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Recently, there has been significant interest in exploring the chiral quasiparticles

in phonons, which describe the atomic lattice vibrations in solids. In this work,

using first-principle calculation, we select a realistic material Na2Zn2O3 as an

example to demonstrate that it is an ideal candidate with charge-two Dirac

point phonons and charge-twoWeyl point phonons at high-symmetry points A

and Γ, respectively. The phononic charge-two nodal points in Na2Zn2O3 are

visible and almost ideal. That is, there are no other phonon bands nearby.

Moreover, nontrivial phononic surface arcs span the whole surface Brillouin

zone. Such clean and long nontrivial arc-shaped phononic surface states

benefit the experimental detection. The current work is hoped to guide the

investigations of chiral nodal points in phononic systems.
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Introduction

It is well known that the chiral quasiparticles could exist in spinless systems, such as

the phononic system and classical elastic waves in macroscopic artificial phononic

crystals. Recently, there has been great interest in exploring topological quasiparticles

in phonons [1], which describe the atomic lattice vibrations in solids. So far, a number of

materials hosting Weyl point phonons [2–10], Dirac point phonons [11, 12], triple

degenerate nodal point phonons [13, 14], sixfold degenerate nodal point phonons [15,

16], nodal line phonons [17–30] and nodal surfaces phonons [31–33] have been

discovered. Compared with chiral fermions in electronic systems, chiral phonons exist

without spin-orbital coupling.

Let us come to review the recent advances in chiral nodal point phonons as follows: In

2018, Zhang et al. [2] identified a class of crystalline materials of MSi (M = Fe, Co, Mn, Re,

Ru) exhibiting double Weyl phonons, and they named the topological points as ‘spin-1

Weyl point’ at the Brillouin zone (BZ) center and “charge-2 Dirac point” at the zone

corner. Motivated by Zhang et al.’s recent theoretical work [2], Huang et al. [4] measured

the phonon dispersion in parity-breaking FeSi using inelastic x-ray scattering and

confirmed the double Weyl phonons in experiments. Moreover, based on first-

principle calculation and symmetry analysis, Liu et al. [5] defined a new type of Weyl

phonons with Chern numbers of ±4. They [5] also proposed that BiIrSe and Li3CuS2 are

candidate materials with charge-four Weyl phonons. In 2020, Wang et al. [9] proposed a
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symmetry-protected topological triangular Weyl complex

composed of one double Weyl point and two single Weyl

points. They [9] also stated that the unique triangular Weyl

complex could be observed in the phonon dispersion of α−SiO2.

In 2022, Ding et al. [34] predicted that BaZnO2 is an ideal

material candidate with type-III charge-two Weyl point

phonons. BaZnO2 can support double-helicoid phonon

surface states covering the entire Brillouin zone (001) surface.

Besides trigonal BaZnO2, they [34] stated that some other

candidate materials, including tetragonal MgTiO4, trigonal

Li2GeF6, hexagonal CaSO4, and cubic Li10B14Cl2O25, can host

the type-III charge-two Weyl point phonons.

In this work, we propose a realistic material Na2Zn2O3 [35] is

an ideal system with chiral phonons, i.e., charge-two Dirac point

phonons and charge-two Weyl point phonons at A and Γ high-

symmetry points, respectively. More interestingly, the nontrivial

phonon surface arcs are very long, clean, and span over the whole

surface BZ. Na2Zn2O3 phonons should be an excellent platform

to investigate the coexistence of charge-two Dirac and Weyl

points in spinless systems. Also, our results can be extended to

other bosonic systems.

Approach

We perform the first-principle calculations based on the

density functional theory (DFT) [36]. The generalized

gradient approximation (GGA) [37] with

Perdew–Burke–Ernzerhof (PBE) [38] realization was adopted

for the exchanged correlation potential. The phonon spectra of

Na2Zn2O3 is calculated by using the 2 × 2×1 supercell as

implemented in Phonopy code. The pre-process and post-

process were performed in the PHONOPY package using

density functional perturbation theory (DFPT) [39]. The

cutoff energy for the plane wave was 600 eV, and the

Brillouin zone is sampled using converged 5 × 5×3 Γ-centered

k-mesh grids. To study the topological properties of nontrivial

band crossings in the phonon spectrum, we calculate its

corresponding surface states and constant frequency slices

using the WANNIERTOOLS package [40].

Results and discussion

Figure 1A shows the crystal structure of tetragonal Na2Zn2O3

with the P43212 space group. Na1+ is bonded in a 4-coordinate

geometry to four O2- atoms. Zn2+ is bonded to four O2- atoms to

form a mixture of corner and edge-sharing ZnO4 tetrahedra.

There are two inequivalent O2- sites. In the first O2- site, O2- is

bonded in a 4-coordinate geometry to two equivalent Na1+ and

two equivalent Zn2+ atoms. In the second O2- site, O2- is bonded

FIGURE 1
(A) Crystal structure of tetragonal Na2Zn2O3 with P43212 space group. (B) Three-dimensional BZ and selected symmetry paths.

FIGURE 2
Phonon dispersion of tetragonal Na2Zn2O3 with P43212 along
Γ-X-M-Γ-Z-R-A-Z-X-R-M-A high-symmetry paths. The charge-
two Weyl point (C-2 WP) and charge-two Dirac point (C-2 DP) at
high-symmetry points Γ and A, are highlighted by red circles.
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FIGURE 3
The bulk BZ and the corresponding (001) surface BZ. (B) Three-dimensional plot of the phonon bands around the charge-two Dirac point (C-
2 DP) at (A). (C) Projected spectrum on the (001) surface, and (D) the corresponding constant frequency slice at 16.20 THz.

FIGURE 4
(A) The bulk BZ and the corresponding (001) surface BZ. (B) Three-dimensional plot of the phonon bands around the charge-twoWeyl point (C-
2 WP) at Γ. (C) Projected spectrum on the (001) surface, and (D) the corresponding constant frequency slice at 15.79 THz.
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to three equivalent Na1+ and three equivalent Zn2+ atoms to form

distorted edge-sharing ONa3Zn3 octahedra. The calculated lattice

constants for tetragonal Na2Zn2O3 are a = b = 6.262 Å, c =

9.507 Å, closing to the experimental data a = b = 6.181 Å, c =

9.447 Å. The Na atoms locate at 8b Wyckoff position, O atoms

locate at 8b and 4a Wyckoff positions, and the Zn locates at 8b

Wyckoff position.

Based the 3D BZ and the selected high-symmetry paths in

Figure 1B, the phonon dispersion of Na2Zn2O3 along Γ-X-M-Γ-
Z-R-A-Z-X-R-M-A high-symmetry paths are shown in

Figure 2. From Figure 2, one finds that there is no

imaginary frequency, demonstrating the dynamical stability

of material Na2Zn2O3. Moreover, one finds that all the phonon

bands along A-M-R-X-M and Z-R-A-Z paths are twofold

degeneracy, and two twofold degenerate bands cross at A

high-symmetry point, forming a fourfold degenerate Dirac

point. Moreover, one finds that multiple Dirac points appear

at high-symmetry point A with different frequencies,

suggesting these Dirac points are symmetry-enforced and

must appear at A high point. It is worth noting that the

three-dimensional charge-two Dirac points may be hidden

in rambling branches; thus, their topological features are

invisible. We only focus on the Dirac point at about 16 THz

(highlighted by the red circle). The three-dimensional plot of

the phonon bands around the Dirac point are shown in

Figure 3B. From Figure 3B, one finds that the Dirac point at

A point has fourfold degeneracy. It should be noted that the

Dirac point at A point is a charge-two Dirac point, which is a

zero-dimensional fourfold band degeneracy with a topological

charge |C| = 2. From Figure 3B, the charge-two Dirac point at A

features a linear dispersion along any momentum-space

direction. Dirac point can be considered as a combination of

two charge-one Weyl points with opposite topological charge.

Hence, the charge-two Dirac point contains two charge-one

Weyl points with the same topological charge.

In Figure 3C, we show the projected spectrum on the (001)

surface for Na2Zn2O3. Obviously, clean phononic surface states

can be found from the projection of the charge-two Dirac point.

Moreover, the (001) surface states further display linear

dispersions of the charge-two Dirac point, showing

consistency with the three-dimensional plot of the phonon

band in Figure 3B. Figure 3D shows the corresponding

constant frequency slice at 16.20 THz. Indeed, one could

observe that two arcs emanate from the projections of each

Dirac point, indicating the charge of the Dirac point should equal

2. More interestingly, the surface arcs are nontrivial due to the

chirality. The surface arcs (marked by white arrows) are very long

and span over the whole surface BZ.

Next, we discuss the charge-twoWeyl point at Γ high-symmetry

point around 15.8 THz. From Figure 2, one finds that there exists a

twofold degenerate Weyl point at Γ point. Such Weyl point is a

charge-two Weyl point, a zero-dimensional twofold band

degeneracy with a topological charge |C| = 2. As shown in

Figure 4B, one finds that the charge-two Weyl point features a

linear dispersion along kz direction and a quadratic energy splitting

in the plane (kx-ky plane) normal to the kz direction. Here, the

phonon spectrum is plotted in Figure 4C, in which one can observe

the nontrivial surface states arising from the projections of the

charge-two Weyl point at point. The isofrequency (001) surfaces at

15.79 THz are exhibited in Figure 4D.We can see that two branches

of surface arcs start at �A. These long surface arcs exhibit a double-

helicoid nature and span over the whole surface BZ. Note that all the

arcs exhibited in Figure 4D are topological nontrivial, greatly

facilitating the experimental detection and further applications.

Conclusion

In summary, we propose a realistic material, tetragonal

Na2Zn2O3 with P43212 space group, which hosts symmetry-

enforced charge-two Dirac point phonons and charge-two

Weyl point phonons with unique long and nontrivial surface

arcs. Our work uncovers the appearance of the chiral Dirac and

Weyl points in the spinless system. In addition, we provide an

ideal candidate who possesses chiral Dirac and Weyl points at

high-symmetry points, leading to the formation of long and

nontrivial surface arcs. Our work provides a good idea for

detecting chiral phonons in realistic materials.
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