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The combination of underwater acoustic processing and the Global Navigation

Satellite System (GNSS) has achieved remarkable economic benefits in offshore

operations. As the key technology of GNNS positioning, feature extraction of

underwater acoustic signals is affected by the complex marine environment. To

extract more effective information from underwater acoustic signals, we use

four types of multi-scale entropies, includingmulti-scale sample entropy (MSE),

multi-scale fuzzy entropy (MFE), multi-scale permutation entropy (MPE), and

multi-scale dispersion entropy (MDE), to analyze and distinguish underwater

acoustic signals. In this study, two groups of real-word underwater acoustic

signal experiments were performed for feature extraction of ship-radiated

noises (SRNs) and ambient noises (ANs). The results indicated that the

performance of the MFE-based feature extraction method is superior to that

of feature extraction methods based on the other three entropies under the

same number of features, and the highest average recognition rate (ARR) of the

MFE-based feature extraction method for SRNs reaches 100% when the

number of features is 3.
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1 Introduction

The Global Navigation Satellite System (GNSS) plays an indispensable role in offshore

operations and coastal defense; the positioning of marine targets depends heavily on

accurate feature extraction. However, the extremely complex marine environment may

seriously interfere with receiving underwater acoustic signals [1–4]. Therefore, it poses

challenges to feature extraction of underwater acoustic signals and GNSS

positioning [5, 6].
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Traditional feature extraction methods include time domain,

frequency domain, and time–frequency domain methods, which

are not suitable for processing nonlinear and non-stationary

signals [7–9]. With the continuous development of entropy

theory, entropy-based feature extraction methods are used to

analyze underwater acoustic signals [10–13], which is also

effective in the analysis of nonlinear and non-stationary

signals. The common entropies include sample entropy (SE),

fuzzy entropy (FE), permutation entropy (PE), and dispersion

entropy (DE).

SE and FE are acclaimed tools for quantifying the regularity

and unpredictability of time series [14–16]. Richman and

Moorman first proposed the concept of SE, which overcomes

the defect that approximate entropy is restricted by the data

record length [17]. As an improved algorithm of SE, the FE was

put forward by Chen et al. which not only has the advantages of

SE that is effective on short time series but also gives the

definition of entropy in the case of small parameters by

introducing the concept of fuzzy sets [18].

Both PE and DE are complexity metrics based on Shannon

entropy, which can represent the complexity of the signal

[19–21]. A new PE is proposed by Bandt and Pompe [22],

which measures the chaos degree of the time series through

employing the permutation pattern and has stronger anti-noise

ability. However, PE considers only the order of the time series,

and hence, some information of amplitudes may be not regarded.

To deal with the problem, DE is introduced in [23] as a new

complexity index, which considers the magnitude relationship of

amplitude, and it is superior to PE in calculation speed as well as

the ability to describe the valuable information of a signal.

Since these entropies mentioned above cannot reflect the

useful information of the signal from the multi-scale, many

scholars at home and abroad introduced the coarse-grained

operation to generate multi-scale improved algorithm based

on entropy [24], including multi-scale sample entropy (MSE),

multi-scale fuzzy entropy (MFE), multi-scale permutation

entropy (MPE), and multi-scale dispersion entropy (MDE).

Among them, MSE successfully tracked the change of drug

concentration during sevoflurane anesthesia [25]; MFE and

MDE can accurately diagnose the fault types and fault

severities [26, 27]; MPE was applied to feature extraction of

ship-radiated noise and showed excellent performance [28].

In order to illustrate the feasibility of multi-scale entropy

in feature extraction of underwater acoustic signals, we

performed two comparative experiments for ambient noises

(Ans) and ship-radiated noises (SRNs) by using feature

extraction methods based on MSE, MFE, MPE, and MDE,

respectively. The general structure of this paper is as follows:

Section 2 introduces the basic theories of MSE, MFE, MPE,

and MDE; Section 3 and Section 4 carry out the experiments

of feature extraction and classification for six Ans and six

SRNs separately; finally, and Section 5 is the conclusion of this

article.

2 Theory

2.1 Sample entropy and fuzzy entropy

Fuzzy entropy is an improved algorithm of sample entropy; SE

and FE can be used to characterize the complexity of time series.

Figure 1 shows the flow chart of SE and FE. In the flow of SE, the

phase space of time series is reconstructed, next the maximum

distance between two vectors is calculated to obtain the similarity

degree and average value of similarity degree, and then, the

embedding dimension is added to 1. By repeating the

abovementioned steps, the value of SE can be calculated as follows:

En � lnφm − lnφm+1, (1)
where m is the embedding dimension, φm is the average value of

the similarity degree under the embedding dimension m, and

φm+1 is the average value of the similarity degree under the

embedding dimension m + 1.

Compared with SE, in the flow of FE, after phase space

reconstruction of time series, all elements of each vector are

subtracted from the mean value of the corresponding vector, the

maximum distance between two vectors is calculated, and the

membership function is introduced to calculate the similarity; in

FIGURE 1
Flow chart of SE and FE.
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addition, other steps are the same as in SE, and the value

calculation formula is shown as Eqn. 1. The work in [14, 15]

shows the specific steps of SE and DE, respectively.

2.2 Permutation entropy and dispersion
entropy

PE and DE are algorithms based on the Shannon entropy

theorem. Figure 2 depicts the flow chart of PE and DE, and their

differences are shown in the dotted box. For DE, the time series is

mapped to a new series by the normal cumulative distribution

function (NCDF) and rounding function, and then we

reconstruct the phase space of this new time series to obtain a

dispersion pattern series, then we calculate pattern probability,

and the value of entropy is defined as follows:

HEn � −∑n

i�1p(i) · ln(p(i)), (2)

where n is the number of pattern series and p(i) is the probability
of a corresponding pattern series.

For PE, the phase space of the time series is reconstructed

directly, and then, we rearrange the reconstructed vectors to

obtain a new array pattern sequence; then, we calculate pattern

probability, and the value of PE is calculated by using Eqn. 2. The

specific steps of PE and DE are shown in [22, 23], respectively.

2.3 Multi-scale method

The four types of entropy mentioned above can only measure

the time series on a single scale, which often leads to a lack of

series information. In order to solve this problem, the multi-scale

method is adopted, the specific steps are as follows:

The coarse graining operation is introduced to a time series

X � {x(i), i � 1, 2, . . . , N}, the total length of the series is N, and

the results of coarse graining can be defined as

yj(g) � 1
g
∑jg

i�(j−1)g+1 x(i), j � 1, 2,/,[N
g
], (3)

where g represents the scale factor, g � 1 . . . ..., and [N/g] is the
integer part of N/g, indicating the length of the coarse graining

series. When g is 1, the coarse-grained series is the same as the

original series. Next, the entropy of the time series at each scale is

calculated to obtain multi-scale entropy.

3 Feature extraction of ANs

3.1 Ambient noise

Six distinct types of ANs are selected for complexity, feature

extraction and recognition, which came from the National Park

Service [29]. These ANs are labeled HRS, LRS, LWS, MWS, SS,

and WSS, respectively. 400,000 sampling points are taken for

each AN, and Figure 3 shows the time domain waveform of

six ANs.

3.2 Single feature extraction and
classification

In order to compare the feature extraction effects of four

kinds of entropy for each AN. For each group of feature

extraction experiments, we take 100 samples for each AN

without repeating sampling points, and each sample is

composed of 4000 sampling points. The MSE, MPE, MDE,

and MFE of the six ANs are extracted from SF1 (SF1 means

the scale factor 1, SF2 means the scale factor 2, and so on) to

SF10. For comparison and analysis, Table 1 shows the parameter

settings of four kinds of entropy.

It can be seen from Figure 4 that the MSE of HRS, LWS,

SS, and WSS are mixed together; compared with MPE and

MDE, MSE and MFE are better at distinguishing MWB; the

discrimination effect of MPE on HRS and SS is better than the

other three entropies; and each entropy of ANs has a large

amount of aliasing. It concluded that the discrimination

effect of four kinds of entropy four marine environmental

noise is poor.

In order to compare the recognition effects of each entropy

for six ANs more conveniently, we calculated the highest ARR of

each AN under four kinds of entropy by the K-nearest neighbor

(KNN) algorithm [30]. Table 2 shows the highest ARR of a single

feature for six ANs.

FIGURE 2
Flow chart of PE and DE.
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It can be observed from Table 2 that the ARR of the four

feature extraction methods for the six ANs is lower than 77.0%

the recognition rate of the four feature extraction methods for

HRS is higher than 60%; the recognition rates of the MSE-based

feature extraction method for LRS andMWS is 100%; the ARR of

the MSE-based feature extraction method for six ANs is the

lowest, the ARR of the MFE-based feature extraction method for

six ANs is the highest; it can be concluded that it is difficult to

accurately distinguish six ANs by the single-feature extraction

method.

3.3 Multi-feature extraction and
classification

In order to further improve the recognition rate of the six

ANs, the multi-feature extraction method based on four kinds of

entropy is used to extract and classify the six ANs. Figure 5

indicates that the multi-feature distribution results correspond to

the highest ARR for six ANs.

From the Figure 5, we can find that compared with the single-

feature extraction method, the multi-feature extraction method

has a better discrimination effect on six ANs; multi-feature

extraction methods based on MSE and MFE have a better

ability to distinguish MWS than MPE and MDE; compared

with the other three feature extraction methods, the multi-

feature extraction method based on MSE has the worst effect

on SS; multi-feature extraction methods based on MFE are better

at distinguishing WSS. Results show that compared with the

other three feature extraction methods, the multi-feature

extraction method based on MFE can better distinguish six ANs.

We calculate the highest average recognition rates of multi-

features for six ANs by the KNN algorithm, in which (1, 3)

represents double features of complexity parameter under SF1,

and SF3 (1, 3, 5) represents triple features of complexity

parameter under SF1, SF3, and SF5, and so on. Table 3 shows

the highest ARR of four types of entropies for six ANs under

different numbers of features. Figure 6 shows the highest ARR of

four types of entropies for six ANs.

It can be seen from Table 3 and Figure 6 that with the

increase of the number of features, the recognition of feature

extraction methods based on the four entropy increases first

rapidly and then decreases slowly; under the same number of

features, the multi-feature extraction method based on MSE has

the lowest recognition rate; the recognition rate of the multi-

feature extraction method based on MFE is the highest, and

reaches 98.7% when the number of extracted features is 3, which

is at least 2.6% higher than the other three multi-feature

FIGURE 3
Time domain waveform of six ANs.

TABLE 1 Parameter settings of four kinds of entropy.

Entropy Embedding dimension Time delay Category number Threshold Fuzzy power

MSE 5 1 - 0.15 -

MPE 5 1 - - -

MDE 5 1 5 - -

MFE 5 1 - 0.15 2

As can be seen from Table 1, the embedding dimension and time delay of the four entropies are set to 5 and 1, respectively; the category number of MDE is 5; for MDE, the threshold c of

both MSE and MFE is 0.15; the fuzzy power of MFE is 2. Figure 4 shows the single-feature distributions corresponding to the highest ARRs for six ANs.
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extraction methods. The results show that the multi-feature

extraction method can better identify six ANs, compared with

the other three multi-feature extraction methods, MFE can better

distinguish six ANs.

4 Feature extraction of SRNs

4.1 Ship-radiated noise signals

Six different types of SRNs are chosen for feature extraction

and classification, which are called ship1, ship2, ship3, ship4,

ship5 and ship6 respectively. The six types of SRNs are all from

the National Park Service [29]. The number of sampling points of

each type of SRN is 4 × 105 and the sampling frequency is

44.1 kHz. Figure 7 indicates the time domain waveform of

six SRNs.

4.2 Single-feature extraction and
classification

100 samples are selected for each type of S-Ss, and the

sampling points of each sample is 4000. MSE, MPE, MDE, and

FIGURE 4
Single-feature distribution correspond to the highest ARR for six ANs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 2 The highest ARR of a single feature for six ANs.

Entropy SF Recognition rate ARR (%)

HRS (%) LRS (%) LWS (%) MWS (%) SS (%) WSS (%)

MSE 1 62.0 100.0 6.0 100.0 16.0 70.0 59.0

MPE 1 94.0 46.0 64.0 34.0 100.0 30.0 61.3

MDE 1 94.0 6.0 72.0 90.0 56.0 86.0 67.3

MFE 3 74.0 50.0 98.0 100.0 68.0 68.0 76.3
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MFE of the six SRNs are extracted from SF1 to SF10. The

parameters of the four kinds of entropy are consistent with

those mentioned in Section 2; Figure 9 demonstrates the

single-feature distributions corresponding to the highest

ARR for six SRNs.

Figure 8 shows that for the four kinds of entropies, the feature

distributions of six SRNs all have aliasing in general, especially

ship3 and ship5; for MSE, the scattered points representing

FIGURE 5
Multi-feature distribution results correspond to the highest ARR for six ANs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 3 Highest ARR of four types of entropies for six ANs under
different number of features.

Entropy Parameters Number of extracted features

2 3 4

MPE ARR 80.0% 82.0% 82.7%

SF combination (1, 3) (1, 3, 5) (1, 3, 5, 7)

MDE ARR 90.3% 92.3% 92.7%

SF combination (1,7) (1, 3, 7) (1, 3, 7, 9)

MFE ARR 97.3% 98.7% 98.3%

SF combination (2, 10) (1, 2, 10) (1, 2, 3, 10)

MSE ARR 66.3% 67.3% 68.0%

SF combination (1, 3) (1, 3, 6) (1, 2, 3, 6)

FIGURE 6
Highest ARR of four types of entropies for six ANs.
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ship3 to ship6 are distributed almost in the same straight line;

compared with MSE and MFE, the feature distributions of

MPE and MDE have fewer overlapping areas; for MFE, the

feature distributions of ship2 fluctuate in a larger area

compared with that of other SRNs. In summary, only the

single feature is adopted, which makes it difficult to

distinguish the six S-Ss, and the MSE has the worst

separability for six SRNs.

FIGURE 7
Time domain waveform of six SRNs.

FIGURE 8
Single-feature distributions correspond to the highest ARR for six SRNs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.
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In order to more obviously compare the average recognition

rates of six SRNs, the KNN classifier was introduced to classify six

different SRNs. 100 samples of each SRN are selected, of which

50 samples are used as training samples and the other 50 samples

are test samples. Table 4 shows the highest ARR of a single

feature.

From Table4, it can be concluded that, for the MSE-based

feature extraction method, the ARR is the lowest, the recognition

rates of ship4 and ship5 are 0%, and the recognition rate of

ship6 only reaches 4%; compared with the feature extraction

methods based on MSE, MPE, and MDE, the MFE-based feature

extraction method has the highest ARR; for the feature extraction

methods based on these four entropies, the highest ARRs are

lower than 75%. It can be concluded that it is difficult to

accurately distinguish six SRNs by the single-feature

extraction method.

FIGURE 9
Multi-feature distributions correspond to the highest ARR for six SRNs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 4 Highest ARR of a single feature.

Entropy SF Recognition rate ARR (%)

Ship1 (%) Ship2 (%) Ship3 (%) Ship4 (%) Ship5 (%) Ship6 (%)

MSE 1 86.0 86.0 78.0 0.0 0.0 4.0 42.3

MPE 1 86.0 96.0 90.0 26.0 26.0 92.0 69.3

MDE 1 96.0 98.0 44.0 98.0 12.0 60.0 68.0

MFE 1 86.0 98.0 54.0 40.0 100 52.0 71.7
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4.3 Multi-feature extraction and
classification

Tomore clearly compare the feature extraction effects of four

kinds of entropies on six SRNs, we adopted the multi-feature

extraction methods based on MSE, MPE, MDE, and MFE

separately. Figure 9 shows the multi-feature distributions

corresponding to the highest ARR for six SRNs.

It can be observed from Figure 9 that the aliasing of multi-

feature distribution of MSE for six SRNs is the most serious, and

the multi-feature distribution of MFE has the least overlapping

part; for the four multi-feature extraction methods based on

MSE, MPE, MDE, and MFE, respectively, they can accurately

distinguish ship1 and ship2; compared with the other three

multi-feature extraction methods, the MFE-based multi-

feature extraction method has excellent performance in the

recognition of ship5. In summary, the MFE-based multi-

feature extraction method has the best separability for six

kinds of ships.

In order to further compare the discrimination abilities of the

four entropies for six SRNs, we calculated the highest average

recognition rates of multi-features for six SRNs. Figure 10 is the

highest ARR of four types of entropies for six SRNs, Table 5

shows the highest ARR of four types of entropies for six SRNs

under different numbers of features.

As can be indicted from Figure 10 and Table 5, for the feature

extraction methods based on the four types of entropy, the

recognition rate for six SRNs increased with the increase of

the number of features; under the same number of features, the

highest ARR of the MSE-based feature extraction method is the

lowest; the highest ARR of the MFE-based feature extraction

method is higher than these of which based on the other types of

entropy; the highest ARR of the MFE-based feature extraction

method reaches 100% when the number of features is 3. In

conclusion, compared with the extraction methods based on

MSE, MPE, and MDE, the MFE-based feature extraction method

has the highest recognition rate.

5 Conclusion

To effectively extract the features of the underwater acoustic

signal, two comparative experiments were performed for the real-

world underwater acoustic signal by using feature extraction

methods on MSE, MPE, MDE, and MFE. The following

conclusions are obtained:

1) Through the feature extraction and classification recognition of

ANs, it is concluded that with the increase of the number of

features, the recognition of the feature extractionmethod based

on four entropies first increases rapidly and then decreases

slowly. The multi-feature extractionmethod based onMFE has

the best feature extraction effect and the highest ARR for six

ANs with the same number of features.

2) In the feature extraction of SRNs, compared with feature

extraction methods based on the other types of entropies, the

highest ARR of MFE-based feature extraction method are the

highest under the same number of features; the average

recognition rate of MFE-based feature extraction method

reaches 100% when the number of features is 3; the

application of MFE in feature extraction can effectively

FIGURE 10
Highest ARR of four types of entropies for six SRNs.

TABLE 5 Highest ARR of four types of entropies for six SRNs under
different number of features.

Entropy Parameters Number of features

2 3 4

MSE ARR 49.3% 50.0% 50.3%

SF combination (1, 3) (1, 2, 3) (1, 2, 3, 4)

MPE ARR 88.0% 90.3% 90.3%

SF combination (1, 5) (1, 5, 10) (1, 5, 7, 9)

MDE ARR 83.7% 83.7% 83.7%

SF combination (1, 4) (1, 2, 4) (1, 2, 3, 5)

MFE ARR 99.0% 100.0% 100.0%

SF combination (1, 9) (1, 6, 8) (1, 6, 7, 8)
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improve the performance of GNNS in positioning for marine

target.
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