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A covariant energy density functional is calibrated using a principled Bayesian

statistical framework informed by experimental binding energies and charge

radii of several magic and semi-magic nuclei. The Bayesian sampling required

for the calibration is enabled by the emulation of the high-fidelity model

through the implementation of a reduced basis method (RBM)—a set of

dimensionality reduction techniques that can speed up demanding

calculations involving partial differential equations by several orders of

magnitude. The RBM emulator we build—using only 100 evaluations of the

high-fidelity model—is able to accurately reproduce the model calculations in

tens of milliseconds on a personal computer, an increase in speed of nearly a

factor of 3,300when compared to the original solver. Besides the analysis of the

posterior distribution of parameters, we present model calculations for masses

and radii with properly estimated uncertainties. We also analyze the model

correlation between the slope of the symmetry energy L and the neutron skin of
48Ca and 208Pb. The straightforward implementation and outstanding

performance of the RBM makes it an ideal tool for assisting the nuclear

theory community in providing reliable estimates with properly quantified

uncertainties of physical observables. Such uncertainty quantification tools

will become essential given the expected abundance of data from the

recently inaugurated and future experimental and observational facilities.
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1 Introduction

Nuclear science is undergoing a transformational change

enabled by the commissioning of new experimental and

observational facilities as well as dramatic advances in high-

performance computing [1]. The newly operational Facility for

Rare Isotope Beams (FRIB), together with other state-of-the-art

facilities throughout the world, will produce short-lived isotopes

that provide vital information on the creation of the heavy

elements in the cosmos. In turn, earth and space-based

telescopes operating across the entire electromagnetic

spectrum will constrain the nuclear dynamics in regimes

inaccessible in terrestrial laboratories. Finally, improved and

future gravitational-wave detectors will provide valuable

insights into the production sites of the heavy elements as

well as on the properties of ultra-dense matter at both low

and finite temperatures [2–9].

To fully capitalize on the upcoming discoveries, a strong

synergy will need to be further developed between theory,

experiment, and observation. First, theory is needed to

decode the wealth of information contained in the new

experimental and observational data. Second, new

measurements drive new theoretical advances which, in

turn, uncover new questions that motivate new

experiments. From the theoretical perspective,

sophisticated and highly-accurate ab initio methods have

been developed to solve the complicated many-body

problem. Besides the adoption of a many-body solver, one

needs to specify a nuclear interaction that is informed by two-

and three-nucleon data. A highly successful approach relies

on a nuclear interaction rooted in chiral effective field theory

(EFT). Chiral EFT—a theoretical framework inspired by the

underlying symmetries of QCD—provides a systematic and

improvable expansion in terms of a suitable small parameter,

defined as the ratio of the length scale of interest to the length

scale of the underlying dynamics [10–12]. During the last

decade, enormous progress has been made in our

understanding of the equation of state (EOS) of pure

neutron matter by systematically improving the chiral

expansion [13–19]. However, the chiral expansion breaks

down once the relevant energy scale of the problem

becomes comparable to the hard scale associated with the

underlying dynamics. This fact alone precludes the use of

chiral perturbation theory in the study of high density matter.

A more phenomenological approach that could be

extended to higher densities is Density Functional Theory

(DFT). Developed in quantum chemistry [20] but now widely

used in nuclear physics, DFT is a powerful technique whose

greatest virtue is shifting the focus away from the complicated

many-body wave function that depends on the spatial

coordinates of all particles, to an energy density functional

(EDF) that depends only on the three spatial coordinates of

the ground state density. Moreover, DFT guarantees that both

the exact ground-state density and energy of the complicated

many-body system may be obtained from minimizing a

suitable functional [21, 22]. In an effort to simplify the

solution of the problem, the Kohn–Sham formalism

reformulates the DFT problem in favor of one-particle

orbitals that may be obtained by solving self-consistently a

set of equations that closely resemble the structure of the

well-known Hartree equations [22]. It is important to note

that the theorems behind DFT offer no guidance on how to

construct the correct EDF. This fact is mitigated in nuclear

physics by incorporating as many physical insights as

possible into the construction of the functional, and then

calibrating the parameters of the model by using the available

experimental and observational data. However, unlike chiral

EFT, DFT is unable to quantify systematic errors associated

with missing terms in the functional that may become

important at higher densities. Nevertheless, given that

modern covariant EDFs are informed by the existence of

two-solar mass neutron stars, the parameters of the model

encode (at least partially) information on the high-density

component of the EOS.

The calibrated models are not static, however, and theory

must be nimble in its response to the exciting new data that will

emerge from future experiments and observations. In the

particular case of DFT, new data must be promptly

incorporated into the refinement of the EDF to explore the

full impact of the new information. This is particularly

relevant given that nuclear physics has the ability to predict

the structure and properties of matter in regions inaccessible to

either experiment or observation. For example, one may use

Bayesian inference to identify strong correlations between a

desired property, which cannot be measured, and a surrogate

observable that may be determined experimentally. However,

Bayesian methods often require multiple evaluations of the same

set of observables for many different realizations of the model

parameters. If the nuclear observables informing the EDF are

computationally expensive, then direct Bayesian inference is

highly impractical. This computational challenge has

motivated many of the recent efforts by the nuclear theory

community in the development and adoption of emulators to

accelerate computation speed with a minimal precision loss

[23–35]. In this work we explore the application of one such

class of emulators, the Reduced Basis Method (RBM) [36–38],

which falls under the umbrella of the general Reduced Order

Models (ROM) techniques [39, 40].

The Reduced Basis Method encapsulates a set of

dimensionality reduction approaches that generally aim at

speeding up computations by approximating the solution to

differential equations with just a handful of active

components (the reduced basis). These methods have been

shown to exhibit speed increases of several orders of

magnitude in various areas of science and engineering

[41–44], including specific applications for uncertainty
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quantification [45, 46], and have been recently demonstrated to

be viable for applications in nuclear physics DFT [29]. Solving

the full system of differential equations self-consistently in the

framework of covariant DFT is not a particularly demanding

computational task for modern computers, usually taking around

a minute for a heavy nucleus such as 208Pb. The computational

bottleneck appears when millions of such evaluations must be

carried out sequentially to perform Bayesian inference, and the

problem multiplies when several nuclei are involved or if one

wants to consider and compare different EDFs. A speed-up factor

of three orders of magnitude or more provided by techniques

such as the RBM could bridge the computational gap and enable

new scientific advancements that would otherwise be impossibly

or significantly more expensive. The adoption of these methods,

paired together with leadership-class computing infrastructure,

will enable the quick response that is needed to take full

advantage of the vast wealth of experimental and

observational data that will be coming in the next years.

The intent of this manuscript is to develop and showcase a

pipeline for the calibration and uncertainty quantification of a

nuclear model—a covariant energy density functional—enabled

by the RBM emulation. To that goal, in Sec. II we provide a brief

introduction to the relativistic mean field model we use,

culminating with the set of differential equations that need to

be solved in order to calculate nuclear observables. In Sec. III we

present the reduced basis methodology, alongside an explanation

on how it is used to construct an emulator that simplifies the

computations of the DFT model. In Sec. IV we explain the theory

and implementation of the Bayesian statistical analysis used to

calibrate the model parameters, with full uncertainty

quantification. In Sec. V we present and discuss the results of

the calibration, displaying the Bayesian posterior distribution of

the model parameters, together with the model predictions with

quantified uncertainties for binding energies and charge radii, as

well as the correlation between the slope of the symmetry energy

L and the neutron skin thickness of both 208Pb and 48Ca. These

two observables have been the focus of recent experimental

campaigns [47–49], and its widespread implications are of

great interest to the nuclear physics and astrophysics

communities [50, 51]. Finally, in Sec. VI we present our

conclusions and outlooks, with a perspective on the role that

this class of emulators could play, in the near future, on the

nuclear theory-experiment cycle enhanced by statistics and

machine learning [31, 52, 53].

2 Relativistic mean field calculations

The cornerstone of covariant density functional theory is a

Lagrangian density that includes nucleons and mesons as the

effective degrees of freedom. Besides the photon that mediates

the long-range Coulomb interaction, the model includes the

isoscalar-scalar σ meson, the isoscalar-vector ω meson, and

the isovector-vector ρ meson [54, 55]. The interacting

Lagrangian density consists of a nucleon-nucleon interaction

mediated by the various mesons alongside non-linear meson

interactions [55–60]. That is,

Lint � �ψ gsϕ− gvVμ+ gρ

2
τ · bμ+ e

2
1+τ3( )Aμ( )γμ[ ]ψ

− κ

3!
gsϕ( )3− λ

4!
gsϕ( )4+ ζ

4!
g4
v VμV

μ( )2 + Λv g2
ρ bμ · bμ( ) g2

vV]V
]( ).
(1)

The first line in the above expression includes Yukawa

couplings gs, gv, and gρ of the isoscalar-scalar (ϕ), isoscalar-

vector (Vμ), and isovector-vector (bμ) meson fields to the

appropriate bilinear combination of nucleon fields. In turn,

the second line includes non-linear meson interactions that

serve to simulate the complicated many-body dynamics and

that are required to improve the predictive power of the

model [56–58]. In particular, the two isoscalar parameters κ

and λ were designed to soften the equation of state of symmetric

nuclear matter at saturation density. In turn, the isoscalar

parameter ζ also softens the EOS of symmetric nuclear matter

but at much higher densities. Finally, the mixed isoscalar-

isovector parameter ∧v was introduced to modify the density

dependence of the symmetry energy, particularly it slope at

saturation density. For a detailed account on the physics

underlying each terms in the Lagrangian see Refs. [60, 61].

2.1 Meson field equations

In the mean-field limit, both the meson-field operators and

their corresponding sources are replaced by their ground state

expectation values. For spherically symmetric systems, all meson

fields and the photon satisfy Klein-Gordon equations of the

following form [59]:

d2

dr2
+ 2
r

d

dr
−m2

s( )Φ0 r( ) − g2
s

κ

2
Φ2

0 r( ) + λ

6
Φ3

0 r( )( )
� −g2

s ρs,p r( ) + ρs,n r( )( ), (2a)
d2

dr2
+ 2
r

d

dr
−m2

v( )W0 r( ) − g2
v

ζ

6
W3

0 r( ) + 2ΛvB
2
0 r( )W0 r( )( )

� −g2
v ρv,p r( ) + ρv,n r( )( ), (2b)

d2

dr2
+ 2
r

d

dr
−m2

ρ( )B0 r( ) − 2Λvg
2
ρW

2
0 r( )B0 r( )

� −g
2
ρ

2
ρv,p r( ) − ρv,n r( )( ), (2c)
d2

dr2
+ 2
r

d

dr
( )A0 r( ) � −eρv,p r( ), (2d)

Where we have defined Φ = gsϕ, Wμ = gvVμ, and Bμ = gρbμ.

The various meson masses, which are inversely proportional to

the effective range of the corresponding meson-mediated
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interaction, are given byms,mv, andmρ. The source terms for the

Klein-Gordon equations are ground-state densities with the

correct Lorentz and isospin structure. Finally, the above scalar

(s) and vector (v) densities are written in terms of the occupied

proton and neutron Dirac orbitals:

ρs,t r( )
ρv,t r( )( ) � ∑occ

nκ

2jκ + 1
4πr2

( ) g2
nκt r( ) ∓ f2

nκt r( )( ). (3)

Here t identifies the nucleon species (or isospin) and n denotes

the principal quantum number. We note that some of the semi-

magic nuclei that will be used to calibrate the energy density

functional may have open protons or neutron shells. In such case,

we continue to assume spherical symmetry, but introduce a

fractional occupancy for the valence shell. For example, in the

particular case of 116Sn, only two neutrons occupy the valence d3/2
orbital, so the filling fraction is set to 1/2.

2.2 Dirac equations

In turn, the nucleons satisfy a Dirac equation with scalar and

time-like vector potentials generated by the meson fields. The

eigenstates of the Dirac equation for the spherically symmetric

ground state assumed here may be classified according to a

generalized angular momentum κ. The orbital angular momentum

l and total angular momentum j are obtained from κ as follows:

j � |κ| − 1
2
; l � κ, if κ> 0;

− 1 + κ( ), if κ< 0,{ (4)

where κ takes all integer values different from zero. For example,

κ = − 1 corresponds to the s1/2 orbital. The single-particle

solutions of the Dirac equation may then be written as

Unκmt r( ) � 1
r

gnκt r( )Y+κm r̂( )
ifnκt r( )Y−κm r̂( )( ), (5)

where m is the magnetic quantum number and the spin-spherical

harmonics Yκm are obtained by coupling the orbital angular l

momentum and the intrinsic nucleon spin to a total angular

momentum j. However, note that the orbital angular momentum

of the upper and lower components differ by one unit, indicating that

the orbital angular momentum is not a good quantum number. The

functions gnκt and fnκt satisfy a set of first order, coupled differential

equations that must be solved to obtain the single particle spectrum:

d

dr
+ κ

r
( )ga r( )

− Ea +M −Φ0 r( ) −W0 r( ) ∓ 1
2
B0 r( ) − e

1
0

{ }A0 r( )[ ]fa r( )

� 0,

(6a)

d

dr
− κ

r
( )fa r( )

+ Ea −M + Φ0 r( ) −W0 r( ) ∓ 1
2
B0 r( ) − e

1
0

{ }A0 r( )[ ]ga r( )

� 0,

(6b)
Where the upper numbers correspond to protons and the

lower ones to neutrons, and we have used the shorthand notation

a = {nκt} to denote the relevant quantum numbers. The mass of

both nucleons is denoted by M, and it is fixed to the value

939 MeV. Finally, ga(r) and fa(r) satisfy the following

normalization condition:

∫∞
0

g2
a r( ) + f2

a r( )( )dr � 1. (7)

Looking back at Eq. 3, we observe that the proton and

neutron vector densities are conserved, namely, their

corresponding integrals yield the number of protons Z and

the number of neutrons N, respectively. In contrast, the scalar

density is not conserved.

2.3 Ground state properties

From the solution of both the Klein-Gordon equations for

the mesons Eq. 2 and the Dirac equation for the nucleons Eq. 6,

we can calculate all ground-state properties of a nucleus

composed of Z protons and N neutrons. The proton and

neutron mean square radii are determined directly in terms of

their respective vector densities:

R2
p ≡

4π
Z

∫∞
0

r4ρv,p r( )dr, (8a)

R2
n ≡

4π
N

∫∞
0

r4ρv,n r( )dr. (8b)

Following [60] we approximate the charge radius of the

nucleus by folding the finite size of the proton rp as:

R2
ch � R2

p + r2p, (9)

where we have used for the radius of a single proton rp =

0.84 fm [62].

In turn, the total binding energy per nucleon E/A− M,

includes contributions from both the nucleon and meson

fields: E = Enuc + Emesons. The nucleon contribution is

calculated directly in terms of the single particle energies

obtained from the solution of the Dirac equation. That is,
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Enuc � ∑occ
a

2ja + 1( )Ea, (10)

where the sum is over all occupied single particle orbitals, Ea is

the energy of the ath orbital, and (2ja + 1) is the maximum

occupancy of such orbital. For partially filled shells, one must

multiply the above expression by the corresponding filling

fraction, which in the case of 116Sn, is equal to one for all

orbitals except for the valence d3/2 neutron orbital where the

filling fraction is 1/2.

The contribution to the energy from the meson fields and the

photon may be written as

Emesons � 4π∫∞
0

Eσ + Eω + Eρ + Eγ + Eωρ( )r2 dr, (11)

where the above expression includes individual contributions

from the σ, ω, and ρmesons, the photon, and the mixed ωρ term.

In terms of the various meson fields and the ground-state

nucleon densities, the above contributions are given by.

Eσ � 1
2
Φ0 r( ) ρs,p r( ) + ρs,n r( )( ) − κ

12
Φ3

0 r( ) − λ

24
Φ4

0 r( ), (12a)

Eω � −1
2
W0 r( ) ρv,p r( ) + ρv,n r( )( ) + ζ

24
W4

0 r( ), (12b)

Eρ � −1
4
B0 r( ) ρv,p r( ) − ρv,n r( )( ), (12c)

Eγ � −1
2
eA0 r( )ρv,p r( ), (12d)

Eωρ � ΛvW
2
0 r( )B2

0 r( ). (12e)

Following [60], in this work we calibrate the relativistic mean

field model by comparing the calculations of charge radii and

binding energies with the experimentally measured values for the

doubly magic and semi-magic nuclei: 16O, 40Ca, 48Ca, 68Ni1, 90Zr,
100Sn, 116Sn, 132Sn, 144Sm, 208Pb.

2.4 Bulk properties parametrization

The Lagrangian density of Eq. 1 is defined in terms of seven

coupling constants. These seven parameters plus the mass of the

σ meson define the entire 8-dimensional parameter space (the

masses of the two vector mesons are fixed at their respective

experimental values of mv = 782.5 MeV and mρ = 763 MeV).

Although historically the masses of the two vector mesons have

been fixed at their experimental value to simplify the search over

a complicated parameter landscape, such a requirement is no

longer necessary. Bayesian inference supplemented by RBMs can

easily handle two additional model parameters. Given that the

aim of this contribution is to compare our results against those

obtained with the traditional fitting protocol, we fix the masses of

the two vector mesons to their experimental values, and defer the

most ambitious calibration to a future work.

Once the theoretical model and the set of physical

observables informing the calibration have been specified, one

proceeds to sample the space of model parameters: α ≡ {ms, gs, gv,

gρ, κ, λ, ∧v, ζ}. However, given that the connection between the

model parameters and our physical intuition is tenuous at best,

the sampling algorithm can end up wandering aimlessly through

the parameter space. The problem is further exacerbated in

covariant DFT by the fact that the coupling constants are

particularly large. Indeed, one of the hallmarks of the

covariant framework is the presence of strong—and

cancelling—scalar and vector potentials. So, if the scalar

coupling gs is modified without a compensating modification

to the vector coupling gv, it is likely that no bound states will be

found. To overcome this situation one should make correlated

changes in the model parameters. Such correlated changes can be

implemented by taking advantage of the fact that some of the

model parameters can be expressed in terms of a few bulk

properties of infinite nuclear matter [60, 64]. Thus, rather

than sampling the model parameters α, we sample the

equivalent bulk parameters θ = {ms, ρ0, ϵ0, M*, K, J, L, ζ}. In

this expression, ρ0, ϵ0, M*, and K are the saturation density, the

binding energy, effective nucleon mass, and incompressibility

coefficient of symmetric nuclear matter evaluated at saturation

density. In turn, J and L are the value and slope of the symmetry

energy also at saturation density. The quartic vector coupling ζ is

left as a “bulk” parameter as the properties of infinite nuclear

matter at saturation density are largely insensitive to the value of

ζ [57]. The virtue of such a transformation is twofold: first, most

of the bulk parameters given in θ are already known within a

fairly narrow range, making the incorporation of Bayesian priors

easier and natural, and second, a modification to the bulk

parameters involves a correlated change in several of the

model parameters, thereby facilitating the success of the

calibration procedure.

In the context of density functional theory, Eqs 2–6 represent

the effective Kohn–Sham equations for the nuclear many-body

problem. Once the Lagrangian parameters α have been calculated

from the chosen bulk parameters θ, these set of non-linear

coupled equations must be solved self-consistently. That is,

the single-particle orbitals satisfying the Dirac equation are

generated from the various meson fields which, in turn, satisfy

Klein-Gordon equations with the appropriate ground-state

densities as the source terms. This demands an iterative

procedure in which mean-field potentials of the Wood-Saxon

form are initially provided to solve the Dirac equation for the

occupied nucleon orbitals which are then combined to generate

1 The charge radius of 68Ni was recently measured [63] and we do not
include in the calibration to better compare with the previous results
[60]. The charge radius of 100Sn has not been measured yet. Therefore,
our calibration dataset consists of 18 points, 10 binding energies and 8
charge radii.
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the appropriate densities for the meson field. The Klein-Gordon

equations are then solved with the resulting meson fields

providing a refinement to the initial mean-field potentials.

This procedure continues until self-consistency is achieved,

namely, the iterative process has converged.

In the next section we show how the reduced basis method

bypasses such a complex and time-consuming procedure by

constructing suitable reduced bases for the solution of both

the Klein-Gordon and Dirac equations.

3 The reduced basis method

A system of coupled differential equations in the one-

dimensional variable r, such as Eq. 2 and Eq. 6, can be

computationally solved by numerical methods such as finite

element or Runge-Kutta. We shall refer to the numerical

solutions obtained from those computations as high fidelity

solutions for the rest of the discussion. Those approaches

possess an intrinsic resolution Δr—such as the grid spacing in

the case of finite element or the step size in the case of Runge-

Kutta2. For a given interval L in which we are interested in solving

the equations, each of the functions involved will have roughly

N ~ L
Δr elements. In the case of the finite element method for

example, for fixed particle densities and a given grid, the four

fields involved in Eq. 2 become arrays of unknown values:

r → r1, r2, . . . , rN[ ],
Φ0 r( ) → Φ0 r1( ), Φ0 r2( ), . . . , Φ0 rN( )[ ],
W0 r( ) → W0 r1( ), W0 r2( ), . . . , W0 rN( )[ ],
B0 r( ) → B0 r1( ), B0 r2( ), . . . , B0 rN( )[ ],
A0 r( ) → A0 r1( ), A0 r2( ), . . . , A0 rN( )[ ].

(13)

In turn, once the differential operators such as d2

dr2 are

transformed into matrices of finite differences, the

differential equations themselves will become matrix

equations for the unknown arrays Eq. 13. The same

procedure follows for the Dirac equations Eq. 6 for fixed

fields, with each upper and lower components gnκ(r) and

fnκ(r) for protons and neutrons becoming arrays of unknown

values that must be solved for.

Both the traditional Runge-Kutta solver and the finite

element solver we developed to iteratively tackle Eqs 2 and

6 have L = 20 fm, Δr = 0.05 fm, and therefore N � 400. The

goal of the Reduced Basis (RB) approach is to build a

framework that, after a preparation period called the offline

stage, can obtain approximate solutions to the differential

equations with as few—or even better, none—calculations of

size N during the evaluation period called the online stage

[37]. Any observable computed from such solutions, such as

binding energies and radii, should also involve as few

calculations of size N as possible to streamline the

uncertainty quantification procedure.

The RBM implementation we construct in this work consists

of two principal steps: “training and projecting” [29]. In the first

step we build the RB using information from high fidelity

solutions, while in the second step we create the necessary

equations for finding the approximate solution by projecting

over a well-chosen low-dimensional subspace. The following

subsections explain both steps in detail.

3.1 Training

We begin by proposing the corresponding RB expansion for

each function involved in Eqs 2 and 6:

Φ0 r( ) ≈ Φ̂0 r( ) � ∑nΦ
k�1

aΦk Φk r( ), (14a)

W0 r( ) ≈ Ŵ0 r( ) � ∑nW
k�1

aWk Wk r( ), (14b)

B0 r( ) ≈ B̂0 r( ) � ∑nB
k�1

aBk Bk r( ), (14c)

A0 r( ) ≈ Â0 r( ) � ∑nA
k�1

aAk Ak r( ), (14d)

g r( ) ≈ ĝ r( ) � ∑ng
k�1

agk gk r( ), (14e)

f r( ) ≈ f̂ r( ) � ∑nf
k�1

afk fk r( ), (14f )

The subscripts n and κ have been omitted from the gnκ and fnκ
components for the sake of clarity, but it is important to note that

the expansion will have unique coefficients ak, and possible

different number of basis ng and nf for each level. The

functions with sub-index k, Ak(r) for example, form the RB

used to build their respective approximations, Â0(r) in this case.

It is interesting to note that Eq.2d can be solved to explicitly

obtain A0(r) as integrals of the proton density (see Eq. 7 in [59]).

Nevertheless, we found that expanding A0(r) in its own RB

resulted in appreciably bigger speed up gains by the RBM

emulator with negligible loss in accuracy.

Once chosen, each RB is fixed and will not change when

finding approximated solutions to Eqs 2 and 6 for different

parameters α. The coefficients a(·)k do depend on the

parameters α and are the ones responsible for adjusting the

approximate solution as the parameter space is explored. It is

important to note that, if there is a level crossing, the

occupancy configuration of the nucleus will change. The

RBM implementation we describe here—relying on smooth

2 Both the grid size and the step size could be adaptive instead of
constant across the spatial domain. We shall assume a constant Δr
for the rest of the discussion for the sake of simplicity.
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variations of the functions involved as α changes—is unable to

correctly emulate the solution if suddenly an orbital looses or

gains nucleons. For the parameter ranges we studied we do not

expect that to happen for the closed shell magic nuclei we

employed given the gap in the single particle spectrum. We did

not observe level crossing either on the partially filled

neutrons and protons shells of 116Sn and 144Sm.

For future applications going beyond the spherical

approximation it will be important to modify the approach

accordingly, both in expanding the number of basis states to

capture the richness of the solutions and in directly including

information on the occupation of the single particle orbitals. This

can be done at either the Hartree-Fock-Bogoliubov or the

Hartree-Fock + BCS level and will naturally address the issue

of level crossings and deformation at the expense of the slower

performance associated with larger bases and more coupled

equations to be solved. The trade-off is tempered by the fact

that, because the RBM does not depend on the original

dimensionality of the problem, moving from a spherical

picture to full 3D will not be as heavily penalized as the high

fidelity solver.

There are several approaches for the construction of the reduced

basis [36, 37], most of which involve information obtained from high

fidelity solutions for a sample of the parameters α. For this work, we

choose the Proper Orthogonal Decomposition (POD) approach,

which consists of building the RB as the first n components

(singular vectors) of a Singular Value Decomposition (SVD)

[65]—see also Principal Component Analysis (PCA) [66]—

performed on a set of high fidelity solutions.

For each nucleus involved we compute high fidelity

evaluations for 50 parameter sets sampled from the

multivariate Gaussian distributions obtained in the calibration

performed in [60].We perform the SVD on each of the four fields

and each of the wave functions for the respective protons and

neutron levels for all ten nuclei considered in this study. For

example, for 48Ca for protons and neutrons there are six and

seven fa(r) and ga(r), respectively. Figure 1 shows the normalized

singular values σk/σ1 for the field and nucleon wave functions for
48Ca and 208Pb. Each singular value represents how much of the

total variance in the entire sample that particular component is

capable of explain [40]. A fast exponential decay of the singular

values can indicate that a RB with few components should be able

to approximate the full solution with good accuracy (see also the

discussion on the Kolmogorov N-width in Chapter V of [36]).

Figure 2 shows the first three principal components obtained

from the SVD of the 50 high fidelity evaluations for theΦ0(r) and

A0(r) fields, the upper component g(r) of the first neutron level,

and the lower component f(r) for the last proton level for 48Ca.

The figure also shows the corresponding 50 high fidelity

solutions, although the spread is barely noticeable for the two

wave function components, and is imperceptible outside of the

inset plot for the photon field A0(r). We observed a similar small

spread of the fields and wave functions for all the nuclei

considered for the 50 high fidelity evaluations. This is

consistent with the fact that the relativistic mean field model

has been calibrated to reproduce ground state experimental

observables such as masses and radii within a 0.5% error3

[60]. Appreciable variations of the solutions would deteriorate

such values.

Choosing how many reduced bases to include for each field

or wave function—the upper limits on the sums in Eq. 14 [nΦ,

nW, nB, nA, ng, nf]—is a non-trivial process. In general, the more

basis used the more precise the approximation will be, but that

comes at the trade-off of an increased calculation time. This choice

will not depend only on the relative importance of the singular

values shown in Figure 1, but rather on the quantities we are

FIGURE 1
Normalized singular values σk/σ1 for the fields Φ0(r), W0(r),
B0(r), and A0(r), and the single particle wave functions of the upper
gnκ(r) and lower fnκ(r) components for 48Ca (A) and 208Pb (B). The
single particle proton levels are denoted as g(P) and f(P) for
the upper and lower components, respectively, while the single
particle neutron levels are denoted as g(N) and f(N) for the upper
and lower components, respectively. There are six proton levels
and seven neutron levels for 48Ca (A), while for 208Pb there are
sixteen proton levels and twenty-two neutron levels.

3 With an error of around 1.4%, the charge radius of 16O can be treated as
an outlier in which the mean field approximation might break down.

Frontiers in Physics frontiersin.org07

Giuliani et al. 10.3389/fphy.2022.1054524

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524


interested in calculating after solving the coupled differential

equations. For example, for 48Ca, the photon field A0(r) has the

fastest decaying singular values shown in Figure 1, which could

indicate that we need a smaller basis to reproduce it to the same

level of accuracy than any of the other fields, such as B0(r).

Nevertheless, if our primary objective is to obtain accurate

calculations for binding energies and charge radii, for example,

it might be the case that we need to reproduceA0(r) tomuch better

precision than B0(r), requiring nA > nB. We elaborate this

discussion later when we describe our method for selecting the

number of basis for each function.

3.2 Projecting

For a fixed nucleus and a chosen RB configuration we have nΦ +

nW + nB + nA free coefficients for the fields, ∑lP
i�1(n(i,P)g + n(i,P)f )

coefficients for the single particle wave functions for protons, and∑lN
i�1(n(i,N)

g + n(i,N)
f ) for the single particle wave functions for

neutrons. In these expressions lP and lN denote the total levels of

protons and neutrons for the given nucleus, respectively.

Additionally, since Eq. 6 are eigenvalue equations, the respective

energies Ei,p and Ei,N for each of the protons and neutrons levels also

count as unknown quantities that need to be determined. Let

us denote a list of such coefficients and energies as

a ≡ {aΦ1 , aΦ2 , . . . , aW1 , . . .E1P, E2P, . . .}.
For example, consider we are working with 48Ca which has

six proton levels and seven neutron levels. If we set three RB

for every field and wave function expansion in Eq. 14, we will

have 12 coefficients associated with the fields, 36 coefficients

and six energies associated with the protons, and

42 coefficients and seven energies associated with the

neutrons. This amounts for a total of 103 unknown

quantities that must be determined from 103 equations.

Each single particle level for protons and neutrons has an

associated normalization condition shown in Eq. 7. These

normalization equations go in par with the unknown energies.

The rest of the unknown coefficients—90 in this example—are

determined from the Galerkin projection equations that we

now describe. The Galerkin method [67] is the traditional

approach for obtaining such coefficients in the RBM [37, 39].

Let us denote the set of field functions and wave functions in the

compact notation Ξ≡{Φ0, W0, B0, A0, g, f} and their respective RB

approximation Ξ̂ ≡ {Φ̂0, Ŵ0, B̂0, Â0, ĝ, f̂}. Let us denote the Klein-
Gordon and Dirac equations as operators acting on the set Ξ, re-
arrange them such that they are all equal to 0, and label them as:

FIGURE 2
First three principal components in red, orange, and green respectively, for Φ0(r) (A), eA0(r) (B), the first g(r) for neutrons (C), and the sixth f(r) for
protons (D) in 48Ca. The second and third components (in orange and green) have been re-scaled arbitrarily for plotting convenience. The
50 solutions used in the training set are shown in different shades of blue in each figure. The spread of such solutions is barely visible forΦ0(r) and f(r),
and almost undetectable for the other two cases. The spread is further enhanced in the inset plots within the magenta squares in each sub
figure.
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Eq.(2a) → FΦ
α Ξ[ ] � 0,

Eq.(2b) → FW
α Ξ[ ] � 0,

Eq.(2c) → FB
α Ξ[ ] � 0,

Eq.(2d) → FA
α Ξ[ ] � 0,

Eq.(6a) → Fg
α Ξ[ ] � 0,

Eq.(6b) → Ff
α Ξ[ ] � 0.

For example, FA
α [Ξ] � 0 reads

( d2

dr2 + 2
r

d
dr)A0(r) + eρv,p(r) � 0, and it only depends explicitly

on the photon field A0(r) and on the protons components g(r)

and f(r) through the density ρv,p(r). There is a different associated

operator for each proton and neutron level for the Dirac

equations, but we omit a tracking index to keep the notation

simpler.

Finding a solution Ξ for given parameters α means finding a

collection of fields and wave functions such that all the operators

F(·)
α [Ξ] acting on such list give back the function that is zero for

every r. Such solution must satisfy as well the normalization

condition Eq. 7. In general, these requirements cannot be

satisfied by any choice of the RB coefficients under the RB

approximation, i.e. F(·)
α [Ξ̂] ≠ 0 simultaneously for any choice

of a. We can relax these conditions by projecting each operator

Fα[Ξ̂] over a set of “judges” ψ(·)
j (r) [29] and requiring that the

projections are zero:

〈ψΦ
j |FΦ

α Ξ̂[ ]〉 � 0, 1≤ j≤ nΦ, (16a)
〈ψW

j |FW
α Ξ̂[ ]〉 � 0, 1≤ j≤ nW, (16b)

〈ψB
j |FB

α Ξ̂[ ]〉 � 0, 1≤ j≤ nB, (16c)
〈ψA

j |FA
α Ξ̂[ ]〉 � 0, 1≤ j≤ nA, (16d)

〈ψg
j |Fg

α Ξ̂[ ]〉 � 0, 1≤ j≤ ng, (16e)
〈ψf

j |Ff
α Ξ̂[ ]〉 � 0, 1≤ j≤ nf, (16f)

Where we have made the choice of projecting each

operator F(·)
α [Ξ] a total of n(·) times, where n(·) is the

number of RB expanding the associated function. Once

again, there will be a different set of projection equations

for every proton and neutron level for a given nucleus. The

projection operation, which we write using Dirac’s notation,

is used here to mean the usual inner product integral over the

radial variable, r ∈ [0,∞):

〈ψ r( )|ϕ r( )〉 ≡ ∫∞
0

ψ* r( )ϕ r( )dr (17)

Following our previous approach [29], we choose the

“judges” to be the same as the RB expansion, as it is common

practice with the Galerkin method [68]. For example, in the case

of 48Ca with three basis for every field and wave function, since

the photon field RB expansion Â0 � ∑3
k�1aAk Ak has three

unknown coefficients, there will be three “judges” projecting

the operator FA
α [Ξ̂]. These “judges” are chosen as ψA

j (r) � Aj(r)

for 1 ≤ j ≤ 3. In total, for this 48Ca example, we will have three

projection equations for each field, three equations for each g and

three for each f for each level of protons and neutrons, for a total

of 90 projection equations. Such system of equations, together

with the normalization conditions uniquely determines (if it has

a solution) the 103 RB coefficients and energies a for each new

value of the parameters α.

We also note that the dependence of Eqs 2 and 6 on the

parameters α is affine, which means that every operator can be

separated into a product of a function that only depends on α and

a function that only depends on r. For example, the non-linear

coupling between the isoscalar-vector meson ω and the

isovector-vector meson ρ in Eq.2c reads:

−2(g2
ρΛv)[W0(r)B0(r)]. In practice, this means that every

integral in r in the projection equations Eq. 16 can be done,

once the RB has been fully specified, without explicitly assigning

numerical values to the parameters such as g2
ρ or ∧v. These

computations are usually done once during the offline stage and

then stored in memory to be used during the online stage [37].

The result of this procedure is a set of projected

equations—agnostic to the r variable—that do not involve any

computation in the high fidelity space of sizeN . These equations

will involve a small amount of linear combinations of products of

the model parameters α and the unknown coefficients a, usually
much more computationally tractable than the original coupled

equations of size N . The two observables we study in this work,

the charge radius and binding energy of each nucleus, are also

affine functions of the parameters α and the solution’s

coefficients a, see Eqs. 8 and Eqs 10–12. This means that

these observables can also be pre-computed, avoiding

calculations of size N when the emulator is used for fast

evaluations4.

For a concrete example, consider 48Ca now with only two

basis for all functions. Each of the two projection equations

associated with the proton’s g and f Eq. 16e and Eq. 16f contains a

total of 22 terms. The equation for f for the first proton

level—with the choice of basis we describe in the next

section—with all numbers printed to two decimals precision

reads:

〈gf
1 r( )|Ff

α Ξ̂[ ]〉 � 0.06af1 − 0.09af2 − EP 0.8ag2 + 1.66ag1( )
+M 1.66ag1 + 0.8ag2( ) − 2.89aΦ1 a

g
1 − 1.45aΦ2 a

g
1

+ 2.35aW1 a
g
1 + 1.17aW2 a

g
1 − 0.03aB1a

g
1

− 0.01aB2a
g
1 + 0.07aA1 a

g
1 − 0.01aA2 a

g
1 − 0.8aΦ1 a

g
2

− 2.71aΦ2 a
g
2 + 0.64aW1 a

g
2 + 2.18aW2 a

g
2 − 0.02aB1a

g
2

+ 0.01aB2a
g
2 + 0.03aA1 a

g
2 + 0.04aA2 a

g
2 � 0.

(18)

4 If the dependence on the parameters α of the operators involved in the
system’s equations, or in the observable’s calculations is not affine,
techniques such as the Empirical Interpolation Method [37, 69, 70] can
be implemented to avoid computations of size N in the online stage.
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3.3 Accuracy vs. speed: Basis selection

As with many other computational methods, the RBM posses a

trade-off between accuracy and speed. If we use more bases for the

expansions Eq. 14 we expect that our approximation will be closer to

the high fidelity calculation, but that will come at the expense of

more coefficients to solve for in the projection equations Eq. 16. If we

use too few bases, the underlying physical model will be miss-

represented when compared with experimental data, but if we use

too many bases we might waste computational time to obtain an

unnecessary accuracy level. To find a satisfactory balance we study

the performance of the RBM, both in terms of accuracy and speed,

for different basis size configurations on a validation set containing

50 new high fidelity evaluations drawn from the same distribution as

the one we used for the training set [60].

As a metric of performance we define the emulator root mean

squared errors as:

ΔRch �

������������������
1
Nv

∑Nv

i�1
Rmo
ch i − Rem

ch i( )2√√
(19)

For the charge radius, and as:

ΔBE �

�������������������
1
Nv

∑Nv

i�1
BEmo

i − BEem
i( )2√√

, (20)

For the total binding energy. In both expressions Nv is the

total number of samples in the validation set (50) and the

superscripts “mo” and “em” stand for the high fidelity model

and the RBM emulator, respectively.

A straightforward approach for exploring different basis

configurations consists of setting all basis numbers {nΦ, nW, nB,

nA, ng, nf} to the same value n. There are two main disadvantages of

this approach. First, the basis increments can be too big, making it

harder to obtain a good trade-off. For example, in the case of 208Pb

with n = 2 we have a total of 160 basis, while for n = 3 we jump

straight to 240. Second, the accuracy in the emulation of the

observables could be impacted differently by how well we

reproduce each function involved in Eq. 2 and Eq. 6. Having a

leverage that allows us to dedicate more resources (bases, that is) to

more crucial functions could be therefore beneficial, and the

simplistic approach with a common number n is unable to

optimize the computational resources in that sense.

On the other hand, exploring all possible basis size

configurations for a given maximum basis size is a

combinatorial problem that can quickly become intractable.

Therefore, we decided to follow a Greedy-type optimization

procedure in which we incrementally add new basis to the

current configuration, choosing the “best” local option at each

step. The basis are chosen from the principal components

obtained from the training set of 50 high fidelity runs. For all

the nuclei the starting configuration was seven basis for each

one of the fields {Φ0, W0, B0, A0} and two basis for each of the

wave functions g and f on all the nucleus’ levels. On each step,

we add one more basis to both g and f to the four levels across

both protons and neutrons which were reproduced most

poorly in the previous iteration on the validation set. The

“worst performers” are chosen alternating in terms of either

the single particle energies (serving as a proxy for the total

binding energy), and the L2 norm on the wavefunctions

themselves (serving as a proxy for the proton and neutron

radius). The fields basis numbers are all increased by one once

one of the wave functions basis number reaches their current

level (7 in this case).

For example, for 48Ca we start with seven basis for the four

fields {nΦ, nW, nB, nA} = {7, 7, 7, 7}, and {ng, nf} = {2, 2} for

every one of the six levels for protons and seven levels for

neutrons. On the first step we compare the RBM calculations

with the 50 high fidelity solutions from the validation set and

identify the first neutron level, and the first, third, and fifth

proton levels as the worse (on average) estimated single

particle energies. Consequently, their respective basis are

increased by their third principal components (see

Figure 2): {ng, nf} = {3, 3}. On the next step, we re-calculate

FIGURE 3
Performance of the RBM emulator for 48Ca (A) and 208Pb (B)
as the total number of basis is increased following the Greedy
algorithm described in the text. The dashed red and green lines in
both plot indicate an error of 0.1% in the charge radius and
total binding energy, respectively. The computation time per
sample is calculated solving the RBM equations in Mathematica,
which is substantially slower than the production emulator used in
the calibration and detailed in Sec. IIID.
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the RBM solutions with the new updated basis and identify the

fifth neutron level, and the second, third, and sixth proton

levels as the worst performances in terms of the overall wave

function sense (the L2 norm). This procedure is repeated as the

overall basis number increases as is illustrated in Figure 3 for
48Ca and 208Pb. We observed similar behaviors for the other

eight nuclei involved in this study.

For the range of basis explored, the overall performance for

both the charge radius and total binding energy roughly

improves exponentially, although not monotonically5, with the

total basis number. The error in the radius and binding energy

reduces by more than a factor of 100 for 48Ca and by a factor of

10 for 208Pb. The computational time also increases

exponentially, expanding almost an entire order of magnitude

for both nuclei.

To select an optimal configuration of bases we used as a

target a 0.1% error in both observables for all nuclei involved,

which is roughly three times smaller than the average

deviation between the originally calibrated RMF and the

available experimental values [60]. These targets are

shown as the red and green dashed lines in Figure 3.

Table 1 shows the basis size for the chosen basis and the

results from this validation analysis. In the case where we

would like to have a faster emulator at the expense of

accuracy, we could choose a smaller basis size from the

configurations showed in Figure 3. In the case where we

need a more accurate emulator for particular calculations,

configurations with more basis functions could be chosen at

the expense of speed.

3.4 RBM code optimization

The offline stage consisting of the symbolic construction of

the Galerkin projection equations and the expressions for the

observables of interest is performed in Mathematica, resulting in

polynomial equations in the parameters and RB coefficients such

as Eq. 18. These equations are then parsed and converted into

both Python and Fortran functions which can then be compiled

into a library and evaluated in the calibration driver software. The

explicit Jacobian matrix is also constructed and parsed in the

same way, resulting in fewer evaluations of the polynomial

equations and thus faster convergence of the root finding

routine. This automated pipeline from symbolic representation

in Mathematica to compiled Python library vastly simplifies the

development process of the emulator and allows for various basis

sizes to be included at will while ensuring an efficient

implementation.

For the Python implementation Cython is used to first

convert the Python code into C which is subsequently

compiled into a Python compatible library. The Fortran

implementation is similarly compiled using the NumPy f2py

tool to produce a performant Fortran library with an appropriate

TABLE 1 Results from the basis selection procedure using the 50 samples from the validation set.

Nuc Basis Time Δ Rch 0.1% Rch Δ BE 0.1% BE
Size [ms] [10–3 fm] [10–3 fm] [MeV] [MeV]

16O 68 0.7 1.8 2.7 0.1 0.1

40Ca 116 2.2 1.2 3.5 0.2 0.3

48Ca 120 2.4 0.4 3.5 0.1 0.4

68Ni 128 3.1 1.8 3.9 0.5 0.6

90Zr 168 6.6 0.9 4.3 0.2 0.8

100Sn 180 8.1 1.0 4.5 0.3 0.8

116Sn 176 8.0 2.4 4.6 0.8 1.0

132Sn 184 9.5 1.9 4.7 0.8 1.1

144Sm 216 14 1.8 4.9 0.8 1.2

208Pb 236 20 0.9 5.5 1.5 1.6

The second column shows the total basis size for the selected configuration for each nucleus for the RBM emulator we use in the rest of the manuscript. Column three shows the average time

to compute a single RB full solution for that nucleus using the optimized compiled emulator in Python, which we detail in the next section. Columns four and six show the root mean

squared error of the emulator (see Eqs 19 and 20) when compared to the high fidelity solutions for the charge radius and the total binding energy, respectively. Columns five and seven show

the target of 0.1% of the experimental value of the respective quantity used in the basis selection procedure. For the charge radius of68Ni and100Sn the central value of FSUGold2 [60] was

used instead for column five.

5 For some steps the emulator’s performance -in terms of Δ Rch and Δ
BE-gets worse when adding the four new basis, which at first might
seem counter-intuitive. It is important to note, however, that with each
new basis we add we are changing the entire system of equations both
by adding four new projections and by adding new elements to the
previous ones. Nothing prevents the solution a to the new system to
under perform in comparison to the previous one in the particular
metric we are using.
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Python interface. Regardless of the generating code, the resulting

interface of the modules are the same and can be used

interchangeably depending on the needs of the user. Each

evaluation of the emulator for a given set of parameters then

uses the MINPACK-derived root finding routine in SciPy [71]

to find the optimal basis coefficients which are used as input for

the observable calculations.

This procedure results in a time-to-solution on the order of

hundreds of microseconds to tens of milliseconds depending on

the nucleus being considered, as detailed in Table 1. The Runge-

Kutta high-fidelity solver (written in Fortran) does not exhibit

such a strong scaling across different nuclei, thus the relative

speed-ups vary from 25,000x for 16O, to 9,000x for 48Ca and

1,500x for 208Pb. This level of performance brings the evaluation

of the surrogate model well within our time budget for the

calibration procedure and also represents the simplest method

in terms of developmental complexity. If the evaluation of the

emulator needs to be further accelerated, a pure Fortran

implementation of the root finding routine exhibits an

additional decrease in time-to-solution of order 3x in

comparison to the hybrid Python/compiled model detailed

above at the cost of a slightly less user-friendly interface for

the emulator.

Having constructed an emulator with the accuracy and

calculation speed level we require, we now proceed to build

the Bayesian statistical framework that will be used to perform

the model calibration. In this calibration, the emulator finite

accuracy will be included as part of our statistical model.

4 Framework for Bayesian
uncertainty quantification

To calibrate our nuclear model properly, we need to

account for the sources of error associated with each data

point. We will use the well-principled Bayesian framework for

this task [23, 72], which produces a full evaluation of

uncertainty for every model parameter, in the form of

posterior probability distributions given all the data. Its

ingredients are twofold: first, a probability model, known as

the likelihood model, for the statistical errors linking the

physically modeled (or emulated) output to the

experimental data given physical model parameters; second,

another probability model for one’s a priori assumptions

about the physical model parameters. The output of the

Bayesian analysis takes the form of a probability

distribution for all model parameters; this is known as the

parameters’ posterior distribution. In this work, given the

paucity of data, we choose to estimate the standard deviations

of the statistical models separately, ahead of the Bayesian

analysis, either using uncertainty levels reported in the

literature, or using a natural frequentist statistical

estimator. This minor deviation from a fully Bayesian

framework is computationally very advantageous, an

important consideration given this manuscript’s overall

objective.

The Bayesian framework can also be used as a predictive

tool, by integrating the high-fidelity or emulated physical

model against the posterior distribution of all model

parameters, for any hypothetical experimental conditions

which have not yet been the subject of an experimental

campaign. Such predictions are expected also to take into

account the uncertainty coming from the statistical errors in

the likelihood version of the physical model. Relatively early

examples of these uses of Bayesian features in nuclear physics

work can be found in [73, 74].

In this section, we provide the details of our likelihood and prior

models, and how they are built in a natural way, as they relate to

experimental values, their associated emulated values, and all physical

model parameters. We also explain in detail how the statistical model

variance parameters are estimated ahead of the Bayesian analysis. All

our modeling choices are justified using the physical context and the

simple principle of keeping statistical models as parsimonious as

possible.

4.1 Specification of the statistical errors
and the likelihood model

Let us denote by yex
i the ith experimental

observation—binding energies or charge radii in our case—of

the 10 nuclei considered. We have a total of 10 measured binding

energies and 8 charge radii (the charge radii of 68Ni was not

included in the calibration, while 100Sn does not have a measured

charge radii), therefore 1 ≤ i ≤ 18. Let us denote by ymo
i (α) the

high fidelity model calculation associated with yex
i for a given

value of the model parameters α. Finally, let us denote yem
i (α) the

RBM emulated calculation associated with the same observable.

We identify three main sources of errors6 in the model

calibration, namely experimental, modeling, and emulation

errors—the latter being the difference between ymo
i (α) and

yem
i (α) — which we write into a statistical model as follows:

for every i,

yex
i � ymo

i α( ) + δi α( ) + ϵi
� yem

i α( ) + ηi α( ) + δi α( ) + ϵi. (21)

These three sources of error are represented in Figure 4 as an

illustrative stylized example.

The experimental error, ϵi, is assumed to come from a normal

distribution with mean zero and standard deviation σexi :

6 A fourth source of error could be, in principle, the computational error
in the high fidelity solver for the physical model. We expect this error to
be negligible in comparison to the other three at the level of resolution
Δr our high fidelity solvers have.
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ϵi ~ N (0, (σexi )2). These errors are assumed to be uncorrelated

between measurements of different nuclei and different quantities.

The error scale for each measurement, σexi , is an estimate of the

aggregate of the many uncertainty sources—both systematic and

statistical—that can play a role during the experimental campaign.

In principle, since each measurement comes from a different

campaign i, it is important to allow σexi to change from i to i.

Since the experiments are not conducted in consort, it is legitimate to

assume these errors are uncorrelated. As shown in Figure 4, these

experimental errors ϵi should not be interpreted as the discrepancy

between the theoretical prediction and the experimental value.

Rather, they represent the estimated difference between the

observed experimental value during realistic conditions,

compared to its (unattainable) value in ideal settings free of

experimental noise. This noise is thus due for instance to the

known imprecision of measurement instruments.

The modeling error, or model discrepancy term, δi(α), represents

the intrinsic failures of the physical model when reproducing reality,

for a given value of α. It is an aggregate of the many simplifications

made during the construction of the model, as well as any physical

effects, known or unknown, which are unaccounted for by the

physical model. In the limit where the experimental errors become

negligible, it is the term that explains the deviation between theory and

observation. Due to these model limitations, we expect that even the

best regions in the parameter space—values of α that make the

discrepancies as small as possible—cannot make them all vanish

simultaneously (δi(α) = 0) for every observable i.

It is typically unrealistic to expect a very precise estimate of the

statistical properties of the set of δi(α) as α varies. Indeed, first, because

the usual dataset in low-energy physics studies consist only of a few

spherical magic or semi-magic nuclei, limiting the statistical analyses

that can be made. Second, since the origin of δi(α) has roots in

phenomena not completely understood, it becomes very hard to give

accurate estimates when the experimental observations are not

available. This motivates us to propose a parsimonious model, in

accordance with the statistical principle that parsimony promotes

robustness, an idea that traces back several decades (e.g. [75]). We

assume that, up to scaling at the level of observables, the modeling

error variances are sharedwithin each of the two observable categories

(binding energies and charge radii), and do not depend on the

parameters α within their physical meaningful range that

reproduces the nuclear properties. This is represented by the scale

σmo
i (to be defined precisely shortly) in Figure 4.

Finally, for a given fixed value of the parameters α, the emulator

error, ηi(α), represents the difference between the model’s original

high fidelity calculation, and the approximate version computed by

the emulator. In Figure 4 it is represented as the difference between

the red and magenta vertical lines. This is the easiest error to obtain

exactly, given a fixed α, since it is entirely computable, given access to

the high fidelity and the emulator implementations. The challenge

lies in estimating ηi(α) for new values of αwithout the use of the high

fidelity solver. In the RBM literature, there exist approaches to

estimate the emulator’s error in terms of the properties of the

underlying differential equation [37], [76] and [77], but to our

knowledge they have not been yet extended to the type of

coupled nonlinear equations that describe our physical model Eq.

2 and Eq. 6. Our proposal below is to model all emulator errors,

including the unobserved ones, using the same statistical model,

where the emulator error intensity does not depend on α, thereby

circumventing the issue of developing an analytical approach to

extrapolating these errors in a non-linear setting, and keeping with

the principle of parsimony.

Having identified and described these three sources of errors,

we proceed to propose and implement methods to estimate their

combined effect in order to calibrate our physical model properly

through the RBM emulator.

In the case of binding energies and charge radii, the

experimental determinations are precise enough that the

typical error scale σexi can be ignored in comparison to the

typical model discrepancies7. Therefore, we decide to neglect

the experimental errors for the rest of our analysis.

FIGURE 4
Visual representation of the statistical model with the three
sources of uncertainty for an observable yi. For a particular value of
α, the model calculation, ymo

i (red vertical line) deviates from the
center of the experimental distribution, P(yexi ) (blue curve) by
the model error δi(α). The size of the experimental error,
characterized by σexi , is exaggerated in the figure to facilitate
showing. The estimated value by the emulator, yemi (vertical
magenta line) deviates from the model calculation, ymo

i , by the
emulator error, ηi(α). The model error scale, σmo

i , characterizes the
expected size of δi(α) as the parameters α are varied within their
meaningful physical range. This parameter range is characterized
by the Bayesian posterior distribution P(ymo

i |Y) (orange curve),
-obtained only after the analysis is done-of the observable yi given
all the calibration data Y.

7 For example, the binding energy of 208Pb is known to a precision better
than 10–4% [78], while its charge radius to a precision of 0.02% [79]. In
contrast, the estimated model error we calculate in the following
discussion for the same quantities is 0.25% and 0.26%, respectively.
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We assume that the model discrepancies δi(α) scale

proportionally to the value of each individual experimental

datapoint. This is because each datapoint represents a

different physical reality, and while, say, two binding energies

for two similar nuclei may be subject to the same intensity of

modeling error, this may not be a good assumption for two nuclei

which are more distant in the nuclear landscape. Specifically, we

assume that each scaled model discrepancies ~δi ≡ δi/yex
i comes

from a common normal distribution with mean zero and either

variance σ2BE for a binding energy datapoint or variance σ
2
R for a

charge radius datapopint. Another assumption lies in our

treatment of these errors being independent of each other,

and thus uncorrelated. A more elaborate statistical framework

could be developed to account for this correlation between errors,

requiring additional information to provide structure to the

correlation matrix and avoid overfitting the statistical model.

In the absence of such information, our assumption of

independence is consistent with an agnostic view about these

errors’ correlation. We estimate these errors’ scales σBE and σR
from the deviations between the originally calibrated RMFmodel

FSUGold2 [60] and the experimental observations, simply by

using a version of the classical unbiased variance estimator.

Explicitly, for the variance of the modeling errors on the

binding energy side, where the model is FSUGold2, with

NBE = 10 for the ten binding energy datapoints, we let

σ2BE �
1

NBE
∑NBE

i�1

yex
i − yFSUGold2

i

yex
i

( )2

, (22)

And similarly for σ2R as the variance of the modeling error for

charge radii. These expressions are calculated for all the data with

available experimental values in Table 2 in [60]. These formulas

are the classical minimum-variance unbiased estimators

(MVUE) of variances for datapoints coming from a normal

distribution with known means and unknown common

variance. One can view each model-calculated datapoint as

the error-prone data, with the experimental value as its mean

value. This results in a mathematically identical unbiased

estimator as if all means were equal. In our case, since we

choose to normalize the modeled data by dividing it by the

experimental data, we are in fact handling a classical situation,

where the data’s mean value is known to equal 1. In that scenario,

the classical MVUE is the one given in formula (22). Note that its

leading factor is 1/NBE rather than 1/(NBE − 1); this is because the

mean is known. In other words, the model to which this MVUE

Eq. 22 responds is

yFSUGold2
i

yex
i

� 1 + ~δi (23)

where ~δi are assumed to be independent mean-zero normal

errors with unknown variance σ2BE for the binding-energy

data, and similarly for σ2R. Applying the estimation to the data

in [60] we obtain:

σBE � 0.25%, (24)

And

σR � 0.26%. (25)

We express these two values as percentages since they are

dimensionless. We treat the charge radius of 16O as an outlier and

exclude it from this estimation, assigning it its own estimated

error scale of σR,16O � 1.4%, so that NR = 7. The corresponding

modeling error standard deviations σmo
i for specific observables yi

are obtained by multiplying the one based on scaled data by their

respective experimental values, which provides the correct

standard deviations for all δi in accordance with how we

defined ~δi. For example, for i = BE for 48Ca,

σmo
i � σBE × (416 MeV) � 0.25

100 × (416 MeV) ≈ 1 MeV.8

We follow a similar parsimonious approach and model the

emulator error ηi(α) as coming from a normal distribution with

mean zero and scale (standard deviation) σemi that does not

depend on α. In Figure 4, σemi would be the scale of a Gaussian

distribution (not shown to keep the figure easier to read) centered

at yem
i (α). From our assumptions we would expect that such

distribution will contain within one standard deviation the true

model evaluation ymo
i around 68% of the time both computations

are made, independent of the exact value of α within the

physically meaningful range where the emulator was trained.

We estimate the scale σemi from the empirically observed

deviations between the RBM emulator and the high fidelity

solutions in the validation set used for the selection of the

basis in the previous section. We select, therefore, σemi as the

values reported in the fourth column (Δ Rch) and sixth column (Δ
BE) in Table 1. Of potential concern is the degradation of the

Reduced Basis approximation for values of α outside of the

TABLE 2 Prior central values and standard deviations for the eight
model parameters used in the calibration.

θj θ0,j σθ,j

ms [MeV] 500 50

ρ0 [fm
−3] 0.15 0.04

ϵ0 [MeV] -16 1

M* [MeV] 0.6 0.1

K [MeV] 230 10

ζ 0.03 0.03

J [MeV] 34 4

L [MeV] 80 40

8 The experimental values of the charge radii for 68Ni was not known at
the time of the calibration in [60], while the charge radii of 100Sn is still
not known. In these cases, we used the values reported for FSUGold2
as proxies to preserve these two nuclei in the analysis when creating
predictive posterior distributions with the calibrated model.
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training and validation regions. We note that such values would

be outside the accepted physically meaningful range and thus are

unlikely to be visited by the Monte Carlo sampling we use later

for the model calibration. Additionally, as shown in similar RBM

applications [24, 25, 29], the emulation error tends to change

smoothly outside of the training region. This gives us confidence

that even in the rare event that such parameter values are visited,

they will have negligible impact on the overall calibration

procedure. Finally, we assume that the emulator’s errors and

the model discrepancy errors are independent (and thus

uncorrelated) across different quantities, and within the same

observable as well.

Under the assumptions we have made about the three sources of

uncertainties, including the independence of all error terms which

implies that the variance of their sum is the sum of their variances, we

can finally specify the likelihood function for our statistical model. To

simplify the prior specification and the exploration of the parameter

space, we construct our statistical modeling using the bulk matter

parametrization θ, which is equivalent to the Lagrangian couplings

one with α (see Secion 2). DenotingN =NBE +NR = 18 and denoting

byY theN-dimensional vector formed of the experimental datapoints

yex
i , our likelihood model is:

P Y |θ( )∝ e−χ
2/2, (26)

Where

χ2 � ∑NBE

i1�1

yem
i1

θ( ) − yex
i1

( )2
σemi1

2 + σmo
i1

2
+ ∑NR

i2�1

yem
i2

θ( ) − yex
i2

( )2
σemi2

2 + σmo
i2

2
. (27)

Ourmodeling assumptions about the error structure, plus the

standardization in Y, imply indeed that χ2 is chi-squared

distributed with N degrees of freedom. Note that σmo
i2

has the

associated 0.26% value for all i2 except for
16O, for which it has

the value of 1.4%.

4.2 Prior

For the prior distribution we adopt an uncorrelated

multivariate normal in θ as follows:

P θ( )∝ e−χ
2
0/2, (28)

where:

χ20 � ∑8
j�1

θj − θ0,j( )2
σ2θ,j

. (29)

The central values θ0,j and standard deviations σθ,j are

specified for the eight components of θ in Table 2. They were

chosen to roughly cover the expected parameter region with wide

ranges based on the previous calibration [60].

4.3 Posterior

With our likelihood and priors fully set up, the posterior

densities p.(θ|Y) for the parameters θ are given classically by

Bayes’ rule [72] as being proportional to the product of the

likelihood in Eq. 26 and the prior in Eq. 28, where the likelihood

is evaluated at the experimentally observed datapoints labeled

above as Y. From here, we are interested in using the Bayesian

analysis to compare the calculations of the fully calibrated model

with the experimental values of the observables, to verify that our

uncertainty quantification is accurate. If our uncertainty bands

on these predicted values are too narrow (too optimistic), too

high a proportion of our 18 observations will fall outside of the

bands. If our uncertainty bands are too wide (too conservative),

many or all of our 18 observations will be inside their

corresponding uncertainty bands. Being slightly too

conservative is easily construed as a virtue to hedge against

the risk of being too optimistic. The latter should be

construed as an ill-reported uncertainty quantification. The

method we propose here, to gauge the accuracy our

uncertainty quantification, with results described in Section 5,

is a manual/visual implementation of the now classical notion of

Empirical Coverage Probability (ECP, see [73] for a nuclear

physics implementation), appropriate for our very small

dataset with 18 points. To compute the posterior density of

every predicted value corresponding to our experimental

observations, we view the likelihood model as a predictive

model, featuring the fact that it includes statistical noise

coming from the δ′s and η′s (see Figure 4 and Eq. 21), not

just the posterior uncertainty in the parameters, and we simply

use Bayesian posterior prediction, namely

P ypred
i |Y( ) � ∫P ypred

i |θ( )P θ|Y( ) dθ, (30)

where p (θ|Y) is the posterior density of all model parameters.

In this fashion, the posterior uncertainty on the parameters,

and the statistical uncertainty from the likelihood model, are

both taken into account in a principled way. Note that this

predictive calculation can be performed for all 20 observables

of interest, though ECP-type comparisons with the

experimental datapoints happen only for the 18 points we

have, excluding charge radii for 100Sn and 68Ni. The next

subsection explains how all Bayesian analyses are

implemented numerically.

4.4 Metropolis-Hastings and surmise

The difficulty with any Bayesian method is to know how to

understand the statistical properties of the posteriors. The

simplest way to answer this question is to sample repeatedly

(and efficiently) from those probability distributions. To sample

from the posterior densities of the model parameters θ, we use the
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standard Metropolis-Hastings algorithm implemented in the

surmise Python package [80]. For the results presented

here, eight independent chains of 725,000 samples were ran

using the direct Bayes calibrator within surmise. For the

step size used, the ratio of acceptance for proposed new steps

was about 30% across all chains. The first 100,000 samples of each

chain were taken as a burn-in, reducing the effective sample size

of the calibration to 5,000,000 evaluations. The eight chains were

run in parallel and thus the 5,800,000 total evaluations took about

a day on a personal computer with commodity hardware. For

comparison, it would have taken nearly 6 years of continuous

computation to produce the same results using the original code

for the high-fidelity model.

To evaluate posterior predictive distributions to compare

with the experimental data, we rely on the fact that

surmise, like any flexible Monte-Carlo Bayesian

implementation, gives us access to all Metropolis-Hastings

samples. For each multivariate sample of the parameters in θ,

we draw independent samples from the normal distributions

in the likelihood model Eq. 21, and evaluate the

corresponding value of yex
i in that model by plugging

those sampled values into the right-hand side of that

specification. Note that the second line in Eq. 21 must be

used for this purpose, not the first line, in order to account

for the uncertainty due to emulation. This procedure

provides a sampling method for the distribution in Eq. 30

which has a level of accuracy consistent with the accuracy of

the Metropolis-Hastings method for sampling from the

parameters’ posterior densities.

5 Results and discussion

Having defined the covariant density functional model in

Secion 2, the reduced basis emulator in Secion 3, and the

statistical framework and the computational sampling tools

in Secion 4 we are in position to use the experimental data to

calibrate the model under a Bayesian approach. At the time

of the original calibration of the FSUGold2 functional [60],

this would have represented an exceptional computational

challenge, mainly because of the absence of the

computational speed up of three orders of magnitude

provided by the RBM. Instead, in the original calibration,

one was limited to finding the minimum of the objective (or

χ2) function and the matrix of second derivatives. In this

manner, it was possible to compute uncertainties and

correlations between observables, but only in the

Gaussian approximation. We compare and contrast our

results and procedure, highlighting that with the

exception of the information on the four giant monopole

resonances and the maximum neutron star mass, both

calibrations share the same dataset of binding energies

and charge radii.

We begin by displaying in graphical form the results of our

Bayesian implementation in surmise as a corner plot in

Figure 5. The corner plot summarizes the posterior

distribution of bulk parameters alongside the two-

dimensional correlations. For comparison, the Gaussian

distribution of parameters extracted from the original

FSUGold2 calibration is displayed by the vertically scaled

blue line. As expected, the width of the one-dimensional

distributions has increased—in some cases

significantly—relative to the Gaussian approximation that is

limited to explore the parameter landscape in the vicinity of

the χ2 minimum. The inclusion of bigger estimated model

errors δi in Eq. 21 likely also share responsibility for the

increased overall uncertainty. Besides the increase in the

width of the distribution, we see a relatively significant

shift in the average value of the incompressibility

coefficient K. We attribute this fact to the lack of

information on the GMR, which is the observable that is

mostly sensitive to K.

Beyond the corner plot that displays the distribution of bulk

parameters and the correlations among them, we illustrate in

Figure 6 and Table 3 the performance of the model as compared

with the experimental data informing the calibration. Note that

in Figure 6 as well as in Table 3 we have defined the binding

energy as a positive quantity.

The blue histograms display the posterior predictive

distributions Eq. 30 of each of the 20 observables.

Included in our results is the prediction for the yet to be

measured charge radius of 100Sn, as well as the charge radius

of 68Ni not used in the calibration. The vertical red lines

indicate the values of the experimental datapoints specified

in [60] and [63]. These plots show excellent coverage of all

datapoints within our reported uncertainty. With 19

datapoints, one would expect about one of them to fall

outside of 95% credible intervals. The credible intervals

are printed in Table 3, showing that none of our

datapoints fall outside those intervals around the posterior

means. This implies that our uncertainty quantification leans

towards the conservative side, although the binding energy

for 48Ca and the charge radii of 68Ni are very close to falling

outside the 95% band. Our method has produced

uncertainties which are very likely not to be overly

wasteful by significantly over-reporting uncertainty, and

which are very likely not to under-report uncertainty.

This is exactly where a Bayesian predictive posterior

coverage analysis wants to be in a study with such a small

number of datapoints.

Being the lightest of all the nuclei included in the calibration,
16O may be regarded as a questionable “mean-field” nucleus. As

such, comparing its experimental charge radius with our

posterior results is particularly interesting, since the model

standard deviation we used was more than 5 times larger than

for the other observables. Yet, our reported uncertainty sees the
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experimental measurement fairly well reproduced. This is an

indication that it was important to use the higher model variance,

or our prediction could have reported too low of an uncertainty.

Using a smaller variance for the model error δi could have also

pushed the parameters too strongly towards the 16O charge

radius outlier, deteriorating the overall performance of the

calibration on the other nuclei. The final coverage of all

data points illustrates our method’s ability to handle

heteroskedasticity (uneven variances) well. Finally, in

Figure 6, because our comparison with predictive

distributions performs very well and is only mildly

conservative, we can be confident that our prediction for

the charge radii of 100Sn is robust. How narrow these

histograms are is a testament to the quality of the original

modeling, its emulation, and our uncertainty quantification.

Coming back to the corner plot in Figure 5, we note that

the strongest correlation between observables involves the

value of the symmetry energy (J) and its slope (L) at

saturation density. The symmetry energy quantifies the

energy cost in transforming symmetric nuclear

matter—with equal number of neutrons and protons—to

pure neutron matter. In the vicinity of nuclear matter

saturation density, one can expand the symmetry energy

in terms of a few bulk parameters [82]:

S ρ( ) � J + Lx + 1
2
Ksymx

2 +/ (31)

where x = (ρ − ρ0)/3ρ0 is a dimensionless parameter that

quantifies the deviations of the density from its value at

saturation. Given that the calibration is informed by the

FIGURE 5
Corner plot [81] from the posterior distribution of the eight bulk matter parameters θ obtained from the Metropolis-Hasting sampling with
surmise. A total of five million samples were used, distributed along eight independent chains. The saturation density ρ0 is expressed in fm−3, the
mass of the σmesonms, the binding energy at saturation ε0, the incompressibility coefficient K, the symmetry energy J and its slope L at saturation are
all expressed inMeV. For comparison, the original calibration done in [60] is shown as the blue curves along the diagonal, scaled vertically to fit in
the same plot as our posterior results in black.
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binding energy of neutron-rich nuclei, such as 132Sn and
208Pb, the symmetry energy ~J � S(~ρ) ≈ 26MeV is well

constrained at an average density of about two-thirds of

saturation density, or ~ρ≈0.1 fm−3 [83]. As a result, one obtains
the following relation:

~J � J − L

9
+ Ksym

162
+/≈ J − L

9
0 J ≈ ~J + L

9
. (32)

Hence, accurately calibrated EDFs display a strong correlation

between J and L by the mere fact that the calibration included

information on the binding energy of neutron-rich nuclei. In the

original calibration of FSUGold2 [60], one obtained a correlation

coefficient between J and L of 0.97, while in this work we obtained a

correlation coefficient of 0.92. The slight non-linearity observed in

Figure 5 on the correlation between J and L is due to Ksym, which was

neglected in the simple argument made in Eq. 32.

FIGURE 6
Posterior distributions for the binding energies (inMeV) and charge radii (in fm) of the ten nuclei involved in our study. A total of 100,000 samples
from the 5,000,000 visited parameter values were used to make these distributions. The vertical red line in each plot represents the associated
experimental values, all contained within the 95% credible interval of the model, including the charge radii of 68Ni which was not included in the
calibration of the model. On the other hand, 100Sn does not have a measured charge radius, making its associated posterior distribution a true
prediction from our calibration. The numerical values for the mean and credible intervals on all these quantities are displayed in Table 3.

TABLE 3 Mean values and 95% credible intervals of the Bayesian posteriors on charge radii (in fm) and binding energy (in MeV), showed in Figure 6.
Also displayed are the 19 available experimental values [60, 63]. The credible intervals are calculated as equal-tailed intervals—such that the
probabilities of falling above or below the interval are both equal to 2.5%.

Nucleus 〈Rem
ch 〉 [2.5%–97.5%] Rex

ch 〈BEem〉 [2.5%–97.5%] BEexp

16O 2.736 [2.660–2.812] 2.690 127.90 [127.04–128.77] 127.62

40Ca 3.467 [3.446–3.488] 3.471 341.83 [339.75–343.91] 342.05

48Ca 3.470 [3.451–3.490] 3.470 414.05 [411.66–416.45] 416.00

68Ni 3.864 [3.841–3.888] 3.887 590.99 [587.47–594.52] 590.41

90Zr 4.262 [4.238–4.286] 4.264 782.34 [778.14–786.52] 783.90

100Sn 4.462 [4.433–4.490] - 827.69 [822.49–832.87] 825.30

116Sn 4.606 [4.580–4.632] 4.620 985.21 [979.57–990.86] 988.68

132Sn 4.705 [4.678–4.733] 4.704 1,104.3 [1,097.3–1,111.4] 1,102.84

144Sm 4.941 [4.914–4.968] 4.947 1,196.3 [1,189.4–1,203.1] 1,195.73

208Pb 5.512 [5.478–5.544] 5.497 1,640.7 [1,630.1–1,651.3] 1,636.43
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Although not directly an observable, L has been

determined to be strongly correlated to the thickness of the

neutron skin of heavy nuclei [83–85]; the neutron skin

thickness is defined as the difference in the mean square

radii between the neutron and proton vector densities (see

Eq. 8). In Figure 7 we show the correlation plot between L and

the neutron skin of 48Ca and 208Pb calculated directly from

100,000 random samples from our posterior distributions. It is

important to note that we have not included the model error δi
through Eq. 30 in these histograms9, and as such we do not

expect the uncertainties to be accurate, as we discuss later in

Sec. VI.

The correlation between L and the thickness of the

neutron skin of heavy nuclei has a strong physical

underpinning. For example, in the case of 208Pb, surface

tension favors the formation of a spherical liquid drop

containing all 208 nucleons. However, the symmetry energy

increases monotonically in the density region of relevance to

atomic nuclei. Hence, to minimize the symmetry energy, is

energetically favorable to move some of the excess neutrons to

the surface. It is then the difference in the symmetry energy at

the core relative to its value at the surface that determines the

thickness of the neutron skin; such a difference is encoded in

the slope of the symmetry energy L. If such a difference is large

enough to overcome surface tension, then some of the excess

neutrons will be pushed to the surface, resulting in a thick

neutron skin [86]. That the correlation between the neutron

skin thickness of 208Pb and L is strong has been validated using

a large set of EDFs [85]. Note that L is closely related to the

pressure of pure neutron matter at saturation density—a

quantity that has been extensively studied using chiral

effective field theory [13–19], and which is of great

relevance to our understanding of the structure of neutron

stars [87].

It is important to note that no information on neutron skins—or

any other observable that is strongly correlated to L—was included in

our calibration procedure, making it difficult to estimate the model

error associated with such quantities. This also indicates that in the

absence of any guidance, the class of covariant EDFs used in this work

tend to produce stiff symmetry energies, in contrast to Skyrme-type

EDFs and chiral effective field theories that tend to favor relatively soft

symmetry energies [13–19, 88]. Particularly interesting to note is that

whereas R208
skin and L are strongly correlated, the correlation deviates

significantly from the one obtained using a large set of both covariant

and Skyrme energy density functionals [85]. It is known, however,

that R208
skin displays a stronger correlation with the slope of the

symmetry energy at 0.1 fm−3 than at ρ0; see Ref. [50] and

references contained therein. However, the correlation between

R208
skin and R

48
skin we observe remains as strong as observed in Ref. [89].

Given the recently reported results from the PREX-II [48] and

CREX [49] experimental campaigns, our model’s average predicted

neutron skin for both 208Pb (0.27 fm) and 208Ca (0.23 fm) might

indicate that the physics encapsulated in the Lagrangian density

depicted in Eq. 1 is insufficient to describe both skins

simultaneously. Granted, with only two isovector parameters the

model may be too rigid to break the strong observed model

correlation between R208
skin and R48

skin. However, whereas models

with a more refined isovector sector may be able to reconcile both

measurements at some level, a consensus is emerging that this can

only be done at the expense of introducing significant tension with

other calculated observables by the model.

To make a clear assessment, we will need to both include a

statistical treatment of the expected model error in these quantities, as

well as mitigate possible model dependencies by directly comparing

with experimental observations such as the parity violating asymmetry.

We are planing to do so as an immediate direction by calibrating

covariant EDFs with an extended andmore elaborated isovector sector

that might help bridge both neutron skin results without

compromising the success of the model in reproducing other

nuclear observables, such as the ones displayed in Figure 6. As we

discuss in the next and final section, well quantified uncertainties

enabled by powerful emulators such as the RBMwill be indispensable

to achieve those goals and make full use of the anticipated new

FIGURE 7
Correlation corner plot [81] between the posterior
distributions for the neutron skin of 48Ca and 208Pb (both in fm), and
the slope of the symmetry energy L (in MeV). A total of
100,000 samples from the 5,000,000 visited parameter
values were used to make these distributions. Both neutron skins
R48
skin and R208

skin are strongly correlated, each with negative
skewness. The distribution for L, on the other hand, has a positive
skewness and, while it is strongly correlated with both neutron
skins, the correlation displays a non-linear behavior in both cases.

9 Such procedure would require to first give an accurate estimation of
the model error on neutron radii -a non trivial task given the lack of
experimental data on neutron radii-, and second to take into account
the model correlation between Rp and Rn.
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laboratory experiments and astronomical observations that will be

coming in the next years.

6 Conclusion and outlook

In the last few decades nuclear theory has gone through

several transformational changes brought on by embracing

philosophies and techniques from the fields of statistics and

computational science. It is now expected that theoretical

predictions should always be accompanied by uncertainties

[93]. This is particularly true in theoretical nuclear physics

where predictions from QCD inspired models require the

calibration of several model parameters. This newly-adopted

philosophy has also prompted the exploration of uncertainty

quantification across the many sub-fields of nuclear theory [34,

94–97]. Furthermore, several recent advancements and

discoveries have become feasible only through the successful

integration of machine learning and other novel computational

approaches to the large body of theoretical models developed

over many decades [31, 74, 98–100]. This dedication is also

exemplified by the theory community’s proactive efforts to

organize topical conferences, summer schools, and workshops

in service of disseminating the technical know-how to every level

of the community.

Aligned with these developments and efforts, our present work

aimed at showcasing a pipeline for integrating a statistical framework

through one such innovative computational technique. We have

calibrated a covariant energy density functional within a Bayesian

approach using available experimental values of binding energies and

charge radii. The calibration of themodel, as well as the quantification

of the uncertainties of its predictions, required millions of evaluations

for different values of its parameters. Such titanic computational

burden was made possible—straightforward even—thanks to the

emulation of the model through the reduced basis method, which

decreased the necessary calculation time from months or years to a

single day on a personal computer.

Our calibration’s main results, which consists of posterior

distributions for all the model’s parameters, were presented in

Figure 5. From these posteriors, and following the statistical

framework we developed in Sec. IV, the model output can be

estimated with well quantified uncertainties that can take into

account experimental, model, and emulator errors. We showed

such calculations with their respective estimated uncertainties in

Figure 6 and Table 3 for the binding energies and charge radii of

the 10 nuclei involved in the study. The fact that the experimental

values used in the calibration, depicted as red vertical lines in

Figure 6, fall within the 95% our calculated credible intervals

gives us confidence that our uncertainty procedure was not

biased towards being too optimistic for this dataset. This is

especially true for the case of the charge radii of 16O, which

was treated as an outlier based on prior expert knowledge on the

expectation of the limits of the mean field approach for smaller

systems. Once the experimental value for the charge radii of 100Sn

becomes available, it will be interesting to contrast our model

prediction’s and gauge the success of the uncertainty level

estimated.

However, the picture changes when we focus on the calculations

for the neutron skin thickness of 48Ca and 208Pb showed in Figure 7.

The recent experimental campaigns PREX [101], PREX-II [102],

and CREX [49] on parity violating electron scattering have

published results which suggest that the neutron skins of 48Ca

and 208Pb stand in opposite corners. While 208Pb is estimated to

have a relatively thick neutron skin of around 0.28 fm [102], 48Ca

[49] is estimated to have a significantly smaller skin of around

0.12 fm. Albeit we have not included a model error term in the

calculations shown in Figure 7, it seems that our current model is

unable to satisfy both values simultaneously.

Moving forward, we envision two complementary research

directions that could help mitigate the problems identified above.

First, one could build a more robust statistical framework that, by

including strong isovector indicators, such as information on the

electric dipole response of neutron rich nuclei, will impose stringent

constraints on the isovector sector. Second, and as already

mentioned, we could increase the flexibility of the isovector

sector by adding additional interactions that modify the density

dependence of the symmetry energy. The use of dimensionality

reduction techniques such as the RBM to significantly speed up the

calculation time—especially if information on nuclear excitations is

incorporated into the calibration of the EDF—will become a

fundamental pillar of the fitting protocol.

We believe that the RBMwe showcased here has the potential

to further impact many of the nuclear theory areas that have

already made use of similar emulators, as well as expanding the

frontiers of the physical models that can be successfully

emulated. Indeed, the RBM’s unique combination of few high-

fidelity evaluations needed to build an effective emulator, the

simplicity and flexibility of the Galerkin projection, and the

ability to precompute many observables and equations in the

offline stage could allow the community to deploy trained

emulators for use on different computer architectures and on

cloud infrastructure [103]. This could effectively lower the barrier

created by the need of running expensive computer models

locally. This could give access of cutting edge theoretical

models and simulations to an increased number of research

groups, opening new opportunities to expand the network of

collaborative research.

In short, the computational framework detailed in this work

attempts to provide an end-to-end solution for model calibration

and exploration with a focus on statistical rigor without sacrificing

computational efficiency. By leveraging this efficiency to nimbly

incorporate new experimental data, one can imagine the continuous

calibration of models that can be updated in a matter of hours

without requiring large-scale computing facilities. Finally, the heavy

focus on integrating these disparate parts into a user-friendly form to

generate physics-informed emulators is ultimately in service of our
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wider goal to increase data availability and software accessibility, and

is a necessity in the paradigmatic shift towards probability

distributions—rooted in Bayesian principles—defining physical

models rather than a single set of optimal parameters.
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