energy (3.34)

has an imaginary part. This fact shows that this is a many-particle

system.

In a many-particle system, there are interactions between

particles, such as electron–phonon interaction, collision, and so

on. Due to the interactions, elementary excitations are formed,

and they are of finite lifetimes. An elementary excitation’s

lifetime is determined by the imaginary part of its energy [47, 48].

A detailed analysis was given in [25]. The interactions inside

a system result in transitions between energy levels. The

transitions in turn cause an energy shift and broadening. Now

we introduce the analysis.

Suppose that in a system there are two states denoted by a

and b, respectively. When there is no interaction, both are

stationary states, and their energies are Ea and Eb,

respectively. When there are interactions, the transition

between them can occur. Suppose that a and b are,

respectively, the initial and final states of the transition. In the

course of the transition, the initial state a will vary. The state after

the change is denoted by a′ with energy E′
a − iΓ, i.e., energy

changes,

Ea → E′
a − iΓ. (3.37)

The change yields not only a shift of the energy but also an

imaginary part of the energy, the latter being determined by

transition probability. This imaginary part determines the
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lifetime of the state a′. This is because the amplitude of the state a′
contains a factor

e−i(E′
a−iΓ)t/Z � e−iE

′
at/Ze−Γt/Z. (3.38)

It is seen that in about time Δta, where

ΓΔta ~ Z, (3.39)
the state a′will almost vanish. Therefore, Δta ~ Z/Γ is the lifetime

of the state a′.
Meanwhile, the energy of the final state b has a broadening

with a Lorentz line shape, the half height width of which happens

to be Γ, too. We denote this half height width by ΔEb.

ΔEb � Γ. (3.40)

Then,

ΔEbΔta ~ Z. (3.41)

Equations (3.39) and (3.41) seem to be the form of the

time–energy uncertainty relation, but they are not. The former

is the definition of the Δta, the lifetime of state a′. The latter

relates the lifetime of state a′ and the half height width of the

energy of state b. Among these quantities, none has the physical

meaning of uncertainty, and none is to be determined by

measurement.

4 Discussion

People subjectively thought that what Heisenberg said in his

paper [4] were certainly right, and the inequality that Robertson

derived [5] was just what Heisenberg wanted to express. Under

these presumptions, people tried their best to present

explanations to the coordinate–momentum uncertainty

relation, and to derive the so-called time–energy uncertainty

relation. There is no uniform and standard explanation. Several

scenarios were proposed. From the source, the discussions in

Heisenberg’s primary paper [4] were ambiguous. The

explanations and derivations are of the following defects.

One mathematical symbol has different explanations, that is,

concept stealing. In the coordinate–momentum uncertainty

relation, the Δx should be the uncertainty of measuring a

particle’s position, but is often replaced by the dimension of that

particle, the range that the particle’s wave function is not zero; the

Δp should be the uncertainty of measuring a particle’s momentum,

but is often replaced by the width of the momentum range of the

Fourier component of a wave packet. In the so-called time–energy

uncertainty relation, theΔt is explained as either the time that a wave

packet goes through a space point, or the time needed for measuring

an energy level, or the lifetime of an energy level; theΔE is explained

as energy shift, or the difference of two energies, or energy width.

A truncated plane wave with finite length for a moving

particle is not the wave functions in QM.

All the derivations of the so-called time–energy uncertainty

relation are not rigorous, but simply patchwork. The last words in

[31], “energy can be measured reproducibly in an arbitrarily short

time”, utterly negated the so-called time–energy uncertainty relation.

No real measurement was touched. Gedanken experiments

were assumed, which could not verify the uncertainty relations.

The application of the coordinate–momentum uncertainty

relation was just to make some ex-post explanations to well-

known phenomena such as single-slit diffraction. Even in these

explanations there were confusions of the concepts.

In discussion of the time–energy uncertainty relation, the

problems in one-particle and many-particle systems were confused.

There is more than one explanation for an uncertainty

relation. This fact itself illustrates that none of the

explanations is right. If one explanation was right, the other

would be no longer displayed.

We have mentioned in Introduction the reasons that people

do not realize the problem of the uncertainty relations. The

uncertainty relations have never been related to real

measurements, and solving problems and establishing new

theories in QM do not resort to the uncertainty relations.

Up to now, the quantum measurement problem, that what

precisely happens when a quantum measurement is performed, is

still in dispute [49, 50], but the so-called uncertainty principle for

quantum measurement was proposed long before. That is strange!

5 Conclusion

Heisenberg’s primary paper did not explicitly present an

uncertainty relation.

Robertson derived the coordinate–momentum uncertainty

relation ΔxΔp≥ Z/2. In this relation, Δx and Δp are uniquely

determined by the wave function, and are not variable. In this

relation, there is no quantity that needs to be gained by

measurement. This relation does not need any knowledge of

Heisenberg’s primary paper and of measurement. The

conclusion is that the coordinate–momentum uncertainty

relation is irrespective to measurement.

There is no definite result for the commutation of time and

Hamiltonian [t,H]. This is because Hamiltonian depends on

systems. The operator iZ z
zt can represent a concrete Hamiltonian

H only when the iZ z
zt and H are connected in one quantum

mechanics equation. The discussions of the time–energy

uncertainty relation in the literature are incorrect. The

conclusion is that there is no so-called time–energy relation.
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