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We discuss and analyze some recent literature that introduced pioneering

methods in econophysics. In doing so, we review recent methods of

estimating the volatility, volatility of volatility, and probability densities. These

methods will have useful applications in econophysics and finance.
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1 Introduction

The volatility estimation is a key topic in finance and econophysics. It is an indicator

of the movement in the asset price. For example, see [1,2]. Recently, the literature focused

on the volatility of volatility. Examples include [3,4]. Closely related to the volatility

estimation is the probability density estimation. The density estimation can be used to

estimate the volatility and volatility of volatility. Needless to say, the probability density

has many other applications.

In this note, we briefly discuss recent methods in the estimation of the volatility,

volatility of volatility, and probability densities.

2 Review

There are typically two methods of density estimation: parametric and non-

parametric methods. For example, [5,6] adopted the parametric method. [7–13] used

the non-parametric approach. [14–17] provided empirical estimation. [18] used copulas.

[19] used histograms and numerical simulations. [20] employed orthogonal polynomials.

A limitation of the parametric method is that it requires knowing the marginal

distributions [5,21]. While the bandwidth selection problems, the high computational

cost, and the kernel specification are some of the limitations of the non-parametric

approach.

In response to some of these limitations, [22] introduced non-parametric methods for

estimating the marginal and joint probability densities. The advantage of these methods is

their relative simplicity. In particular, it allows us to circumvent the bandwidth selection

problem and the kernel specification. Accordingly, the joint density can be calculated as
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f x, y( ) � △2F x, y( ) −△fX x( )△x −△fY y( )△y

2△x△y
, (1)

where F(x, y) is the joint cumulative density, f(x, y) is the joint
density, fX(x) and fY(y) are the marginal densities, x is the

outcome of X, y is the outcome of Y, and △ is the difference

operator. The limitation of this method is that it requires high-

frequency data for a high level of accuracy.

Using Taylor’s expansions, [6, 23] introduced parametric

methods for estimating the joint, marginal, conditional, and

cumulative probability densities. In doing so, they relied on

estimating regressions. For example, the joint density can be

given by

f x, y( ) � c1 + c2x + c3y + c4x
2 + c5y

2 + c6xy, (2)

where ci is a constant. The marginal density can be obtained by

integrating the above equation.

The advantage of this method is its simplicity and the fact

that the marginal distributions need not be known.Moreover, the

estimation accuracy can be improved by increasing the order of

the Taylor expansion. The limitation of this method is that we

need to ensure the goodness-of-fit of the regression.

Previous literature on volatility typically considered time

series, such as the generalized autoregressive conditional

heteroskedasticity GARCH models. For example, see the

excellent surveys by [1,2,24]. Asai and McAleer [25] adopted

a Wishart stochastic volatility model. Bollerslev et al (2011)

investigated asymmetry in volatility. Asai et al [26] assumed a

noisy realized volatility. Muhle-Karbe et al [27] considered

multivariate stochastic volatility. Sahiner [28] used the

GARCH method. Mastroeni [29] considered vanishing

stochastic volatility.

Alghalith [4] provided novel, parametric methods for

estimating the volatility and volatility of volatility. According

to this model, volatility data are needless. Also, the method can be

applied to cross-sectional data. Furthermore, estimating the

volatility matrix can be avoided. The limitation of this model

is that we need to ensure the validity of the non-linear regression

results.

Alghalith et al [30] introduced a simple, non-parametric

method to estimate both the volatility and volatility of volatility.

Accordingly, the volatility of the asset returns and volatility of

volatility can be estimated, respectively, as

vt �
������
ΔSt( )
S2t

2
√

, (3)

where St is the price of the asset (typically a stock) at time t and vt
is the estimated volatility at time t.

γt �
������
Δv2t( )2
v2t

√
, (4)

where γt is the estimated volatility of volatility at time t.

Also, [30] explored the possibility that the volatility of

volatility is not constant. The advantage of this approach is its

simplicity. Its limitation is that it requires high-frequency data for

a high level of accuracy.

In sum, these methods introduced by Alghalith and co-

authors were reasonably accurate when they were applied to

practical examples. In general, they were at least as accurate as

other methods. However, the accuracy can be improved by

increasing the frequency of the data or the order of the Taylor

expansion.

3 Conclusion

We introduced simpler and less restrictive methods for

estimating the volatility, volatility of volatility, and probability

densities. In general, the other methods are more technical.

Future research can utilize these methods of density

estimation to estimate the volatility and volatility of volatility.

Moreover, future research can apply these methods to other areas

of econophysics.
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