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We investigate the single-photon quantum routing composed of two infinite

waveguides coupled to two giant two-level atoms. The exact expressions of the

single-photon transmission and reflection amplitudes are derived with the real-

space approach. It is found that the single photon scattering behavior is strongly

dependent on the phase difference between the two adjacent atom-waveguide

coupling points, the frequency detuning, the coupling strength between the

two giant atoms, and the interaction strengths between the giant atoms and the

waveguides. Our studies show that an ideal single photon router with unit

efficiency can be realised by designing the size of the giant atom, and the

frequency detuning or adjusting the interaction strengths between the atoms

and the waveguides. The results suggest the potential to effectively control the

single-photon quantum routing based on the giant-atom setup.
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1 Introduction

The design and realization of scalable quantum information processing systems rely

on quantum networks [1]. As an essential ingredient in a quantum network, quantum

routers can be used to transfer the quantum information from one channel to others,

distributing it in the network. Due to their fastness, very low loss and long-playing

coherence [2–4], photons are considered as ideal candidates of carriers of quantum

information and thus quantum routing of photons has drawn more attentions in recent

years. Numerous theoretical and experimental researches on quantum routing or photon

transport have been made based on several different structures, such as coupled-resonator

waveguides [5–16], whispering-gallery-mode resonators [17–20], waveguide-emitter

systems [21–29], superconducting circuit [30–36].

Recently, giant atoms, as an emerging playground in quantum optics, have attracted a

plethora of research interest because they exhibit several striking new phenomena, such as

frequency-dependent relaxation rate and Lamb shift [37,38], oscillating bound states
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[39–43], decoherence-free interaction [44–46], chiral quantum

optics [47,48], and phase-controlled frequency conversions

[49,50]. For a traditional small atom, the size of the atom is

very smaller than the wavelength of the field, and thus it can be

well described with the dipole approximation. However, a giant

atom couples to a waveguide at multiple points, and the distance

between these points is no longer negligible compared with the

waveguides of propagating fields in the waveguide. Such a giant-

atom structure can be realized in several systems, such as

superconducting quits coupled to either surface acoustic waves

[51–54] or microwave transmission lines [4,44,55–57], cold

atoms interacting with optical lattices [58]. In the giant-atom

setup, the multiple coupling points lead to additional interference

effects that are not present in quantum optics with conventional

small atoms [37,39,45,59,60].

It is very interesting to study the issue that how to mediate

single-photon scattering by the giant atoms. Some pioneering

works have been reported in this area [42,50,61–65]. Reference

[42] investigated the single-photon scattering properties in a

one-dimensional coupled-resonator waveguide, where a giant

two-level atom is nonlocally coupled to the waveguide via two

or multiple resonators. The results showed that a giant atom can

be treated as a controller to manipulate the propagation of the

photon by introducing the interference effect. In a giant-

molecule waveguide-QED system consisting of two coupled

giant atoms and an infinite waveguide, the single-photon

scattering in both the Markovian and non-Markovian

regimes was studied. In this system, the asymmetric Fano

line-shapes and the Rabi splitting-like phenomenon were

observed [61]. Zhao et.al., reported that single photon

scattering in a one-dimensional waveguide can be

dynamically controlled by the periodic phase modulation via

changing the size of the giant atom and a tunable Autler-

Townes splitting can be achieved with the giant atom [62].

Furthermore, a chiral giant-atom model in both the Markovian

and the non-Markovian regimes was focused, and it was shown

that intriguing interference effects induced by a giant-atom

structure result in exotic quantum phenomena such as

ultranarrow scattering window [50].

Very recently, the strong dependence of single photon

routing properties on the size of a giant atom coupling to two

waveguides was revealed. To improve the routing efficiency, a

perfect mirror was placed into the non-target waveguide to form

a boundary and then the routing efficiency can reach unity [63].

An alternative approach was proposed in Ref. [21] to achieve a

high transfer-rate routing, which is to place an atomic mirror

aside the input channel but not to terminate it. Inspired by these

works, we show an extension of the single photon router based on

a single giant atom to the router with two coupled giant atoms,

one of which serves as an atomic mirror. With the real-space

approach, the exact expressions of the single-photon

transmission and reflection amplitudes are derived. We

explore the dependence of the single photon properties on the

phase shift between two atom-waveguide coupling points, the

frequency detuning between the incident photon and the atoms,

the coupling strength between the two giant atoms, and the

interaction strengths between the atoms and the waveguides. It is

found that the single photon incident from one waveguide can be

redirected in the other waveguide with a 100% probability by well

designing the size of the giant atom and the frequency detuning

or adjusting the ratio between the two atom-waveguide coupling

strengths.

FIGURE 1
Schematic configuration of routing single photons in two channels made of two infinite linear waveguides. The giant two-level atom a couples
twice with the waveguidem (waveguide n) at x = 0 and x = x0 with strength Vam (Van), and the giant two-level atom b only interacts the waveguidem
at x = 2x0 and x = 3x0 with strength Vbm. The purple dashed line indicates an interatomic interaction with strength g. Initially, a single photon is
launched from the left side of waveguide m and then is reflected, transmitted, or transferred to waveguide n.
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The paper is organized as follows: In Section 2, we present

theoretical model and give the exact expressions of the single-

photon transmission and reflection amplitudes with the real-

space approach. In Section 3, we discuss the effects of the phase

shift between two adjacent coupling points, the frequency

detuning, the atomic interaction, and the coupling strengths

between the giant atoms and the waveguides on the single

photon routing properties. Finally, we conclude with a brief

summary of the results in Section 4.

2 Theoretical model

As shown in Figure 1, we consider a single-photon router

composed of two infinite linear waveguides and two coupled

giant two-level atoms. The giant atom a simultaneously

couples to the two waveguides, waveguide m and

waveguide n, at two points x = 0 and x = x0, respectively,

while the giant atom b only interacts the waveguide m at x =

2x0 and x = 3x0. For simplicity, we assume here that the

distances between any two neighboring connection points are

identical. With rotating-wave approximation [66,67], the

real-space Hamiltonian of the system could be written as

(Z = 1)

H � Hw +Hab +HI, (1)

whereHw represents the free Hamiltonian of the two waveguides,

Hab describes the two coupled giant atoms, HI is the interaction

Hamiltonian between the atoms and the waveguides. The

expressions of these Hamiltonian are written as follows:

Hw � ∑
s�m,n

∫dx c+Rs
x( ) −iυg z

zx
( )cRs x( ) + c+Ls x( ) iυg

z

zx
( )cLs x( )[ ],

(2)
Hab � ωaσ

+
aσ

−
a + ωbσ

+
bσ

−
b + g σ+aσ

−
b + σ+bσ

−
a( ), (3)

HI � ∑
s�m,n

Vas ∫dx δ x( ) + δ x − x0( )[ ] c+Rs
x( )σ−a + c+Ls x( )σ−a[

+H.c.] + Vbm ∫ dx δ x − 2x0( ) + δ x − 3x0( )[ ]
× c+Rm

x( )σ−b + c+Lm x( )σ−b +H.c.[ ], (4)

where c+Rs
(x) (cRs(x))and c+Ls(x) (cLs(x)) (s = m, n) are the

bosonic creation (annihilation) operators of the right- and

left-propagating photons at position x in the waveguide s,

respectively. υg is the group velocity of the photons. ωa (ωb) is

the atomic transition frequency for the atom a (b). σ+a (σ+b )
and σ−a (σ−b ) are the raising and lowering operators for the

atom a (b). g characterizes the intensity of the interaction

between the two giant atoms. Vas (Vbs) is the coupling

strength between the atom a (b) and the waveguide s (s =

m, n). The Dirac delta functions δ(x) and δ(x − x0) indicate

that the giant atom a interacts with the two waveguides via

two points x = 0 and x = x0, respectively. The functions δ(x −

2x0) and δ(x − 3x0) represent that the giant atom b couples to

the waveguide m at x = 2x0 and x = 3x0. H. c. stands for the

Hermitian conjugate.

We assume that initially a single photon with energy υgk is

injected from the far left of the waveguide m. In the single-

excitation subspace, the eigenstate of the system can be written as

|ω〉 � ∑
s�m,n

∫dx ϕRs
x( )c+Rs

x( ) + ϕLs
x( )c+Ls x( )[ ]|∅〉 + uaσ

+
a |∅〉

+ ubσ
+
b |∅〉,

(5)
where |∅〉 is the vacuum state, which indicates zero photon in

any waveguide and the two giant atoms in their ground states. ua
(ub) is excitation amplitude of the atom a (b) in the excite state |

e〉a (|e〉b). ϕRs
(x) and ϕLs(x) (s = m, n) are, respectively, the

probability amplitudes of the right- and left-propagating photons

in the waveguide s. They have the following forms:

ϕRm
x( ) � eikx θ −x( ) + tm1θ x( )θ x0 − x( ) + tm2θ x − x0( )θ 2x0([

−x) + tm3θ x − 2x0( )θ 3x0 − x( ) + tmθ x − 3x0( )], (6)
ϕLm

x( ) � e−ikx rmθ −x( ) + rm1θ x( )θ x0 − x( ) + rm2θ x([

−x0)θ 2x0 − x( ) + rm3θ x − 2x0( )θ 3x0 − x( )], (7)
ϕRn

x( ) � eikx tn1θ x( )θ x0 − x( ) + tnθ x − x0( )[ ], (8)
ϕLn

x( ) � e−ikx rnθ −x( ) + rn1θ x( )θ x0 − x( )[ ], (9)

where θ(x) is the Heaviside step function. tm (tn) and rm (rn) are,

respectively, the transmission and reflection coefficients in the

waveguide m (n). tmj (tnj) and rmj (rnj) represent the probability

amplitudes for right-going and left-going photons between x =

(j − 1)x0 and x = jx0 (j = 1, 2, 3) in the waveguide m (n),

respectively.

Solving the eigenvalue equation H|ω〉 = ω|ω〉 with the

expressions in Eqs 2–9, one can obtain a set of equations

Vamua − iυg tm1 − 1( ) � 0,

Vamua − iυge
iθ tm2 − tm1( ) � 0,

Vamua + iυg rm1 − rm( ) � 0,

Vamua + iυge
−iθ rm2 − rm1( ) � 0,

Vanua − iυgtn1 � 0,

Vanua − iυge
iθ tn − tn1( ) � 0,

Vanua + iυg rn1 − rn( ) � 0,

Vanua − iυge
−iθrn1 � 0,

Vbmub − iυge
2iθ tm3 − tm2( ) � 0,

Vbmub − iυge
3iθ tm − tm3( ) � 0,

Vbmub + iυge
−2iθ rm3 − rm2( ) � 0,

Vbmub − iυge
−3iθrm3 � 0,
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gua − Δbub + Vbm tm2e
2iθ + rm2e

−2iθ + tme
3iθ( ) � 0,

gub − Δaua + Vam 1 + rm + tm1e
iθ + rm1e

−iθ( )
+ Van rn + tn1e

iθ + rn1e
−ikθ( )

� 0, (10)

where Δa = ω − ωa and Δb = ω − ωb are the frequency detunings

between the incident photon and the atom a and b, respectively.

θ = kx0, describes an accumulated phase of single photon

traveling between any two adjacent coupling points. Then one

can get the transmission and reflection amplitudes

tm � Δb − 2Γb sin θ( )Q1 − 2g
����ΓaΓb

√
Q2 − g2

i 1 + eiθ( )Q3 + ΔaΔb − g2
(11)

rm � − 1 + eiθ( )2 ΓaΔb + ΓbΔae4iθ + 2g
����ΓaΓb

√
e2iθ + 2iΓaΓbQ4( )

1 + eiθ( )Q3 − i ΔaΔb − g2( ) ,

(12)

tn � rne
−iθ � e−iθ 1 + eiθ( )2 ΓaΔb + g

����ΓaΓb
√

e2iθ − iΓaΓbQ5( )
1 + eiθ( )Q3 − i ΔaΔb − g2( ) , (13)

where Γa � V2
am/υg � V2

an/υg and Γb � V2
bm/υg, respectively, are

the decay rates from the atom a and b into the waveguides. Then

Γa (Γb) characterizes the coupling strength between the atom a

(b) and the waveguides. Here, we assume Van = Vam for

simplicity. We introduce the notations Qj (j = 1, 2, 3, 4, 5) as

follows:Q1 =Δa + 2iΓa (1 + cos θ + 2i sin θ),Q2 = sin θ + 2 sin 2θ +

sin 3θ, Q3 � 2g
����
ΓaΓb

√
eiθ(1 + eiθ) +2(ΓbΔa + 2ΓaΔb) +

iΓaΓb(1 + eiθ) [8 − e2iθ(1 + eiθ)2],Q4 = 1 + e3iθ(2 cos 2θ − 1),Q5 �
e3iθ(1 + eiθ)2 − 2(1 + eiθ).

Based on Eqs 11–13, the single-photon transmission and

reflection rates could be defined by

Ts � |ts|2, Rs � |rs|2, s � m, n( ). (14)

One can obtian the relations Rn = Tn and Rm + Tm + Rn + Tn = 1

for probability conservation.

3 Single photon scattering mediated
by two giant atoms

Now, we explore the single photon routing properties

between the two waveguides mediated by the two giant atoms.

Here, we interest in the quantum transfer efficiency Rn + Tn from

the waveguide m to n, and only focus on Tn due to the relation

Rn = Tn. The simple case with Δa = Δb = Δ, Γa = Γb = Γ and g = 0 is

considered firstly. In this case, the transmission and reflection

amplitudes in Eqs 11–13 can be simplified as

tm � Δ − 2Γ sin θ( )Q1′
i 1 + eiθ( )Q3′ + Δ2 (15)

rm � −Γ 1 + eiθ( )2 Δ 1 + e4iθ( ) + 2iΓQ4[ ]
1 + eiθ( )Q3′ − iΔ2 , (16)

tn � rne
−iθ � Γe−iθ 1 + eiθ( )2 Δ − iΓQ5( )

1 + eiθ( )Q3′ − iΔ2 , (17)

where Q1′ � Δ + 2iΓ(1 + cos θ + 2i sin θ), Q3′ � 6ΓΔ +
iΓ2(1 + eiθ)[8 − e2iθ(1 + eiθ)2].

Figure 2 displays the transmission rates Tm and Tn versus the

detuning Δ between the incident photon and the atoms, and the

phase shift θ between two adjacent atom-waveguide coupling

points. Here, the coupling strength between the two atoms is not

taken into account, i.e., g = 0. Obviously, these spectra vary

FIGURE 2
Transmission rates Tm (A) and Tn (B) as a function of the detuning Δ and the phase shift θ, in which the frequency detunings are equal (Δa = Δb =
Δ), and the two atom-waveguide coupling strengths are the same (Γa = Γb = Γ). A dark purple sinusoidal shape implies Tm = 0, and Tn can reach its
maximum value of 0.48. The transferred rate Tn + Rn (Rn = Tn) of the photon from the input waveguidem into the targeted waveguide n is 0.96. The
other parameter is g = 0.
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periodically as θ with a period of 2π. Note that the value of Tm is

always zero when Δ = 2Γ sin θ, except for some special phases θ =

(2j − 1)π (j = 1, 2, 3 . . . ) by analyzing Eq. 15. A dark purple

sinusoidal shape appears at Δ/Γ = 2 sin θ, indicating Tm = 0, as

shown in Figure 2A. Similar transmitted behavior have also been

demonstrated in other giant-atom setups [50,62,68]. In the case

of θ = (2j − 1)π (j = 1, 2, 3 . . . ), we have Rm = Tn = Rn = 0 (Rm and

Rn not shown in Figure 2) with the factor 1 + eiθ = 0 in the

expressions of Eqs 16, 17 but Tm = 1. The perfect transmission of

the single photon arises from the quantum interferences among

the multiple connection points [45]. Figure 2B displays that Tn

can reach a maximum value of 0.48 (Rn = Tn = 0.48), which can

be verified by numerical calculation based on Eq. 17. The results

indicate that the maximum total quantum routing probability

(Rn + Tn) from waveguide m to waveguide n is about 0.96.

As shown in Figures 3, 4, we plot the effect of the coupling

strength between the two giant atoms on single-photon routing

properties. We also assume Δa = Δb = Δ and Γa = Γb = Γ. Figure 3

FIGURE 3
Transmission rates Tm (A) and Tn (B) as a function of the detuning Δ and the coupling strength g between the two atoms under the same atom-
waveguide interaction strengths (Γa = Γb = Γ). The spectra show V-type shapes, indicating the existence of two valleys or peaks. The phase shift
between two adjacent coupling points is fixed to θ = π/4.

FIGURE 4
The transmitted curves Tm (A) and Tn (B) show the profiles of Figure 3. The effect of the coupling strength g between the atom a and b on the
single-photon scattering is revealed. The number of valleys or peaks varies from one to two as g changes from zero to non-zero.
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exhibits the transmission rates Tm and Tn as a function of the

detuning Δ and the coupling strength g. One can see that there

are two valleys or peaks, which are more clearly demonstrated by

the profiles of Figure 3, as depicted in Figure 4. When g = 0, there

is a single valley or peak in these scattering spectra, but for g ≠ 0

two valleys or peaks appear in these spectra. As g increases, the

separation of the two valleys or peaks gradually increases and the

intensities also change. The results indicate that the coupling

strength between the two atoms can control the single-photon

scattering in the two waveguide channels. However, an increase

of the coupling strength leads to decreasing of Tn. Consequently,

when the coupling strength g = 0 the maximum total quantum

routing probability with 0.88 can reach.

Next, the influence of the atom-waveguide coupling strengths

on single-photon routing properties is investigated. Here, we also

set Γa = Γ, serving as the unit of other parameters, but change the

value of Γb by adjusting the ratio Γb/Γa = η. Moreover, the

interatomic coupling is turned off, i.e., g = 0. To explore a

possible unit transfer efficiency from the waveguide m to n,

we let Δ = 2Γb sin θ = 2Γη sin θ [θ ≠ (2j − 1)π, j = 1, 2, 3 . . . ] to

ensure Tm = 0, meanwhile, seek the condition of Rm = 0. After

analyzing Eqs 11, 12, both Tm = 0 and Rm = 0 are guaranteed

when the following conditions are satisfied simultaneously:

Δ � 2Γη sin θ, (18)
Δ � −2Γ 1 + cos 3θ 2 cos 2θ − 1( )[ ]

sin 4θ
, (19)

η � 1 + cos 3θ 2 cos 2θ − 1( )
Γ cosθ 1 − 2 cos 2θ( ) − cos 4θ[ ], (20)

To clearly demonstrate possible extremum values of Tn and

Rm, we plot Tn and Rm as a function of θ and η by substituting g =

0 and Δ = 2Γb sin θ into Eqs 11–13. One can see that there are six

extremum points with Tn = 0.5 and Rm = 0 marked with white

dots in Figures 5A,B, respectively, and they are symmetric about

θ = π. The exact locations of the six extreme points are obtained

based on the numerical analysis of Eqs 18–20, as shown in

Table 1. We plot Tm, Rm and Tn versus Δ where the values of

the other parameters are provided in the Table. It is worth noting

that each pair of spectra (i.e., Figures 6A–F) with the same values

of η are symmetric with respect to the vertical line Δ = 0. In fact,

we have Tm [η, − Δ, 2π − (2j − 1)π/8] = Tm [η, Δ (2j − 1)π/8], Rm

[η, − Δ, 2π − (2j − 1)π/8] = Rm [η, Δ (2j − 1)π/8] and Tn [η, − Δ,

FIGURE 5
The extreme values of Tn (A) andRm (B) for various phase shift θ and the ratio η between the two atom-waveguide coupling strengths. White dots
represent extremum points with Tn = 0.5 or Rm = 0, showing symmetric about θ = π. The values of the parameters at the six extreme points are listed
in Table 1. The interatomic interaction is fixed to g = 0.

TABLE 1 The values of the parameters θ, η and Δ at extremum points with Tn = Rn = 0.5 and Tm = Rm = 0 in Figures 5, 6.

θ 3π/8 5π/8 7π/8 9π/8 11π/8 13π/8

η 3.50 1.33 2.20 2.20 1.33 3.50

Δ/Γ 6.46 2.46 1.68 −1.68 −2.46 −6.46
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2π − (2j − 1)π/8] = Tn [η, Δ (2j − 1)π/8] (j = 2, 3, 4, 5, 6, 7). In

addition, two peaks appear in the reflected spectra Rm but not in

other spectra. The locations of the two peaks are derived as Δ± �
(η + 2) sin θ ±

����������������
(η + 2)2 sin2 θ + ηQ

√
with Q = 8 + 16 cos θ +

7 cos 2θ − 4 cos 3θ − 6 cos 4θ − 4 cos 5θ − cos 6θ, where the values

of the parameters θ and η are given by Table 1. These results

mean that the single photon transfer efficiency from the

waveguide m to n can reach 100% (i.e., Rn + Tn = 1) by

designing a proper size of the giant atom, and adjusting the

atom-waveguide coupling strength and the frequency detuning

between the atoms and the single photon. Different from the

single-photon router containing a small-atommirror in Ref. [21],

FIGURE 6
Transmission and reflection rates Tm (dark solid line), Tn (blue dashed line) and Rm (red dotted line) as a function of Δ around the six extreme
points shown in Figure 5. (A) η= 3.50, θ = 3π/8, (B) η = 1.33, θ = 5π/8, (C) η = 2.20, θ = 7π/8, (D) η = 2.20, θ = 9π/8, (E) η= 1.33, θ = 11π/8, (F) η = 3.50, θ =
13π/8. The transmitted spectra of Tm and Tn show a single valley or peak, while the reflected spectrum of Rm exhibits two peaks. The values of η and θ
are provided by Table 1 and the interatomic interaction is not considered (g = 0).
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we introduce two coupled giant atoms to mediate the single-

photon routing between two infinite waveguides, where a giant

atom is located between the two waveguides to transfer the single

photon from the input waveguide m to the output waveguide n,

and the other one only interacts with the non-target waveguidem

to serve as a giant-atom mirror.

Finally, we explore the effects of the detunings Δa and Δb on

the single photon quantum routing. After analyzing Eqs 11–13

and letting g = 0, Γa = Γb = Γ, a single photon router with unit

efficiency may be achieved when the following equations are

fulfilled

Δb − 2Γ sin θ � 0, (21)
Δa sin 4θ + 2Γ 1 − cos 3θ 1 − 2 cos 2θ( )[ ] � 0, (22)

Δb + 2Γ 1 − 2 cos 2θ( ) sin 3θ + cos 3θ cot 4θ( ) − 2Γ cot 4θ � 0,

(23)
The calculation and analysis for the above equations show

that there are eight solutions of θ meeting the conditions,

specially, θ = (2j − 1)π/8, (j = 1, 2, 3, 4, 5, 6, 7, 8), and the

other parameters are listed in Table 2. One can find that

there is the relation Tn [ − Δa, − Δb, 2π − (2j − 1)π/8] = Tn

[Δa, Δb, (2j − 1)π/8]. As a consequence, any two transmitted

TABLE 2 The values of the parameters θ, Δa and Δb with Tn = Rn = 0.5 and Tm = Rm = 0 in Figure 7.

θ π/8 3π/8 5π/8 7π/8 9π/8 11π/8 13π/8 15π/8

Δa/Γ −2.32 6.46 2.46 1.68 −1.68 −2.46 −6.46 2.32

Δb/Γ 0.76 1.85 1.85 0.76 −0.76 −1.85 −1.85 −0.76

FIGURE 7
Transmission rate Tn as a function of Δa and Δb, in which the four values of the phase shift θ are given by Table 2. Specially, (A) θ= π/8, (B) θ= 3π/8,
(C) θ = 5π/8, (D) θ = 7π/8. The transmitted spectra with the other four values of θ are not presented here. The total transfer efficiency from the
waveguide m to n can achieve 100% by adjusting the detunings. The other parameters are Γa = Γb = Γ, g = 0.
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spectra with θ = (2j − 1)π/8 and 2π − (2j − 1)π/8 show central

symmetry with respect to the origin (Δa = 0, Δb = 0). Figure 7

shows the transmission rate Tn versus Δa and Δb with some

given values of θ provided by Table 2. This indicates that a

single photon router with unit efficiency can be also realised

by tuning the phase shift of two adjacent connection points

and the frequency detuning between the single photon and

the atoms.

4 Conclusion

We have studied the influence of two coupled giant two-

level atoms on the modulation of single photon quantum

routing in two channels composed of two infinite

waveguides, and derived the exact expressions of the single-

photon transmission and reflection amplitudes with the real-

space approach. Our studies show the single photon scattering

can be mediated by the atomic phase difference, the frequency

detuning, the interatomic interaction, and the coupling

strengths between the giant atoms and the waveguides. In

the two-giant-atom scheme, it is found that the giant atom

located between the two waveguides plays a role in transferring

the single photon from the input waveguide to the output

waveguide, and the other one interacting with the non-target

waveguide is equivalent to a giant-atom mirror, inducing

additional interferences. Importantly, a single photon router

with unit efficiency can be realised by designing a proper size of

the giant atom and adjusting the ratio of the coupling strength

and the frequency detuning. Our work may provide a feasible

approach to design an efficient quantum router and manipulate

photon transport at the single-photon level using the giant-

atom setup.
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