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In recent decades, nodal point states in electronic systems have attracted

significant interest in current research. Recently, the conceptual framework

of nodal point states has been extended to bosonic systems, especially the

phononic one. It is well known that the nodal point states may exist muchmore

universally in materials other than topological electronic systems. Fortunately, a

series of nodal point phonons are reported in three-dimensional realistic

materials, and some are certified in experiments. However, to our

knowledge, the study of phononic 2D nodal points is still relatively primitive.

Hence, a highlight of research in the emerging area covering approximately the

last two-three years is necessary. This mini-review will summary the recent

advances in the phononic nodal point in two dimensions. Some typical

examples, including graphene, CrI3 monolayer, YGaI monolayer, TiB4

monolayer, Ti2P monolayer, and Cu2Si monolayer, are concluded in this

mini-review. The topological properties and possible applications of these

material candidates are also summarized.
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Introduction

To this date, various topological quasiparticles in three-dimensional (3D) crystalline

solids, such as nodal points [1–10], nodal lines [11–20], and nodal surfaces [21–27], have

attracted widespread attention because of their unique physical properties and potential

applications. As prominent examples, Dirac/Weyl nodal point materials refer to a class of

solid materials that feature topology-/symmetry-protected band degeneracies around the

Fermi level, such that the Dirac/Weyl equations can describe the low-energy fermionic

excitations around the band crossings in high-energy region.

Recently, the searching of nodal point states has been extended to spinless phonon

systems [28–45]. Phonons can be viewed as a perfect platform for realizing the nodal point

states [46–58] due to their unique device applications and the advantages of whole

frequency range observation. For example, Wang et al. [53] proposed a topological

triangular Weyl complex composed of one double Weyl point and two single Weyl points

in the phonon dispersion of three-dimensional α-SiO2. Liu et al. [52] reported charge-four

Weyl point phonons in three-dimensional realistic materials with space group numbers

195–199, and 207–214. Xie et al. [46] reported sixfold degenerate nodal-point phonons in

three-dimensional materials, including C3N4, Sc4C3, Y4Sb3, and K8Si46. In 2021, Chen

et al. [51] systematically investigated three-dimensional Dirac phonons in all space groups
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with inversion symmetry. Some realistic three-dimensional

materials are also proposed in their work [22] to be candidate

materials with Dirac point phonons. In 2022, Ding et al. [54]

reported that three-dimensional BaZnO2 has a type-III charge-

two Weyl point phonon and double-helicoid phonon surface

states. In the same year, Yang et al. [47] proposed the appearance

of phononic nodal points with quadratic dispersion and

multifold degeneracy in the three-dimensional Ta3Sn.

Experimentally, the double Weyl points in three-dimensional

FeSi [56] were detected by inelastic x-ray scattering, which

provided a strong driving force for the field.

However, to our knowledge, studying phononic nodal points in

two dimensions is still relatively primitive. Only a handful of two-

dimensional materials have been predicted to host phononic nodal

points [59–61]. Hence, a highlight or summary of research in the

emerging area of phononic nodal points in two dimensions covering

approximately the last two-three year is highly desired. This mini-

review highlights recent and vital developments in the phononic

nodal points in two dimensions. The proposed phononic Dirac point

and higher-order nodal point in two dimensions will be summarized,

and some typical material candidates, including graphene, CrI3
monolayer, YGaI monolayer, TiB4 monolayer, Ti2P monolayer,

FIGURE 1
(A) phonon dispersion for graphene along Γ-M-K-A-Γ-K′ paths. The positions of DP1-DP4 and PNR are exhibited in (A). (B) The ribbonmodel of
graphene with a zigzag-edged boundary. (C) calculated phonon dispersion of the ribbon model and the edge states. (D) (from top to bottom) The
enlarged figures of the edge states arise from the projections of DP3, PNR, and DP1 phonons, respectively. (E) and (F) the calculated phonon
dispersions for the CrI3monolayer and YGaImonolayer, respectively. Boxesmark the positions of the Dirac points at the K high-symmetry point.
The enlarged figures of the phonon bands in these boxes are also exhibited in (E) and (F). (G) and (H) different views of Berry curvature distributions of
CrI3 with the Dirac frequency ω = 3.542 THz. (I) and (J) calculated edge states of semi-infinite nanoribbons for CrI3 and YGaI with a zigzag-edged
boundary. Reproduced from Refs. [60, 61] with permissions.
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and Cu2Si monolayer, are concluded in this mini-review. The author

will also summarize these material candidates’ related topological

properties and possible applications in this mini-review.

Phononic dirac point in two
dimensions

In 2020, Li et al. [61] proposed the topological phonons in

graphene based on the first-principle calculation and symmetry

analysis. The phonon dispersion of graphene is collected in

Figure 1A, one finds that there exist four types of Dirac

points (DPs), named DP1-DP4, respectively. From Figure 1A,

the DP1 and DP2 locate at K and K′ high-symmetry points. The

DP3 appears on Γ-M path and the DP4 appears on Γ-M surface

path, respectively. Moreover, Li et al. [61] examined the

topological signatures for these DPs by calculating the Berry

phases of the DP1-DP4. The Berry phases of DP1-DP4 are

highlighted by “+” and “-“ for π and -π, respectively. Hence,

DP1-DP4 appear in pairs and are topologically nontrivial.

Moreover, two phononic band crossing points around 24 THz

are obvious along Γ-K and Γ-K′ paths (see Figure 1A). These two
points are not isolated and should form a closed ring

(i.e., phononic nodal ring (PNR)). Li et al. [61] also investigated

the edge states for the two-dimensional graphene with the help of

Green’s function iteration method. The results of the edge states

are collected in Figures 1C,D. The top figure of Figure 1D shows

the edge states arising from the projections of DP3 phonons. The

middle figure of Figure 1D shows the edge states arising from the

projections of PNR phonons, and the bottom figure of Figure 1D

FIGURE 2
(A) Lists of PG, LG, and Generators related to the phononic quadratic nodal points at high-symmetry points. (B–D) structural models, calculated
phonon dispersions, enlarged phonon bands around the quadratic nodal points (QNPs), and the calculated edge states for TiB4, Ti2P, and Cu2Si
monolayers, respectively. Reproduced from Ref. [59] with permissions.
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shows the edge states arising from the projections of DP1 phonons.

The appearance of the phononic nodal points is essential for

graphenes, providing an excellent direction to investigate the

interesting topological phonons in two dimensions. Moreover,

the predictions of the phononic nodal point in two dimensions can

pave a new way to study the related topological properties, such as

destructive interference and quantum (anomalous/spin) Hall-like

topological effects.

Interestingly, Jin, Wang, and Xu [60] proposed a method to

generate Dirac phonon states with a quantized valley Berry phase in

a two-dimensional hexagonal lattice. Using this method, they [60]

proved that candidates with C3 symmetry at corners of the

hexagonal Brillouin zone could host robust valley Dirac

phonons. With the help of first-principle calculations, the

phonon dispersions of two typical examples, i.e., CrI3 monolayer

and YGaI monolayer, are calculated by Jin,Wang, and Xu [60]. The

results are collected in Figures 1E, F, in which multiple Dirac points

can be observed at K and K′ high-symmetry points. Note that the

CrI3 monolayer is a magnetic semiconductor with a Curie

temperature of 42.8 K. In 2018, Jiang et al. [62] proposed that

the magnetism of two-dimensional CrI3 can be controlled by

electrostatic doping. Hence, Jin, Wang, and Xu [60] paved a new

way to study topological phonons in two-dimensional magnetic

materials. Similar to the DP1 and DP2 located at K and K′ high-
symmetry points in graphene, the Dirac point phonons appear at K

and K′ in the CrI3 monolayer and YGaI monolayer. As shown in

Figures 1G,H, the quantized Berry phase of π and -π are verified at

K′ and K valleys by calculating the Berry curvature distributions.

The edge states for the CrI3 monolayer are visibly terminated at the

projections of the Dirac points at K and K’. Their work not only

provides a broad application of topological phonons in two

dimensions but also extends the aspect of valley physics.

Phononic higher-order nodal point in
two dimensions

In 2022, Yu et al. [59] searched through 80-layer groups and

found that the phononic higher-order nodal point can appear in

two dimensions. The appearance of the phononic higher-order

nodal points is protected by rotation (except the twofold one) and

time-reversal symmetries. They also stated that the highest order

of momentum in a two-dimensional system is the second order,

named quadratic order. From Figure 2A, Yu et al. [59] pointed

out that the phononic higher-order nodal points can appear in

layer groups of 49–80. The high-symmetry points where the

phononic higher-order nodal points appear, the PG, and the

Generators are also exhibited in Figure 2A.

As shown in Figures 2B–D, they [59] proposed some two-

dimensional material candidates, including TiB4, Ti2P, and Cu2Si

monolayers, hosting the quadratic nodal point phonons at high-

symmetry points. The structural models and the calculated

phonon dispersions for these three monolayers are collected

in Figures 2B–D, respectively. A Z − valued topological

invariant can show as N � 1
4πi∮CTrσzH−1(k)∇kH(k) · dk. Yu

et al. [59] also stated that the two-dimensional quadratic nodal

point could be characterized by an integer topological invariant,

reflecting the appearance of the edge states. The visible edge

states arising from the projections of the quadratic nodal points

for these two-dimensional material candidates are collected in

Figures 2B–D. Note that the edge states are very clean, benefitting

the experimental detections.

Summary

In this mini-review, the author summarized the recent advances

in the phononic nodal point in two dimensions covering

approximately the last two-three years. Typical two-dimensional

material candidates, such as the CrI3 monolayer, YGaI monolayer,

TiB4 monolayer, Ti2P monolayer, and Cu2Si monolayer, are

concluded in this mini-review. Their topological signatures and

possible properties are also summarized. This mini-review is hoped

to help study phononic nodal point phonons in two dimensions.
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