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Due to the extremely complex working conditions, various health and safety

hazards are present in underground coal mines, which cause economic losses

and heavy casualties. Among these hazards, methane gas explosion and coal

combustion are recognized as the two major hazards to miners. Traditional

electronic sensors in mine safety monitoring systems have problems such as

low precision, a large amount of maintenance, and monitoring dead zones. In

the past decade, gas sensors based on tunable diode laser absorption

spectroscopy (TDLAS) have been extensively studied and tailored for use in

the coal mine industry because of their advantages of high sensitivity, high

stability, fast response, intrinsic safety, and remote monitoring. This invited

paper introduces the recent progress and typical applications of TDLAS-based

methane sensors, carbonmonoxide sensors, andmulti-gasmonitoring systems

in coal mine gasmonitoring, fire prevention, and early warning in intelligent coal

mines.
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Introduction

Currently, coal is one of the primary energy sources, and it will remain so in the near

future. In 2021, 81.73 billion tons of coal were produced worldwide, which is 6.0% more

than that in 2020. There are more than 5,000 coal mines in China, of which more than

95% are underground coal mines. Coal mine safety is a very serious issue. In the past

decade, gas outbursts and explosions and coal combustion have been the two main

hazards encountered in underground coal mines, among which gas explosions are the

main cause of very serious accidents, where more than 10 people have died.With the rapid

development of gas monitoring systems, coal mine safety has been consistently improved,

which is signified by the decrease in casualties. In 2002, China produced 1.4 billion tons of

coal with 6995 casualties [1]. In 2021, the casualties decreased to 178 and the production
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increased to 4.13 billion tons, corresponding to an improvement

of 111 times in terms of the casualty rate per million tons of coal

production (from 4.9 in 2002 to 0.044 in 2021). To further reduce

the number of casualties in coal mines and ensure the safety of

life and property, all the hazardous gases present in the mines

need to be monitored online to prevent the potential accidents.

With the rapid development of the Internet of Things (IoT), 5G

communication technology, big data, and other new

technologies, mine safety IoT and intelligent mines have

gradually become a new trend. Different types of mine

sensors, especially for methane, carbon monoxide, and other

environmental gases, provide the essential environmental

information and data basis for constructing mine safety IoT

or intelligent mines. Among the requirements of intelligent

mines, one of the most important aims is to reduce the

workload of miners and realize intelligent sensing,

comprehensive monitoring, autonomous analysis, early

warning, and effective control. However, the traditional

electronic sensors employed in mine safety monitoring

systems cannot meet the key requirements of intelligent mines

due to problems such as low precision, poor reliability, large

amounts of maintenance, and monitoring dead zones.

For methane detection, the main sensors employed in coal

mines are catalytic combustion methane sensors [2–4]. However,

they have some unavoidable disadvantages, such as easy

poisoning, poor selectivity, and regular calibration, which

inevitably increase the workload on coal miners and increase

the risk of death and injury to workers. Another methane sensor

is the infrared gas sensor, which adopts a broadband infrared

light source and an optical filter for differential photoelectric

detection [5]. However, it is easily affected by humidity and

temperature. Therefore, its reliability and stability are poor in the

complex environment of underground coal mines. Additionally,

electronic sensors are also employed that cannot be used in

special hazard areas, such as goaf, which lead to blind areas in

monitoring. In the past decades, with the rapid progress in

modern optoelectronic technology, the spectral technology has

become the focus of research teams at home and abroad [6, 7].

There are many gas detection methods based on spectroscopy,

including cavity-enhanced absorption spectroscopy (CEAS) [8],

cavity ring-down spectroscopy (CRDS) [9], photoacoustic

spectroscopy (PAS) [10], photothermal spectroscopy (PTS)

[11], laser Raman spectroscopy (LRS) [12], and tunable diode

absorption spectroscopy (TDLAS) [13]. Because of their better

environmental adaptability and reliability, gas sensors based on

TDLAS are more and more widely used in the field of gas

detection [14, 15]. TDLAS-based gas sensors utilize lasers

instead of current and voltage to realize information

perception and use optical fibers instead of cables as the

information transmission medium. Therefore, laser gas

sensors are more suitable for flammable, explosive, and humid

coal mine environments. TDLAS technology has the great

advantage of in situ online monitoring, and it has become an

irreplaceable detection technology in intelligent mines [16–18].

In 1981, Reid J et al. reported the measurement of gas

concentrations based on the second harmonic detection

technique, which greatly promoted the development of high-

precision TDLAS equipment [19]. Since 2017, laser methane

sensors have been gradually employed in coal mines [20]. The

maintenance period of methane sensors is extended from 2 weeks

for the conventional catalytic combustion methane sensor to

6 months for the laser methane sensor. Consequently, it has

significantly reduced the number of underground coal miners

and improved the intelligence level of coal mines.

Fire is one of the major hazards in coal mines. Coal

spontaneous combustion stems from coal residues in the goaf

being oxidized and heat being accumulated, which consequently

accelerates the combustion and causes fire [21, 22]. The presence

and increase of CO are typical characteristics during the early

stages of oxidation. When the oxidation becomes severe, the

temperature starts to increase, and C2H4 appears. C2H2 is the

final warning indicator; its presence signifies that fire is

imminent. Therefore, for the early detection of coal

combustion, CO is the most important characteristic gas to

monitor. Carbon dioxide (CO2), ethylene (C2H4), acetylene

(C2H2), and other landmark gases are also important for

monitoring spontaneous combustion hazards. Typically, the

required detection sensitivity for CO is 1 ppm, and for C2H4

and C2H2, it is 0.1 ppm. Conventional monitoring technology is

based on tubing bundle gas sampling systems and

chromatography-based gas monitoring instruments [23],

which are typically located at the ground monitor center and

suffer from long delay times, cumbersome maintenance, and

inaccuracy due to possible tubing leakage.

Based on the demands of intelligent coal mines, our group

has developed various gas sensors based on TDLAS technology,

which have been successfully demonstrated and applied in the

construction of mine safety IoT and intelligent coal mines. In this

invited paper, the principle, advantages, applications, and recent

progress in TDLAS-based gas sensors used for coal mine safety

are comprehensively introduced.

Principles of laser absorption
spectroscopy

The physical basis of TDLAS technology is the absorption of

light energy of a specific frequency by gas molecules. When the

frequency of incident light is the same as the vibration frequency

inside a molecule, the two resonantly couple, and the molecule

absorbs light energy and produces a transition. When the

vibration level transits from the ground state to the first

excited state, the absorption is the fundamental frequency

absorption. When the molecular vibrational level transitions

from the ground state to the second excited state and above,

the resulting absorption is overtone absorption [24, 25]. The
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absorption peaks have significant characteristics, which can be

used as a basis for determining the molecular type or atomic

group of gas and can be used for the qualitative and quantitative

analyses of gas.

The intensity of infrared light absorbed by gas molecules is

related to not only the optical path of light in the material but

also the concentration of gas. The Beer–Lambert law of

absorption is satisfied between the initial and outgoing light

intensities [26]:

It(ν) � I0(ν) exp[−α(ν)CL], (1)

where I0(ν) is the input light power, It(ν) is the outgoing light

intensity, C is the volume concentration of the gas, L is the length
of the gas absorption path, and α(ν) is the gas absorption

coefficient, which is affected by the temperature and pressure

as gas is compressible and which satisfies

α(v) � S(T)g(ν, ν0)P, (2)

where S(T) is the temperature dependence of the absorption

coefficient, P is the ambient pressure, and g(ν, ν0) is the line-

shape function. The three commonly used line-shape functions

are the Lorentzian function, the Gaussian function, and the Voigt

function. In the measurement environment of coal mines, the

collision broadening of gas molecules is dominant. Therefore, the

Lorentzian function is selected to describe the line-shape

function of the absorption spectrum, which satisfies

g(ν, ν0) � 1
π

Δν
2

(ν − ν0)2 + (Δν
2
)

2, (3)

where ν0 is the central frequency of the absorption spectrum line

and Δν is the full width at half height of the spectral line caused

by collision widening. The integral value of the line-shape

function g(ν, ν0) in the full frequency domain is 1 unit. By

carrying out logarithm calculations on both sides of Eq. 1

followed by integration, we have

S(T)PCL � −∫+∞

−∞
I0(ν)
It(ν) dν � A . (4)

Then, the volume concentration of the gas can be expressed

as follows:

C �
−∫+∞

−∞
I0(ν)
It(ν) dν

S(T)PL � A
S(T)PL.

(5)

TDLAS technology mainly uses the narrow line width and

tunability of tunable semiconductor lasers to measure one or

several close absorption lines of gas molecules. Gas sensors based

on TDLAS technology are highly sensitive and stable due to the

tunable semiconductor laser’s narrow line width, controllable

operating temperature, and optical power output, which is the

reason for the rapid development of this technology.

Laser methane sensor and
applications to on-line monitoring of
coal mine gas

Laser methane sensor

Methane (CH4) is the most important gas in coal mine safety

monitoring. When CH4 in the concentration range of 5%–16%

meets an open flame, it will immediately explode. By pressurizing

fresh air flow from the ground to the coal mine, O2 can be

supplied underground, and the CH4 concentration can be

reduced. Methane gas has absorption peaks around the

3.3 μm and 1.65 μm bands. However, the mid-infrared (MIR)

laser is very expensive and needs to be cooled. The 1.65 μm band

is similar to an optical fiber communication band, and the

photoelectric device is mature and cheap. Therefore, laser

methane sensors usually choose the absorption peak near

1.65 μm for detection. Direct absorption spectroscopy (DAS)

and wavelength modulation spectroscopy (WMS) are two signal

processing methods widely used in TDLAS [27, 28]. Direct

absorption detection can be realized by scanning the gas

absorption signal with sawtooth current modulation laser

wavelength. When the laser passes through the target gas, a

curve rising with the laser wavelength is detected using the

photodetector. The curve has a depression at the

corresponding absorption peak. The gas absorption

characteristic line can be obtained by normalizing the

detection curve. The DAS system inverts the gas

concentration by directly monitoring the attenuation of light

intensity, and its experimental device and scheme are relatively

simple. For the WMS system, the high-frequency modulated

signal is superimposed on the low-frequency scanning signal as

the driving signal of the laser. Then, the harmonic signal of the

absorption spectrum is obtained by using the phase-locked

amplification technology, and the gas concentration is

detected according to the peak value of the harmonic signal.

Most of the background noise, especially the 1/f noise, has the

characteristics of high intensity in the low-frequency band and is

greatly reduced in the high frequency. Therefore, the WMS

system can effectively suppress the background noise

introduced into the spectrum by circuit systems, optical

devices, and optical–mechanical systems. It can effectively

extract weak signals from noise and improve the detection

sensitivity of spectral signals. Inaba H et al. first used the

spectral absorption method to conduct long-distance air

pollution monitoring [29]. Uehara K and Tai H used a 1.6-

μm single-mode distributed feedback laser (DFB-LD) to detect

methane gas concentration at room temperature [30]. The

system used the harmonic method with wavelength

modulation, and its minimum detectable sensitivity is 20 ppm.

The system achieved high detection sensitivity due to the

combination of DFB-LD, wavelength modulation harmonic

detection technology, and optical fiber technology. Zhang
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et al. proposed a single-channel direct absorption methane

measurement system with a 1.33-μm DFB-LD and an optical

power meter with a response sensitivity of 1 nW [31]. They

verified the linear relationship between the output electrical

signal and the concentration when the concentration was less

than 15%. Iseki et al. designed a portable methane telemetry

sensor with a 1.65-μmDFB-LD and ameasuring distance of 10 m

and a measuring accuracy of 5 ppm [32]. The aforementioned

studies greatly promoted the advancement of laser methane

sensing technology.

Reducing the overall power consumption of laser methane

sensors is important for application in underground coal mines.

When the power consumption of a CH4 sensor is too high, the

number of sensors that can be supplied by an intrinsically safe

power supply cannot meet the requirements of coal mine gas

detection. Additionally, to meet the 6 km transmission distance

requirement stipulated by the coal mine safety monitoring

system, the sensor current and power consumption need to be

reduced as much as possible to increase the detection distance

between the sensor probe and the power supply substation. A

vertical-cavity surface-emitting laser (VCSEL) has a considerably

lower threshold current, operating current, and operating power

consumption than the distributed feedback (DFB) laser [33, 34].

Generally, the current modulation regime of the DFB laser is

about 10 p.m/mA and that of VCSEL is up to 400 p.m/mA. Thus,

VCSEL has higher current-wavelength tuning characteristics

than the DFB laser. Moreover, the wavelength modulation

coefficient of VCSEL is smaller by temperature modulation

and larger by current modulation [35]. With the development

of long-wavelength VCSEL technology, the research on gas

detection technology based on low-power VCSEL has become

very attractive [36, 37].

In order to ensure that the laser output wavelength can

lock the gas absorption peak stably, the conventional laser gas

detection technology usually uses a semiconductor cooler to

control the laser temperature within a certain range and uses

the method of current trimming to measure the absorption

spectrum line. The temperature control system of the laser

increases the overall power consumption of the gas detection

system. Our group developed a laser methane detection

system based on VCSEL without a thermoelectric cooler

(TEC). The system realized gas detection without a

temperature control system, thus effectively reducing

system power consumption. Based on the wide wavelength

range of VCSEL, the multi-absorption peak intelligent

tracking technology has been successfully developed.

Figure 1 shows the absorption spectrum of methane gas in

the near-infrared range. The wavelengths we selected to

detect the absorption lines are 1642.9 nm, 1645.5 nm,

1650.9 nm, and 1653.7 nm. According to the absorption

information of the reference gas chamber, the

current feedback technology was used to control the laser

to work on one of the aforementioned absorption peaks.

According to the wavelength variation law of VCSEL with

temperature, a dynamic adjustment relationship had been

established between the gas detection absorption peak

and temperature. The system realized methane detection by

adaptively tracking the methane absorption line.

Furthermore, the temperature and pressure characteristics

of different absorption peaks have been studied.

Subsequently, a laser methane-sensing module has

been successfully developed with a power

consumption of less than 100 mW at an ambient

temperature of −20 to 60°C.

FIGURE 1
Absorption spectra of methane gas in the 1650 nm region.

Frontiers in Physics frontiersin.org04

Gong et al. 10.3389/fphy.2022.1058475

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1058475


Applications of the laser methane sensor
in coal mine on-line monitoring

According to the safety regulations in coal mines, fixed or

mobile methane sensors need to be installed in key areas of the

mining face and return air roadways. When the methane

concentration reaches 1.0%, a sound and light alarm will be

set off, and when the methane concentration reaches 1.5%,

power will be cut off for equipment in the related area [38].

Based on the high humidity and dust environment of coal

mines, laser methane sensors need to conduct the engineering

design of waterproof, dustproof, impact-resistant, anti-

electromagnetic interference, and other necessary coal mine

electrical equipment. Figure 2 displays the developed laser

methane sensor products. These are the optical fiber

methane sensor, the second-generation laser methane sensor,

the latest miniaturization laser methane sensor, and the

portable methane sensor. Currently, laser methane sensors

are used in more than 1,000 coal mines in China. This

application shows that their advantages, such as stability and

moisture resistance, have been recognized by the coal mine

industry. Laser methane sensors do not need to be recalibrated,

which significantly reduces the workload of equipment

maintenance personnel. With its low power consumption

characteristics, the module can be used as a wireless sensor

for remote detection in the upper corner of coal mines or gas

drainage pipelines.

Figure 3 shows the continuous monitoring data of methane

gas in 10,307 working faces of the Xinlongzhuang coal mine from

12 July to 13 July 2018. The results show that the monitoring

curve of the laser methane sensor has a smaller fluctuation and a

faster response than that of the traditional catalytic combustion

methane sensor. Moreover, it verifies that the laser methane

sensor is not easily affected by moisture, in contrast to the

traditional catalytic element and infrared methane sensor,

which are easily affected by moisture. Thus, laser methane

sensors provide an effective way for methane monitoring in

intelligent coal mines.

FIGURE 2
The developed laser methane sensor products.

FIGURE 3
The methane monitoring data in 10307 working face.
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Coal mine fire monitoring and early
warning

In China, 95% of the coal mines are well coal mines, and

more than 60% have a spontaneous combustion tendency. In

goaf, coal can easily oxidize spontaneously and even develop into

fire. In the early stage, the oxidation reaction mainly produces

CO, and as the temperature increases, the oxidation reaction

becomes violent and yields C2H4 and C2H2. Therefore, the

presence of CO, C2H4, and C2H2 can be used for fire

warning. Additionally, O2, CH4, and CO2 are important gases

that need to be monitored for the spontaneous combustion

control of coal.

Laser CO sensor

Accurate measurement of CO, the signature gas of early fire,

is of decisive significance for the early diagnosis of fire and for

providing sufficient time for prevention and control. The real-

timemonitoring of the CO concentration should be performed in

coal seams that are prone to spontaneous combustion, such as

return air lanes in mining areas, firewalls in closed fire areas, and

spontaneous combustion observation points. The alarm trigger

of the CO sensor is the CO concentration of 24 ppm. As depicted

in Figure 4, CO affords absorption lines in the infrared region: the

weak second overtone band (~1.56 μm), the first overtone band

(~2.3 μm), and the strongest fundamental vibration band

(~4.6 μm) [39]. According to the Beer–Lambert law, the

performance of the laser CO sensors is closely related to the

strength of the absorption lines. The figure shows that the near-

infrared (NIR) absorption is about four magnitudes weaker than

that around 4.6 μm. However, to use telecommunication laser

devices and standard single-mode optical fibers, the harmonic

absorption spectra in the NIR region are of interest. Xia et al.

realized a detection sensitivity of 0.25 ppm in the 1566.6 nm band

using the 56 m optical path and second harmonic technique [40].

Owing to the advantage of intrinsic safety, this sensor scheme can

be successfully applied in coal mines. However, a long-path-

length multi-pass gas cell must be employed in the developed

NIR CO sensors. Therefore, complex structures and large

volumes may be unavoidable for the NIR CO sensors.

As shown in Figure 4, the absorption lines of CO have

coefficients of 3.47 × 10−21 (cm−1/mol cm−2) at 2.3 μm, which

is about two magnitudes stronger than NIR absorption.

Therefore, a highly sensitive CO sensor can be realized using

a 2.3-μm laser. CO sensors with increasing sensitivity have been

FIGURE 4
Absorption lines of CO from 1.5 μm to 5 μm.

FIGURE 5
The typical measurement data of CO monitoring system.

FIGURE 6
Absorption lines of CH4, CO, CO2, and H2O at 2-3 μm.
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reported using a 2.3-μm laser diode. Dang et al. achieved a

detection sensitivity of 0.06 ppm for CO monitoring with a

2334 nm absorption peak, which is therefore attractive for

coal mining applications [41]. Chen et al. adopted a 2.3-μm

VCSEL as the light source and realized the detection of trace CO

using wavelength modulation and by introducing a reference

chamber [42]. Wang et al. presented a stable and reliable CO

monitoring system with high sensitivity for use in the mining

industry in particular, tailoring the design specifically for

forecasting spontaneous combustion [43]. Their results are

shown in Figure 5.

The main difficulty in CO detection in underground coal

mines is the elimination of the influence of CH4, CO2, and

humidity on the measurement. The absorption lines of CH4, CO,

CO2, and H2O at 2–3 μm are shown in Figure 6. Therefore, the

problem of multi-gas cross-interference in the practical

application of sensors in underground coal mines needs to be

analyzed and solved. In the 2.33 μm band, CH4 has a serious

effect on CO. Although it can be compensated by measuring the

methane concentration, the compensation effect is limited due to

the limitations of the methane measurement accuracy.

In the MIR band of 4.6 μm, several strong CO absorption

peaks are present, which are not interfered by CH4 and CO2.

With the rapid development of MIR laser technology, the

TDLAS-based CO sensor has made a new breakthrough

[44–46]. In recent years, compact CO sensors with ultra-high

FIGURE 7
The typical measurement data.

TABLE 1 Measurement requirements of multi-gas monitoring.

Gas Full-scale Resolution Unit

CO 0–1000 0–100 ±4 10–6

100–500 ±5% true value

500–1000 ±6% true value

CO2 0–5 0–0.5 ±0.1 %

0.5–5 ±(0.08 + 5% true value)

C2H2 0–100 0–2 ±0.5 10–6

2–5 ±1

5–10 ±2

10–20 ±3

20–100 ±(1 + 10% true value)

C2H4 0–100 0–2 ±0.5

2–5 ±1 10–6

5–10 ±2

10–20 ±3

20–100 ±(1 + 10% true value)

CH4 0–100 0–1 ±0.1 %

1–40 ±10% true value

40–100 ±10
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FIGURE 8
Block diagram of TDLAS-based multi-gas sensor system.

FIGURE 9
The test data of laser multi-gas monitoring system.
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sensitivity have been reported using a room-temperature

interband cascade laser or a quantum cascade laser (QCL)

around 4.6 μm [47–49]. Our team developed a laser CO gas

sensor with an optical path of 20 cm using a 4.6-μmQCL, and the

measured results are shown in Figure 7. As shown in the figure,

the detection sensitivity is greatly improved, even with short

optical paths.

Multi-gas monitoring system

For early warning of coal spontaneous combustion, high

precision and a wide dynamic detection range for the gas

concentrations of CH4, CO, CO2, C2H4, and C2H2 as well as

other markers are required. The typical measurement

requirements for multi-gas monitoring are shown in Table 1.

In the recent years, considerable studies have been conducted

on multi-gas monitoring [50–52]. Zhao et al. designed a

detection system that can simultaneously detect CH4, CO, and

C2H2 by multiplexing 1653.72 nm, 2326.82 nm, and 1531.59 nm

light sources [53]. However, the field application environment of

coal mines has not been well studied. Based on the typical

demand for coal mine fire monitoring and early warning, our

group developed a laser multi-gas sensing system based on a

multi-band semiconductor laser array. The schematic of the

multi-gas sensing device is shown in Figure 8. The monitoring

system solves the problem of the measurement error caused by

the spectral overlap in a multi-component gas environment and

realizes the simultaneous high-precision detection of trace gases

and high-concentration gases. The test data on the laser multi-

gas sensing device are shown in Figure 9. As an effective technical

solution, the combination of the TDLAS-based multi-gas

monitoring system and the fiber optic Raman-scattering-based

distributed temperature sensor (DTS) provides early warning

information about both the oxidation status and the hot zone

location, which are increasingly used for goaf combustion

monitoring in coal mines.

Conclusion

In the next few decades, coal will still occupy an important

position in the energy structure. Therefore, the study on coal

mine safety is of great significance. Multi-parameter monitoring

in coal mines is challenging as the monitoring area is large, the

environment is complex and harsh, and the number of objects to

monitor is vast. With the advances in laser absorption

spectroscopy, an increasing number of TDLAS-based gas

sensors are being developed and applied in coal mines

because of their unique advantages, including intrinsic safety,

online detection, high precision, and reliability.

Coal mines have many hidden dangers, such as gas

explosions and coal spontaneous ignition. Based on the

monitoring needs of coal mine safety hazards, this invited

paper focused on the research on laser methane sensors, CO

sensors, multi-gas sensors and the application progress in gas

monitoring and fire prevention. The laser methane sensor has

realized full-range measurements with high precision, and field

applications have shown that it has a significantly higher

moisture resistance than infrared sensors. Since they do not

require calibration, laser gas sensors can greatly reduce the

maintenance workload, false alarm, and human fault. Aiming

at the typical demand for multi-gas monitoring for coal mine fire

monitoring and early warning, laser CO sensors and laser multi-

gas sensing systems were demonstrated herein. With the rapid

development of MIR laser technology, miniaturized laser trace

gas sensors are gradually expected to be widely used in the coal

mining industry.

With increasing coal mine safety, the emphasis has shifted

toward mine safety IoT. For the monitoring and prevention of

all hazards,mine safety IoTwill be realized through the development

of IoT and intelligent big data analysis. It is hoped that this invited

paper can promote the application and technical progress of laser

sensing technologies for mine safety and advance the rapid

development of intelligent mines.
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