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In the steady-state picture, the magnetic field can be formulated by a curl-free

potential field in the magnetosheath region, and the sheath field is uniquely and

linearly determined by the upstream field and the transformation matrix which

contains the effect of field cancellation making the magnetospheric cavity. The

curl-free sheathmodel can be used to reconstruct the upstream field for a given

magnetic field data set in the magnetosheath region. The applicability and the

limits are theoretically evaluated such that the reconstruction works reasonably

as far as the sheath sampling position is not close to themagnetopause, and that

the upstream field can be estimated within an error ranging from 10 to

40 percent, depending on the region of sampling.
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1 Introduction

After the deceleration of the solar wind plasma at the bow shock, the plasma is

deflected and streams around the planetary magnetosphere within the so-called

magnetosheath region. This region exhibits various types of wave activities as well

as turbulent fluctuations and serves as a direct interface between the solar wind

plasma and the magnetospheric plasma [1]. However, the large-scale structures of

the sheath region are mainly determined by the mean fields, such as the steady-state

magnetic field and the steady-state flow velocity. Different approaches have been

introduced for modeling the large-scale structures of the magnetosheath. For

example, Spreiter et al. [2] revealed in their seminal paper the large-scale sheath

structure with a compression on the dayside and an expanding, re-acceleration

region in the flank region. Nabert et al. [3] solved the set of

MHD (magnetohydrodynamic) equations self-consistently and semi-

analytically to determine the magnetic field and flow velocity in the sheath

region theoretically.

The problem of analytically expressing the sheath field was elegantly solved by

Kobel and Flückiger [4] by considering the sheath region as current-free such that the

sheath field is given as a superposition of the upstream field with the cancelling field
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that forms the magnetospheric cavity. The sheath field can

thus uniquely be determined by solving the Laplace equation

under the condition of the current-flowing boundaries at the

bow shock and the magnetopause. The sheath field is then

expressed as a linear transformation of the upstream field. This

property enables the estimation of the upstream magnetic field

directly from the sheath-field sampled at a single measurement

point.

Here we revisit the model of Kobel and Flückiger [4]

(hereafter, KF model), and point out the usefulness of the

potential field treatment in the sheath and reconstruct the

upstream field using the sheath data. The magnetic mapping

property from the upstream to the downstream fields in the

KF model has largely been overlooked in the space plasma

physics studies. Our study is presented as a concept paper

here, which is yet to be expanded into a proof-of-concept

paper at the next stage. Nevertheless, our analytical and

numerical calculation strongly supports the idea of

developing an algorithm of upstream field reconstruction as

an analysis tool. Immediate applications include observational

cases in which only the sheath field is available and not the

upstream one, such as 1) when studying the near-Earth space

plasma by revisiting the data before the advent of long-term

solar wind monitors (such as DSCOVR and Geotail) and 2)

when working on the Mercury magnetosphere studies with the

BepiColombo mission (with the Mio spacecraft

orbiting around Mercury at an apo-herm of about 6 planet

radii, [5]).

2 Curl-free magnetosheath model

The steady-state magnetosheath field is uniquely

determined by the upstream field. The sheath field is

obtained as a solution of the Laplace equation under the

assumption that the magnetosheath is curl-free (which

justifies the use of potential field theory). As discussed by

Kobel and Flückiger [4], this assumption is only valid, if the

steady state magnetic field changes slowly inside the

magnetosheath region compared to the boundary regions.

In this case, the sheath field is a superposition of the

upstream field permeating the sheath and the cancelling

field caused by the magnetopause current (such that the

field does not permeate into the magnetosphere). The

expression of the sheath field is given analytically for

the parabolic shape of the bow shock and magnetopause

[4] as

B(sh) � C

Rmp
B(sw) + CB(cc). (1)

Here, B(sh) denotes the sheath field, B(sw) the solar wind

field, and B(cc) the cancelling field. The coefficient C is

determined by the stand-off distance to the bow shock (Rbs)

and that to the magnetopause (Rmp) under the boundary

condition of parabolically-shaped bow shock and

magnetopause as

C � Rmp 2Rbs − Rmp( )
2 Rbs − Rmp( ) . (2)

The solar wind field B(sw) is treated as given in the forward

modeling. The cancelling field is obtained by solving the

Laplace equation for the scalar potential under the boundary

condition of the bow shock and magnetopause. The solution

of the Laplace equation is represented as a Fourier-Bessel

series, i.e., the solution is expanded into a Fourier series in the

azimuthal directions around the symmetry axis (i.e., the solar

wind direction intersecting the magnetic dipole of the

planet), and is further expanded into a series of Bessel

FIGURE 1
Field lines in the magnetosheath in the x-y plane for the case of B(sw) = −B0 ex as well as B(sw) = −B0 ey.
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functions. For the parabolic boundaries, the Bessel expansion

becomes truncated at the first order, and the cancelling field

is analytically (also algebraically) expressed as

B(cc)
x � − 1

d d + x − xf( )
1
2

d + x − xf( )B(sw)
x + yB(sw)

y + zB(sw)
z[ ]

(3)
B(cc)
y � − 1

d d + x − xf( )
y

2
B(sw)
x − d − y2

d + x − xf
( )B(sw)

y − yz

d + x − xf
B(sw)
z[ ] (4)

B(cc)
z � 1

d d + x − xf( )
z

2
B(sw)
x + yz

d + x − xf
B(sw)
y + d − z2

d + x − xf
( )B(sw)

z[ ] (5)

Here, our coordinate system is constructed by the sunward

direction (as the x axis) and a further reference direction to

determine the y and z direction. For example, one may choose

the ecliptic north direction as the z direction in the spirit of the

GSE coordinate system. We use the notation introduced by

Soucek and Escoubet [6] such that the focal point of the bow

shock and magnetopause is located at xf along the x axis (hence

the coordinates are rf = (xf, 0, 0) in our coordinate system), and

the radial distance to the focal point is given by d = |r − rf|. The

magnetic field components are converted from the coordinate

system in the KF model into the GSE coordinate system, e.g.,

that used in the paper by Soucek and Escoubet [6]

by the following rule: B(kf )
z → B(gse)

x , B(kf)
x → B(gse)

z , and

B(kf)
y → − B(gse)

y .

The cancelling field is linearly proportional (in the vectorial

sense) to the solar wind field, and Eq. 1 can be formulated using a

transformation matrix T as

B(sh) � T B(sw) (6)
with

T � C

Rmp
diag 1, 1, 1( )

+ C

d d + x − xf( )

−1
2

d + x − xf( ) −y −z

−y
2

d − y2

d + x − xf
( ) yz

d + x − xf

z

2
yz

d + x − xf
d − z2

d + x − xf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(7)

where diag (1, 1, 1) is the 3-by-3 unit matrix.

As an example, the magnetic field lines within the

magnetosheath calculated via Eq. 6 are illustrated in

Figure 1 for the case of B(sw) = −B0 ex as well as B(sw) = −B0

ey, where B0 is an arbitrary amplitude of the upstream field and

ex and ey are the corresponding unit vectors of the x- and y-

axis in the GSE coordinate system. The geometry is adapted to

the terrestrial case (RE = 6,371 km), where Rmp = 9 RE and

Rbs = 12.5 RE [4]. The magnetic field lines clearly and smoothly

bend around the magnetosphere and are tangential to the

magnetopause.

3 Upstream field estimation

Eq. 6 can potentially be inverted such that the upstream

magnetic field B(sw) is estimated from the inverse transformation

matrix T−1 and the sheath field B(sh) as

B(sw) � T−1 B(sh). (8)
This approach would particularly be helpful in the planetary

missions because the spacecraft may encounter the planetary

sheath region along its trajectory but not always the solar

wind. An example is BepiColombo Mio [5] which has an apo-

herm of about 6 planetary radii. Depending on the

observation time or season, there are time slots in which

the spacecraft stays mostly in the magnetosphere and

magnetosheath, and not in the solar wind. It should be

noted that the bow shock and magnetopause are modeled

as parabolically shaped and that the standoff distances Rbs

and Rmp must be known a priori or from the data when

inverting the transformation matrix. Furthermore, the shape

FIGURE 2
Determinant of the matrix T in the x-y plane. The matrix
becomes singular at the magnetopause.
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of the boundaries needs to be (approximately) parabolic with

known focal points.

3.1 Invertibility of the transformation
matrix

Estimating the upstream field from magnetic field

measurements within the magnetosheath, requires the

existence of the matrix T−1 (Eq. 8). Therefore, the question

arises whether the transformation matrix is regular within the

whole sheath region. For a first discussion we evaluate the matrix

T along the stagnation line where y = 0 = z. From the definition of

d it follows that d = x − xf so that

T � C

Rmp
diag 1, 1, 1( )

+ C

2 x − xf( )2
− x − xf( ) 0 0

0 x − xf 0
0 0 x − xf

⎛⎜⎝ ⎞⎟⎠ (9)

� C

Rmp
diag 1, 1, 1( )

+ C

2 x − xf( )
−1 0 0
0 1 0
0 0 1

⎛⎜⎝ ⎞⎟⎠ (10)

FIGURE 3
Relative error of the reconstructed amplitude and the components of the upstream field resulting from disturbed measurements.
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� C

1
Rmp

− 1
2 x − xf( ) 0 0

0
1

Rmp
+ 1
2 x − xf( ) 0

0 0
1

Rmp
+ 1
2 x − xf( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(11)
The determinant results in

det T( ) � C3 1
Rmp

− 1
2 x − xf( )( ) 1

Rmp
+ 1
2 x − xf( )( )2

(12)

and vanishes in the case of

2 x − xf( ) � Rmp (13)
or equivalently

x − xf � Rmp

2
. (14)

Using xf � Rmp

2 [6], shows that the matrix becomes singular at the

magnetopause

x � Rmp. (15)

Figure 2 displays the determinant of the matrix T in the x-y

plane within the sheath region. The matrix is regular within the

whole sheath and the determinant reaches its maximum value

directly at the bow shock. The determinant decreases towards the

magnetosphere and vanishes at the magnetopause where the

matrix becomes singular. This behaviour can be understood as

follows: Themodel requires the sheath field to be tangential at the

magnetopause. Therefore, different upstream field orientations

cannot be discerned from each other at the magnetopause. In the

remaining regions of the sheath the upstream field can be

properly estimated by making use of Eq. 8.

3.2 Accuracy of upstream field estimation

In the practical application of the method to magnetosheath in

situ data, the quality of the upstream field estimation is affected by

measurement errors. The goal is to classify regions within the

magnetosheath that are preferable for estimating the upstream

field. We use a test scenario and model the sheath field B(sh) via Eq.

6 for B(sw) = −B0 ex. Afterwards, each resulting component of the

sheath field is disturbed by one random error with a maximum

value of 10% of the background field B0 resulting in the field ~B
(sh)

(i.e., the error of each component lies in the range [ − 0.1 B0,

0.1 B0]). Finally, the upstream field ~B
(sw)

is estimated via

~B
(sw) � T−1 ~B

(sh)
. (16)

Figure 3 displays the errors of the amplitude |δB(sw)| � |~B(sw) −
B(sw)| and of the components δB(sw)

i � ~B
(sw)
i − B(sw)

i for i = x, y, z

normalized to the background field B0 in the x-y-plane. As the

boundary shapes are assumed to be rotationally symmetric, the

same picture arises within the x-z-plane.

The relative error of the amplitude follows the structure of the

determinant of the matrix T (Figure 2) and reaches its maximum

value of about 40% in the vicinity of the magnetopause. The error of

the amplitude is mainly controlled by the x and y components that

show errors of about 20–40%. The error of the z component is

smallest with values of the order of 1%. A similar structure arises in

the case of B(sw) = −B0 ey. Therefore, the field can be most accurately

determined in the plane perpendicular to the plane where the field

bends around the magnetosphere. It should be noted that the

estimation error solely depends on the distance to the

magnetopause. Thus, the field can also be estimated adequately

in the far tail regions.

As discussed at the beginning of the section, the standoff

distances Rbs and Rmp must be known a priori or estimated from

the data when calculating the upstream field. To analyze the effect

of defectively determined standoff distances, we assume values of

Rmp = 9.1 RE and Rbs = 12.6 RE, which are about 1% larger than the

true values of Rmp = 9 RE and Rbs = 12.5 RE. The defectively

determined distances result in a disturbed transformation matrix
~T. The sheath field is again calculated using Eq. 6 with B(sw) = −B0
ex and the field estimation is performed via

~B
(sw) � ~T

−1
B(sh). (17)

FIGURE 4
Relative error of the reconstructed amplitudeof the upstream field
resulting from defectively determined standoff distances Rmp and Rbs.
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The resulting estimation error of the amplitude |δB(sw)| � |~B(sw) −
B(sw)| is displayed in Figure 4. The error again

increases towards the magnetopause with a maximum value of

about 15%.

Furthermore, defectively determined measurement

positions of the spacecraft can cause estimation errors of the

upstream field.

4 Summary and outlook

The KF model [4] enables the analytical modelling of the

magnetic field within the magnetosheath for a given upstream

field. As the sheath field results from a linear transformation of

the upstream field, the model can also be used for estimating

the upstream field from magnetosheath measurements

acquired at a single measurement point. It turns out that

the upstream field can be properly estimated within the

whole magnetosheath region except for the magnetopause,

where the sheath field is bend around the magnetosphere and

lies tangential to the magnetopause for all upstream field

orientations.

In the practial application, the accuracy of the estimation

is affected by measurement errors and defectively determined

standoff distances. Using a test scenario, we find that the

estimation error decreases with increasing distance to the

magnetopause. Therefore, data far away from the

magnetopause are preferable to guarantee an accurate

upstream field reconstruction.

The presented inversion procedure opens the door for a

wide range of practical applications. For example, the model

can be applied to the BepiColombo Mio data to estimate the

upstream field in the vicinity of Mercury [5]. It should be

noted that the model is based on the evaluation of magnetic

field data in current-free regions. Regarding the different

scales of the magnetospheres of planet Earth and planet

Mercury it might be useful to extend the modelling by

making use of the toroidal-poloidal decomposition, also

known as the Mie representation [7], which enables the

evaluation of magnetic field data in current-carrying

regions. Especially, the model should be tested against

simulated magnetic field data to evaluate the quality of the

results conducted by the model. Regarding the different shape

models of planetary magnetospheres (e.g., [8, 9]) and bow

shocks (e.g., [10, 11]), the model can also be extended to

different geometries by making use of curvilinear coordinates.

Furthermore, this enables us to analyze the robustness of

different boundary models and model parameters (e.g.,

magnetopause flaring, non-confocal boundary shapes,

magnetosheath thickness) towards the magnetic field

estimation and the error propagation, especially when data

from far-tail regions are evaluated.
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