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In this invited paper, a novel water chemical oxygen demand (COD) detection

method based on laser spectroscopy is proposed, and the COD value is

obtained according to the intensity ratio of laser Fluorescence-Raman signal

produced by laser incident into water. Based on the laser Fluorescence-Raman

ratio (LFRR) method, we design a portable water quality measurement system.

In which, a 405 nm semiconductor laser is used as the light source. The laser is

coupled into the delivering port of Y-type fiber and then transmitted into water.

The generated Mie scattered light, water Raman light and corresponding

fluorescence are received and transmitted into spectrometer through the

detecting port of Y-type fiber, and the COD value can be obtained by

analyzing the LFRR of water spectra. The mixed solution of sodium humate

and glucose is used as the COD standard solution to calibrate the designed

system. The experiment results show that the optimal volume ratio of the two

solutions is 1:29. When the COD of standard solutions is in the 1–12 mg/L

concentration range, a good linear relationship can be found between the COD

value and LFRR value with a correlation coefficient of 0.974. In addition, the

COD of natural water samples are measured with LFRR method, the results of

which are consistent with COD values obtained by rapid digestion

spectrophotometry. Meanwhile, experimental results prove that the COD

detection method proposed in this paper has the advantages of high

sensitivity, high precision, high detection speed and simplicity, which can be

widely used in various water areas for real-time COD monitoring.
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Introduction

Water quality analysis is an important task of environmental monitoring. The

chemical oxygen demand (COD) describes the concentration of reducing substances

in water, which is an important parameter for evaluating the organic pollution and quality

of water [1–3]. Generally, there are two methods for measuring the COD: chemical
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method and optical method. Currently, the method commonly

used for determining COD is chemical method, which requires a

long measurement period and a lot of chemical reagents that may

lead to secondary pollution if the reagents are not handled

properly [4]. Meanwhile, the chemical method cannot be used

for real-time analysis of water quality. Compared to chemical

method, optical method based on the material characteristic

spectrum has been drew much attention in recent years for its

rapid detection and pollution-free characteristics [4–10].

At present, the optical method mainly includes absorbance

spectrophotometry, hyperspectral analysis [1, 2] and fluorescence

spectroscopy. The absorbance spectrophotometry can be further

divided into single-wavelength measurement method, double-

wavelength measurement method, multi-wavelength

measurement method and broad-spectrum measurement

method. The essence of absorbance spectrophotometry is to

measure the absorption of the organic matters at a certain

wavelength to calculate the COD value of water, which is a

common method for online COD measurement. However, this

method has relatively poor sensitivity and may cause larger

measurement errors when COD is lower than 20 mg/L [12]. The

hyperspectral analysis method has the advantages of high spatial

resolution, high spectral resolution and spectrum integration.

However, the technical operation of this method is complicated

and high cost [12]. The sensitivity of fluorescence measurement is

typically 10–1,000 times that of absorbance spectrophotometry, and

has received much attention in the field of water quality monitoring

[14, 16]. Recently, some scientists have applied three-dimensional

fluorescence spectrometry to water quality measurement [17–32].

In 2004, S. Lee used the fluorescence excitation-emission matrices

(FEEM) to analyze various water quality parameters of domestic

wastewater, and the results showed that there is a good linear

relationship (r2 = 0.914) between measured COD values by wet

chemical method and that of FEEM [12]. In 2010, Hur used

synchronous fluorescence spectra and its first derivatives to

analyze the BOD and COD of wastewater samples collected in

sewer systems in urban and non-urban areas, and the good

correlation coefficients of 0.92 and 0.94 for BOD and COD can

be obtained, respectively [18]. In 2011, Liu analyzed the absorption

and fluorescence properties in a large subtropical reservoir and then

used a chromophoric dissolved organic matter (CDOM)

fluorescence monitoring sensor to predict several water quality

parameters including the COD, dissolved organic nitrogen

(DON), dissolved organic phosphorus (DOP) and dissolved

organic matter (DOM). The significant correlations were found

between the CDOM concentration and total nitrogen (TN), total

phosphorus (TP), COD, dissolved organic carbon (DOC), and the

maximum fluorescence intensity of humic-like component (C1),

suggesting that the real-time monitoring of CDOM concentrations

could be used to predict these water quality parameters [33]. In

2019, Goffin presented a method for measuring the soluble COD in

raw sewage by means of three-dimensional fluorescence

spectroscopy, and the results showed that the approach can be

served as a guideline for purposes of implementing online

wastewater monitoring and conducting environmentally friendly

soluble COD measurements in the laboratory [20].

Generally, the advantages of three-dimensional fluorescence

spectroscopy are mass spectral measurement data and high

sensitivity but with the disadvantages of slow detection speed and

complex operation, thus it is not suitable for on-line water quality

analysis. Compared to three-dimensional fluorescence spectroscopy,

two-dimensional fluorescence spectroscopy uses a single-wavelength

laser or LED as the excitation light source, which simplifies the

experimental design, and has a high analysis speed in water quality

measurement since that only two-dimensional spectral data need to be

analyzed. Therefore, many scholars begin to apply the two-

dimensional fluorescence spectroscopy in water quality

measurement. In 2015, Bridgeman designed a novel LED-based

fluorescence instrument for the rapid assessment of potable water

quality, and the results demonstrated that this device can provide an

accurate in situ in real time assessment of water quality [34]. In 2022,

Zheng proposed a water quality COD analysismethod based on laser-

induced fluorescence spectra, and used a single-wavelength

semiconductor laser (wavelength of 405 nm) as the excitation light

source and collected the emitted fluorescence spectra through a

portable fiber optic spectrometer. PCA and PLS algorithms were

used for data dimensionality reduction and model building,

respectively. The results indicated that the COD prediction errors

of this model for the test set are less than 20% [35].

At present, although two-dimensional fluorescence spectroscopy

can measure COD parameter through the analysis of fluorescence

intensity, the practical measurement accuracy is often influenced by

some factors such as the interference of environmental light, water

fluctuation, instrument vibration and laser-aging using [34–36]. In

this paper, the development of a portable, laser spectroscopy-based

system, capable of the real-time detection of COD parameter in water

is described. The system adopts Y-type fiber as the transmission

medium of optical signal, and uses the LFRR to calculate the COD

value, which can reduce the influence caused by various factors to

some extent. In experiment, we adopt the mixed solution of sodium

humate and glucose as theCOD standard solution of spectralmethod,

and obtain the optimal mixing ratio of the two solutions through the

detection and analysis of spectrum at different standard solution

concentrations. In addition, the spectra of COD standard solutions

within a certain range are detected, and significant positive correlation

is found between COD value of standard solutions and LFRR.

Detection principal

A typical spectrum produced by a laser incident on water is

shown in Figure 1, it can be seen that the whole spectra consists of

[33] Rayleigh-scattered and Mie-scattered laser signal IS generated

by elastic scattering, water Raman signal IR generated by inelastic

scattering of the excitation light and DOM (dissolved organic

matters) fluorescence signal IF. In general, there are three
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significant water Raman peaks [37] with wavenumbers of

1,595 cm−1, 3,120 cm−1 and 3,400 cm−1 when the water molecule

is excited, and the 3400cm−1 can be excited to generate the

strongest water Raman signal IR since it has the highest Raman

gain coefficient. When the laser incident into the water, the higher

the concentration of organic matter in the water, the stronger the

fluorescence signal is generated, thus it can be considered that the

COD value is proportional to fluorescence intensity:

COD � K × IF + C (1)

where the coefficient K and the limit of detection C are constant,

which can be determined in experiment.

For the same water sample, the laser intensity fluctuations

and environmental changes both have a major influence on the

received fluorescence signal, which lead to instability of the

measured COD value in practical application. To solve this

problem, we measure the COD parameter of water quality

using the LFRR method. In addition, since the spectral range

of the fluorescence generated by organic matter is relatively large,

the integrated-fluorescence-intensity IT is adopted to calculate

the COD value to obtain the fluorescence features of organic

matters.

IT � ∫
λ2

λ1

Iλdλ/Ir (2)

where λ1 is the integrated starting wavelength, λ2 is the integrated

ending wavelength, Iλ is the intensity of optical signal at

wavelengthλ, Ir is the intensity of water Raman signal by

deducting the fluorescence background. In practical

application, IF can be replaced by IT to achieve the accurate

COD measurement.

Experimental setup

A schematic view of the experimental setup is shown in

Figure 2, which is primarily composed of four parts: laser

spectrum detection system, optical fiber transmission system,

signal processing system and sample system. The laser spectrum

detection system consists of laser emission unit, spectrum

detection unit, and data acquisition unit. The laser emission

unit is composed of a 405 nm semiconductor laser. The laser

spectrum detection system includes a filter, optical splitting

system, coupling lens, and CCD [38]. The spectrometer used

in the experiment can measure light with wavelengths between

400 and 760 nmwith a resolution of 2 nm. The fiber transmission

system is a “8 + 1” Y-type fiber of 80 cm, which contains

delivering port, receiving port, and detecting port. A

semiconductor laser is coupled into the delivering port of a

400 µm-diameter single-core fiber. The receiving port is eight

fibers bundle group with diameter of 200 µm which is connected

to spectrometer. A computer is employed as signal processing

system to control both laser emission and spectra reception,

furthermore, it can process spectral data as well as calculate water

quality parameters. The sample system consists of test tube, and

water sample.

During the measurement period, output laser at 405 nm is

firstly directed into the detecting port of Y-type fiber through

the delivering port and then immersed into water sample

vertically. Subsequently, optical signal excited by the laser is

transmitted into receiving port of Y-type fiber through eight-

core fiber of detecting port, and then input into the optical

splitting system through the long-pass filter. Eventually, the

optical signal is converted into electrical signal through CCD

and then sent to a computer via a USB port. The computer is

used to process data and calculate the COD with the

corresponding software. In addition, the computer can adjust

the exposure time of the CCD according to the intensity of the

spectrum signal, and collect the spectrum of the water sample

by controlling the power of the laser to turn on and off, so that

the interference of the background light can be eliminated

dynamically.

Results and discussion

The standard solution plays an important role in the

calibration, adjustment and maintenance of instrument.

Currently, potassium biphthalate and glucose are the

commonly standard solutions used for potassium

FIGURE 1
A typical spectrum produced by laser exciting water (IS is
Rayleigh-scattered and Mie-scattered laser signal generated by
elastic scattering, Ir is the intensity of water Raman signal by
deducting the fluorescence background, IR is water Raman
signal generated by inelastic scattering, IF is DOM fluorescence
signal.
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permanganate oxidation (CODMn) and potassium dichromate

oxidation (CODCr), respectively. In addition, absorbance

spectrophotometry usually uses potassium biphthalate

standard solution to calibrate the instrument when measuring

water quality COD. Therefore, it is also necessary to select a

suitable standard solution to accurately calibrate the

experimental setup of COD measurement in “Experimental

setup”.

Preparation of standard solution

The organism in natural water is mainly composed of humic-

like (estimated >50%) [39], protein-like, polysaccharide-like and

polypeptide-like. For humic-like, it is vulnerable to generate the

significant fluorescence when excited by UV laser, thus sodium

humate can be employed as a substitute for humic-like in

formulation of COD standard solution of laser spectroscopy.

Since the fluorescence intensity in sodium humate solution is

higher than that of natural water with same COD value, the

mixed solution of no-fluorescence glucose solution and sodium

humate solution is prepared as the COD standard solution. In the

process, the ratio of sodium humate to glucose Rsg = Vsh/Vg is

adjusted to make the fluorescence intensity of the standard

solution close to the natural water sample, where Vsh is the

volume of sodium humate solution, Vg is the volume of glucose

solution.

It is considered that the standard solution reaches the

optimum ratio when standard solution and natural water have

the same COD value detected by rapid digestion

spectrophotometry and integrated-fluorescence-intensity

calculated by spectra. In order to determine the optimum Rsg,

the corresponding steps are as follows: firstly, we adopt the rapid

digestion spectrophotometry to measure the COD value of

natural water samples collected from Riyue lake in Harbin

Institute of Technology (Weihai). Secondly, under the same

identical COD as natural water, we formulate the standard

solutions with different Rsg. Finally, the optimum Rsg can be

obtained when the spectral integrated-fluorescence-intensity of

natural water is same as that of standard solution.

From the spectra of standard solutions and natural water

(Figure 3), we can see that all spectra contain 405 nm

FIGURE 2
Experimental setup of the COD measurement.

FIGURE 3
The spectra of standard solutions and natural water (vertical
direction presents wavelength, horizontal direction presents
spectral intensity, the green line presents natural water of COD =
8 mg/L collected from Riyue lake, and other color presents
standard solutions under different ratios).
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scattered light signal, 471 nm water-Raman signal, and

fluorescence signal of organism, in addition, a 680 nm

chlorophyll fluorescence signal can also be seen in

spectrum of actual water. Overall, Under the identical laser

power, the fluorescence intensity increases with the

proportion of sodium humate in standard solution.

Excluding the effect of 405 nm scattered light signal and

680 nm chlorophyll fluorescence signal, the variation in

integrated-fluorescence-intensity of standard solution with

Rsg is shown in Figure 4A. It can be seen that the spectral

integrated-fluorescence-intensity of the standard solution at

the Rsg ranges of 1/50 to 1/20 increases with the increase of

Rsg. This phenomenon can be explained that the sodium

humate concentration in standard solution increases with

Rsg, and results in the increase of fluorescence intensity and

integrated-fluorescence-intensity. The crossing point (R = 1/

29) of the two lines presents the optimum Rsg where the

standard solution has same integrated-fluorescence-intensity

as natural water.

To verify the accuracy of R = 1/29, rapid digestion

spectrophotometry is employed to test the COD

measurement value of standard solutions with different

concentrations, and the detection of all water samples are

repeated for three times. The correlation between the COD

standard solution preparation value and the measurement

value is established in Figure 4B. It can be seen that the

correlation between the COD standard solution preparation

value and the measurement value with a correlation

coefficient of 0.986 is obtained. The experimental results

show that the standard solution prepared at R = 1/29 can

be used to simulate natural water.

The correlation relationship between
chemical oxygen demand value with
integrated-fluorescence-intensity

Figure 5 shows the measured spectra from standard solutions

(R = 1/29) of different concentrations, the integrated-

fluorescence-intensity increases with COD value at 1–12 mg/L,

FIGURE 4
(A) The integrated-fluorescence-intensity of standard solution and natural water (red line is the result of natural water sample collected in Riyue
lake, purple line is the result of standard solution) (B) The correlation between COD value of formulation and measurement (vertical direction
presents COD formulation value, horizontal direction presents COD measurement value).

FIGURE 5
The correlation between COD value of standard solution and
integrated-fluorescence-intensity (vertical direction presents
COD value of standard solution, horizontal direction presents
spectral integrated-fluorescence-intensity).

Frontiers in Physics frontiersin.org05

Che et al. 10.3389/fphy.2022.1055049

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1055049


and a linear regression equation with a correlation coefficient r2 =

0.974 is obtained:

COD � 0.093IT − 2.359 (3)

In the practical application, we adopt a Y-type fiber to collect

spectral signal, and calculate COD value from Eq 3.

The chemical oxygen demand
measurement of natural water

To validate the accuracy of the system designed in this

paper, a comparison of the COD measurement results of

water samples collected at three different locations in Riyue

lake for laser spectroscopy versus rapid digestion

spectrophotometry is shown in Table 1. The error of two

method is 15.9%, 1.3% and 8.1%, respectively. Overall, the

result indicates that laser spectroscopy proposed in this paper

can meet the demand on COD measurement of natural water

with high accuracy.

Conclusion

In this paper, a novel water COD detection method based on

laser Fluorescence-Raman ratio is proposed, and a small COD

detection system is designed to realize the accurate COD

measurement. In order to calibrate the instrument conveniently,

the mixed solution of humic acid sodium and glucose is adopted as

the standard solution for CODmeasuring by the laser spectroscopy

method. The optimum ratio of sodium humate to glucose in

standard solution is 1:29 in our experiment. Under this ratio, we

detect the standard solution with COD value range of 1–12 mg/L,

and establish the correlation between COD value with integrated-

fluorescence-intensity. The linear correlation coefficient is r2 =

0.974, and the empirical formula is COD = 0.093 IT-2.359.

In the practical COD measurement, laser spectroscopy and

rapid digestion spectrophotometry are used to detect the COD

value of three natural water samples. The results of two methods

have high consistency, and the measurement error in laser

spectroscopy meets the COD detection requirement of natural

water quality. The experimental results indicate that the system

designed in this paper has the advantages of small probe volume,

simplicity, high accuracy, high stability, and so on. Since the

optimum ratio of standard solution may be different in different

water area, the instrument should be calibrated again so as to

achieve the accurate COD measurement in practical application.
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TABLE 1 COD measurement result of natural water samples.

Position Laser spectroscopy/(mg/L) Rapid
digestion spectrophotometry/(mg/L)

Error/%

1 4.35 5.17 15.9

2 5.92 6 1.3

3 8.69 9.46 8.1
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