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A recent study reported the enhancement of thermoelectric response due to

the presence of triple point phonons [Phys. Rev. Mater 2, 114204 (2018)].

Because the topological triple point phonons field is still at its early stage, it

is necessary to search for realistic materials with ideal triple point phonons. In

this work, we show that cubic Ca3I3P is an excellent material to host the ideal

charge-two triple points at high-symmetry points Γ and H. Because the charge-

two triple points have a topological charge of |C| = 2, two arc-shaped surface

states emanating from the projections of each charge-two triple nodal point

can be found in cubic Ca3I3P. It is hoped that the ideal charge-two triple point

phonons and the clean phononic arc-shaped surface states in Ca3I3P can be

experimentally confirmed shortly.
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Introduction

The study of topological behaviors in condensed matter systems [1–10] has generated

much interest in solid-state physics over the past 10 years. Emergent low-energy

quasiparticles in solid states, derived from the intrinsic topological order of the

crystalline, can serve as exotic analogs of the elementary particles in high-energy

physics and thus serve as a valuable platform to examine the related fundamental

physics. Significant accomplishments have been made thanks to ongoing work and

development, mainly since the topological band theory was established. Beyond the

conventional Weyl, Dirac, and Majorana particles under the Poincare symmetry, many

more unconventional topological quasiparticles [11–20] have been predicted thus far. In

solid states, these quasiparticles can exhibit a variety of topological charges, dispersion

types, and pseudospin structures.

The current study of crystal topology has even been further extended to bosons,

including phonons, photons, and magnons. Phonons [21–40] can be a perfect platform

for realizing these quasiparticles owing to their unique device applications and the

advantages of whole frequency range observation. For example, in the phonon dispersion

of three-dimensional-SiO2, Wang et al. [40] proposed a topological triangular Weyl

complex made up of one doubleWeyl point and two singleWeyl points. In realistic three-

dimensional materials with space group numbers 195–199, and 207–214, Liu et al.

reported charge-four Weyl point phonons. Xie et al. [24] reported that sixfold degenerate

nodal-point phonons could appear in three-dimensional materials C3N4, Sc4C3, Y4Sb3,
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and K8Si46. Chen et al. [39] systematically studied three-

dimensional Dirac phonons in 2021. As potential candidates

for materials with Dirac point phonons, some realistic three-

dimensional materials are also put forth in their work. In 2022,

Ding et al. [32] reported that three-dimensional BaZnO2 has a

type-III charge-two Weyl point phonon and double-helicoid

phonon surface states. Experimentally, inelastic x-ray

scattering was used to identify the double Weyl points in

three-dimensional FeSi [36, 38], which was a significant

driving force for the field.

According to a recent study by Singh et al. [41], the presence

of triple point phonons enhances the thermoelectric response.

However, only a handful of candidate materials are proposed to

host triple-point phonons. At the very least, the material should

meet the following criteria to qualify as a good candidate for

triple nodal point phonons. First, there must be no nearby

extraneous phonon bands at a particular frequency, as such a

situation may make it more challenging to interpret the

measured properties. Second, candidate materials with triple

nodal point phonons should have more evident arc-shaped

surface modes (i.e., not covered by the bulk phonon modes).

It is still urgently necessary to search for realistic material systems

with ideal triple nodal point phonons due to these limitations on

potential materials.

FIGURE 1
(A) The crystal structure for cubic Ca3I3P and (B) 3D BZ and selected symmetry paths.

FIGURE 2
(A) Phonon dispersion for cubic Ca3I3P and (B) enlarged phonon bands in R1 of (A). Red circles mark the charge-two triple nodal point (C-2 TP).

FIGURE 3
(A) and (B) three-dimensional plots of the phonon bands
around the charge-two triple nodal points (C-2 TPs) at high-
symmetry points Γ and H.
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In this work, we selected a realistic material, cubic Ca3I3P

with space group 214 [42], to be the ideal material candidate with

two charge-two triple nodal points at points Γ and H. The clean

and visible double arc-shaped surface states can be found, which

benefits the experimental detection.

Computational methods

We perform the first-principle calculations based on the

density functional theory (DFT) [43]. The generalized gradient

approximation (GGA) [44] with Perdew–Burke–Ernzerhof

(PBE) [45] realization was adopted for the exchanged

correlation potential. The phonon spectra of cubic Ca3I3P is

calculated by using the Phonopy code. The pre-process and post-

process were performed in the PHONOPY package using density

functional perturbation theory (DFPT) [46]. The cutoff energy

for the plane wave was 600 eV, and the Brillouin zone is sampled

using converged 5 × 5 × 5 Γ-centered k-mesh grids. To study the

topological properties of nontrivial band crossings in the phonon

spectrum, we calculate its corresponding surface states and

constant frequency slices using the WANNIERTOOLS

package [47]. In this work, the phononic surface spectrums

were simulated by the following steps: 1) by calculating the

phonon dispersion of a slab system; 2) First, we used the

phonopyTB tool, installed in the root folder of WannierTools

[47], to generate the phononic tight-binding Hamiltonian with

the FORCE−CONSTANTS. Then, we used the iterative Green’s

function method to calculate the surface states of phonons in the

software package WannierTools [47].

Results and discussion

The crystal structure of cubic Ca3I3P with space group

I4132 is shown in Figure 1A. Ca3I3P is a colorless insulator

[48], as expected from the closed-shell electronic configuration of

(Ca2+)3(I
−)3P

3−. The obtained lattice constants for cubic Ca3I3P

are a = b = c = 10.779 Å, agreeing well with the experimental

lattice constants a = b = c = 10.665 Å [42]. The Ca, I, and P atoms

locate at 48i (−0.26853, −0.98147, 0.03706), 24i (0.74736,

–0.75000, −0.24736), 8f (–0.25 –0.75000 0.250000) Wyckoff

positions, respectively. Ca2+ is bonded to two equivalent P³–

and four equivalent I1- atoms to form a mixture of edge and

corner-sharing CaP₂I₄ octahedra. P³⁻ is bonded to six equivalent

Ca2+ atoms to form edge-sharing PCa6 octahedra. I1− is bonded in

a distorted rectangular see-saw-like geometry to four equivalent

Ca2+ atoms.

The phonon dispersion for cubic Ca3I3P along G -P-H- G

-N-H-N-P (see Figure 1B) is exhibited in Figure 2A. At first

glance, the cubic Ca3I3P is dynamically stable due to the absence

of imaginary frequencies. We only focus on the R1 region, where

two obvious triple nodal points appear at high-symmetry points.

The enlarged figure of the phonon bands in R1 regions is

exhibited in Figure 2B. From Figure 2B, two charge-two triple

nodal points with a topological charge |C| = 2 can be found at

high-symmetry points Γ and H. Moreover, one finds that the

phonon bands from the two charge-two triple nodal points are

pretty clean.

The three-dimensional plots of the phonon bands around

these two charge-two triple nodal points are shown in Figures

3A,B. Obviously, the charge-two triple nodal point (C-2 TP) is a

zero-dimensional threefold band degeneracy and features a linear

energy splitting along any direction in momentum space. Note

that the charge-two triple nodal point can only appear at a high-

symmetry point in three-dimensional BZ.

Nontrivial surface states can characterize these charge-

two triple nodal points. To obtain the surface states for cubic

Ca3I3P, a surface slab model has been constructed along the

(010) surface. The calculated phononic local density of the

surface states for cubic Ca3I3P is shown in Figure 4B, and the

corresponding surface path can be referred to in Figure 4A.

The surface spectra of cubic Ca3I3P are very clean and arise

from the projections of the two charge-two triple nodal

points.

FIGURE 4
(A) Two-dimensional (010) surface BZ and selected surface
paths. (B) The calculated phononic surface states on the (010)
surface for cubic Ca3I3P using the iterative Greens function
method based on a phononic tight-binding Hamiltonian.
White arrows highlight the nontrivial surface states.

FIGURE 5
(A) and (B) the corresponding constant frequency slices at
3.60 THz and 3.45 THz, respectively. White arrows highlight the
double arc surface states.
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Interestingly, the phononic arc state around the projected

point of the nodal point shows chirality-dependent properties

[49]. Because the charge-two triple nodal point has a topological

charge of |C| = 2, two phononic arcs would be observed in cubic

Ca3I3P. Surface states on the (010) surface at 3.60 THz and

3.45 THz are shown in Figure 5A and Figure 5B, respectively.

Indeed, one could observe that two arcs emanate from the

projections of the two charge-two triple nodal points, as

shown in Figure 5.

Examining the distinctive physical characteristics of the

topological phonon states will be a crucial objective of

upcoming research. Inelastic x-ray scattering has been used in

topological phonon experiments thus far to visualize the

topological band degeneracy. We need to look for other

measurable effects from the topological phonons and to

propose sound material systems. In order to detect these

effects experimentally, new methods must be developed,

precisely ways to separate the signal from topological modes.

In an experiment, the surface phonon modes can be verified by

high-resolution electron energy loss spectroscopy, helium-atom

scattering, or THz spectroscopy.

Summary

With the help of first principle calculations, the phononic

charge-two triple nodal points are reported to appear at high-

symmetry points in cubic Ca3I3P. In addition, we also studied the

phononic surface states and the isofrequency arcs on the (010)

surface. Such clean and visible double surface arcs confirm the

topological charge of |C| = 2 for the two triple nodal points in

cubic Ca3I3P. Moreover, the nontrivial surface states are long and

clean, benefiting the experimental detections soon. Our work not

only determines the ideal charge-two triple nodal point states but

also confirms the clean and long double phononic surface arcs in

cubic Ca3I3P.
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