
Adaptive iterative learning
control method for finite-time
tracking of an aircraft track angle
system based on a neural
network

Chunli Zhang*, Xu Tian and Lei Yan

Xi’an University of Technology, Shaanxi Key Laboratory of Complex System Control and Intelligent
Information Processing, Xi’an, China

Based on a neural network, this paper presents a new adaptive iterative learning

control method for the finite-time tracking control problem of an uncertain

aircraft track angle system, which can control the aircraft track inclination

through the designed control input rudder deflection angle, so that it can

track the preset trajectory in a finite time interval. First, the flight path angle

system of the aircraft is abstractly modeled by variable substitution to obtain a

triangular model in the form of strict feedback. Second, radial basis function

neural network approximation is used to model the uncertain part of the

system, aiming at the abstract strict feedback model, and two virtual

quantities are designed through the three-layer inversion design method,

and then, Lyapunov functions are designed for each subsystem to derive

virtual control laws, the actual control law, and the neural network weight

adaptive laws. Through Lyapunov stability analysis, it can be seen that the

designed controller and adaptive laws can make the whole closed-loop system

tend to be stable and realize the tracking of a target trajectory in a finite time

interval. Finally, the feasibility and effectiveness of the theory are verified by a

simulation example.
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1 Introduction

Today, aircraft has become an important tool for the human society. People are

constantly considering the flight safety of an aircraft, which is followed by the rapid

development of aircraft technology. In order to ensure the flight safety of the aircraft, it is

necessary to find the optimal flight trajectory that satisfies the trajectory constraints.

Therefore, a careful study of aircraft trajectories is required. With the continuous

development of the technological era, the control process of the aircraft has become

more and more complex [1, 2]. This has led to a new upsurge in the research on aircrafts.

However, due to the strong coupling and highly non-linear characteristics of the aircraft
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dynamics model, the design of the aircraft control law has certain

challenges. This paper mainly studies the flight path angle of the

aircraft, designs the control law of the aircraft in the finite time

interval, and ensures the safety and stability of the flight process

of the aircraft.

Under the current boom in aircraft research, many scholars

who study aircraft trajectory planning have emerged. Up to now,

it can be roughly divided into four categories: the online real-time

trajectory search algorithm based on a large environment [3],

target route planning for motion [4], aircraft planning method

for multiple tracks, and path planning method for coordinated

multiple aircraft working at the same time. For the research on

the aircraft track angle system, it is generally adopted to abstract

the aircraft track angle model into the aircraft longitudinal model

for research [5–7].

Adaptive iterative learning control combines adaptive

control and iterative learning control. In the iterative learning

control, the characteristics of an adaptive control that can deal

with systems with uncertain terms are introduced. Thus, the

problem that the adaptive control [8, 9] cannot achieve the

desired control effect in a given time is improved. Therefore,

many scholars have joined in the theoretical research on the

adaptive iterative learning control. For example, in [10], the

method of adaptive iterative learning control combined with

fuzzy control is introduced into the high-speed train model,

which solves the problem that the system has a random varying

iteration length and speed and input force constraints and

realizes the tracking control of the non-linear and uncertain

high-speed train motion system. In [11], a barrier adaptive

iterative learning control scheme is proposed, which uses

adaptive iterative learning control technology and robust

control technology to compensate for parametric and non-

parametric uncertainties and asymmetric dead zone non-

linearity. The trajectory tracking problem of the tank gun

control system under the condition of a non-zero initial error

is solved.

A neural network [12–15] is an algorithm mathematical

model for distributed parallel information processing by

simulating the network behavior characteristics of a biological

neural network using bionics ideas. The radial basis function

(RBF) neural network is a neural network with RBF as the

activation function. The existence of the RBF makes the

neural network structure have the characteristics of a local

response. Later, people found that a better system accuracy,

system robustness, and adaptability can be obtained by using

the RBF neural network to approximate. Therefore, they have

been paid more attention in the field of non-linear control, which

has triggered a large number of scholars’ research. As in [16], self-

organizing recursive radial basis function neural networks are

studied, and a non-linear model predictive control scheme is

designed to predict the future dynamic behavior of non-novel

systems. In [17], an adaptive gradient multi-objective particle

swarm optimization algorithm was designed, the AGMOPSO

algorithm was proposed, and it was used in the RBF neural

network so as to solve the problem that the RBF neural network

converges to the local minimum value.

The neural network was combined with adaptive iterative

learning control to design the controller. The combined

application of the neural network and the adaptive iterative

learning control system [18, 19] greatly improves the information

processing ability and adaptability of the system and has a great

impact on the intelligence level of the system. In [20], an adaptive

iterative learning control strategy is proposed by using the RBF

neural network, which solves the non-uniform trajectory tracking

problem of a class of non-linear pure feedback systems with initial

state errors. In [21], an iterative learning control algorithm based on

the RBF neural network is proposed, which solves the trajectory

tracking control up to the rehabilitation robot.

According to the aforementioned discussion, this paper uses

the RBF neural network algorithm and the adaptive iterative

learning control method to control the longitudinal uncertainty

model of the aircraft. Using the characteristics of the RBF neural

network approximation model, the uncertainty function in the

aircraft is approximated. Using the adaptive iterative learning

control to design the control law, on the basis that the closed-loop

system tends to converge and stabilize, the system output can

better track the desired trajectory within a limited time. Finally,

the reliability and stability of the modified method are verified by

an example simulation.

2 Model building and a controller
design

In this paper, the research on the flight path angle system of

the aircraft takes the longitudinal model of the uncertain aircraft

as the object, converts it into a strict feedback system with model

uncertainty, and then, applies the designed neural network

FIGURE 1
Longitudinal model of the aircraft.
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adaptive iterative learning controller to the system to complete

the tracking of the ideal trajectory of the aircraft.

2.1 System specification

Due to the strong coupling and highly non-linear

characteristics of the dynamic model of the aircraft, this paper

considers controlling the inclination of the aircraft track by

inputting the ideal inclination of the rudder surface of the aircraft.

The simplified longitudinal model of the aircraft is shown in

Figure 1:

The simplified model is

_γ � �Lαα − g

VT
cos γ + �Lo,

_α � q + g

VT
cos γ − �Lαα − �Lo,

_θp� q,

_q � Mo +Mδδ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

FIGURE 2
Curve of the maximum error z1,k with iteration times.

FIGURE 3
Curve of ‖ω̂i,k‖ with the number of iterations.
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where we see �Lo � Lo
mVT

and �Lα � Lα
mVT

, where γ is the inclination of

the aircraft track. α is the angle of attack of the aircraft. θp is the

pitch angle of the aircraft. q is the change speed of the pitch angle.

VT is the flight speed. m is the mass of the aircraft. g is the

acceleration of gravity. �Lα is the slope of the lift curve. �Lo is the

other influencing factor of the lift. Mδ is the control pitch

moment. Mo is the moment from other sources, which is

approximately replaced by Mo � Mα +Mδδ. δ is the

deflection angle of the rudder surface. At any time, the slope

of the lift curve, other influencing factors of the lift, control pitch

moment, other source moment, and other values are all unknown

constants.

By defining the states x1,k � γ, x2,k � α, and x3,k � q, the

control input is the declination angle of the rudder surface

uk � δ; at this time, considering the uncertainty, the following

triangular model under a strict feedback form is obtained:

_x1,k � a1x2,k +W1,k x1,k, t( ),
_x2,k � x3,k +W2.k x1,k, x2,k, t( ),
_x3,k � a3uk +W3,k x2,k, x3,k, t( ),

⎧⎪⎨⎪⎩ (2)

where W1,k � f1,k(x1,k) + Δ1,k(xk, t), W2,k � f2,k(x1,k, x2,k)+
Δ2,k(xk, t), W3,k � f3,k(x2,k, x3,k) + Δ3,k(xk, t), and Δi,k(xk, t),
i � 1, 2, 3 are the uncertain parts, |Δi,k(xk, t)|≤ ρi, and ρi is a

positive real number and

f1,k x1,k( ) � − g

VT
cosx1,k + �L0,

f2,k x1,k, x2,k( ) � g

VT
cosx1,k − �L0 − �Lαx2,k,

f3,k x2,k, x3,k( ) � Mαx2,k +Mqx2,k.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

At the same time, a1 � �Lα > 0, a3 � Mδ > 0.

The following assumptions about the model will be used in

the controller design process.

Assumption 1. The speedVT will stabilize within a small region

of the ideal value through a linear controller, which is treated as a

constant.

Assumption 2. All state variables can be solved and used for

feedback.

Assumption 3. The bounds of the unknown parameters are

known, that is to say, for � 1, 3, there are known positive

numbers aim and aiM such that aim ≤ ai ≤ aiM.

Assumption 4. The ideal trajectory is bounded, whose first and

second derivatives exist, and x2
1d + _x2

1d + €x2
1d ≤ χ is satisfied for a

positive real number χ.

The control objective is to design a neural network adaptive

iterative learning controller uk, which makes the output of the

system yk(t) track the ideal trajectory yr(t) in a limited

time [0, T].

2.2 Design of a neural network adaptive
iterative learning controller for the aircraft
track angle system

During the design of the controller, the following definition

and lemma of the convergent series sequence will be used.

Definition 1. The convergent series sequence Δk is defined as

FIGURE 4
Curve of ‖Ŝi,k‖ with the number of iterations.
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Δk � a

kl
, (4)

where k � 1, 2,/; a and l are constant parameters that need to be

designed, satisfying a> 0 ∈ R and l≥ 2 ∈ N.

Lemma 1. For a given sequence 1
kl{ }, where k � 1, 2,/ and the

positive integer l≥ 2, the following inequality holds:

lim
k→∞

∑k

i�1
1
il
≤ 2. (5)

Next, the whole process of the controller design is given.

Step 1. Define three errors.

Define the error between the first actual trajectory and the

ideal trajectory as

z1,k � yk − yr � x1,k − yr. (6)

Define the error between the first virtual control variable x2,k

and the first virtual controller α1,k as

z2,k � x2,k − α1,k. (7)

Define the error between the second virtual control variable

x3,k and the second virtual controller α2,k as

z3,k � x3,k − α2,k. (8)

Derive and combine it with model Eq. 2 to get

_z1,k � _x1,k − _yr � a1x2,k +W1,k − _yr � a1 x2,k + W1,k

a1
− 1
a1

_yr( ),
(9)

_z2,k � _x2,k − _α1,k � x3,k +W2,k − _α1,k, (10)

_z3,k � _x3,k − _α2,k � a3uk +W3,k − _α2,k � a3 uk + W3,k

a3
− 1
a3

_α2,k( ).
(11)

Step 2. Approximate the unknown parts in step 1 with RBF

neural networks.

Let

W1,k

a1
� ω*T

1 ξ1 x1,k, t( ) + σ1,k t( ),

W2,k � ω*T
2 ξ2 x1,k, x2,k, t( ) + σ2,k t( ),

W3,k

a3
� ω*T

3 ξ3 x2,k, x3,k, t( ) + σ3,k t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where ω1
*, ω2

*, and ω3
* are the ideal weight, ‖ω1

*‖≤ωM, ‖ω2
*‖≤ωM,

‖ω3
*‖≤ωM, and ω1

*,ω2
*,ω3

* are unknown parameters, The

corresponding adaptive control law needs to be designed for

estimation, and the specific design will be explained later.

σ1,k, σ2,k, and σ3,k are approximation errors, and

|σ1,k|≤ σM, |σ2,k|≤ σM, |σ3,k|≤ σM.

Simultaneously,

_z1,k � a1 x2,k + ω*T
1 ξ1 + σ1,k − 1

a1
_yr( ), (13)

_z2,k � x3,k + ω*T
2 ξ2 + σ2,k − _α1,k, (14)

_z3,k � a3 uk + ω*T
3 ξ3 + σ3,k − 1

a3
_α2,k( ). (15)

Define

ωT
1 � ω*T

1 ,ωT
2 � ω*T

2 ,ωT
3 � ω*T

3 , (16)

FIGURE 5
Curve of ‖P̂1,k‖ with the number of iterations.
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1
a1

� P1,
1
a3

� P2. (17)

Step 3. Select the Lyapunov function to design the controller.

According to the closed-loop system composed of the

triangular model and the actual controller in the form of

strict feedback, in the case of satisfying the four assumptions,

it can be obtained from the second principle of Lyapunov

stability in the preliminary knowledge, the set V(x) must

satisfy the positive definite condition, and the reciprocal

satisfies the negative semidefinite condition to achieve

asymptotic stability.

The Lyapunov function is designed as follows:

V1,k � 1
2
z21,k +

a1
2
~ωT
1,kΓ−11 ~ω1,k + a1

2
Γ−12 ~S

2

1,k +
a1
2
Γ−13 ~P

2

1,k, (18)

V2,k � 1
2
z22,k +

1
2
~ωT
2,kΓ−14 ~ω2,k + 1

2
Γ−15 ~S

2

2,k +
1
a1
V1,k, (19)

Vk � 1
2
z23,k +

a3
2
~ωT
3,kΓ−16 ~ω3,k + a3

2
Γ−17 ~S

2

3,k +
a3
2
Γ−18 ~P

2

2,k + a3V2,k,

(20)
where ~ωi,k � ω̂i,k − ωi , ~Si,k � Ŝi,k − S, i � 1, 2, 3, ~P1,k � P̂1,k − P1,
~P2,k � P̂2,k − P2 , and S � σ2M. ω̂i,k, Ŝi,k, P̂1,k, and P̂2,k are estimates

of ωi, Si, P1, and P2, respectively.

The virtual control laws α1,k and α2,k and the actual control

law uk are designed as

α1,k � −ω̂T
1,kξ1 −

1
Δk

z1,kŜ1,k − c1z1,k + P̂1,k _yr, (21)

α2,k � −ω̂T
2,kξ2 −

1
Δk

z2,kŜ2,k − c2z2,k + _α1,k − z1,k, (22)

uk � −ω̂T
3,kξ3 −

1
Δk

z3,kŜ3,k − c3z3,k + P̂2,k _α2,k − z2,k, (23)

where c1, c2, and c3 are normal parameters that can be

designed.

Step 4. Design the parameter update law.

_̂ω1,k � Γ1ξ1z1,k, _̂S1,k � Γ2
1
Δk

z21,k,
_̂P1,k � Γ3 _yrz1,k, (24)

_̂ω2,k � Γ4ξ2z2,k, _̂S2,k � Γ5
1
Δk

z22,k, (25)

_̂ω3,k � Γ6ξ3z3,k, _̂S3,k � Γ7
1
Δk

z23,k,
_̂P2,k � Γ8 _α2,kz3,k, (26)

where Γi, i � 1,/, 8 are a positive definite diagonal gain matrix

of suitable dimension, Γi � ΓTi > 0.

Assumption 5. As far as the initial state is concerned, for any k,

when t � 0, x1,k(0) � yr(0), ω̂i,k(0) � ω̂i,k−1(T),
Ŝi,k(0) � Ŝi,k−1(T), P̂1,k(0) � P̂1,k−1(T), and P̂2,k(0) � P̂2,k−1(T).

3 Stability analysis

According to the obtained strict feedbackmodel Eq. 2 and the

specific controller designed in Section 2.2, the stability analysis of

the designed controller will be carried out in the following

sections.

Theorem 1. Under the condition that assumptions 1–5 are

satisfied and the stability function at the initial equilibrium

FIGURE 6
Curve of ‖P̂2,k‖ with the number of iterations.
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state is less than any normal number, design virtual control

laws (21) and (22), the actual control law (23), and the

parameter update law (24–26) can observe that all signals

of the closed-loop system are bounded on [0, T], and the

tracking error zi,k(t), i � 1, 2, 3 converges asymptotically.

According to the assumptions, definition, and lemma, it is

easy to prove that the conclusion of the theorem holds. The proof

process is as follows:

V1,k and the derivation process of the error system (13) are as

follows:

_V1,k � z1,k _z1,k + a1 ~ω
T
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k

� a1z1,k z2,k + α1,k + ωT
1 ξ1 + σ1,k − P1 _yr( )

+a1 ~ωT
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k

� a1z1,k z2,k + α1,k + ωT
1 ξ1 − P1 _yr( ) + a1z1,kσ1,k

+a1 ~ωT
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k ≤ a1z1,k

z2,k + α1,k + ωT
1 ξ1 − P1 _yr( ) + a1 z1,k

∣∣∣∣ ∣∣∣∣ σ1,k∣∣∣∣ ∣∣∣∣
+a1 ~ωT

1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k
_̂S1,k + a1Γ−13 ~P1,k

_̂P1,k ≤ a1z1,k
z2,k + α1,k + ωT

1 ξ1 − P1 _yr( ) + a1 z1,k
∣∣∣∣ ∣∣∣∣σM

+a1 ~ωT
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k ≤ a1z1,k

z2,k + α1,k + ωT
1 ξ1 − P1 _yr( ) + a1

Δk
z21,kσ

2
M + a1

4
Δk

+a1 ~ωT
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k

� a1z1,k z2,k + α1,k + ωT
1 ξ1 − P1 _yr( ) + a1

Δk
z21,kS +

a1
4
Δk

+a1 ~ωT
1,kΓ−11 _̂ω1,k + a1Γ−12 ~S1,k

_̂S1,k + a1Γ−13 ~P1,k
_̂P1,k. (27)

V2,k and the derivation process of the error system (14) are as

follows:

_V2,k�z2,k _z2,k+ ~ωT
2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k

_̂S2,k+ 1
a1

_V1,k�z2,k
z3,k+α2,k+ωT

2 ξ2− _α1,k( )+z2,kσ2,k
+~ωT

2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k
_̂S2,k+ 1

a1
_V1,k≤z2,k z3,k+α2,k+ωT

2 ξ2− _α1,k( )
+ z2,k
∣∣∣∣ ∣∣∣∣ σ2,k∣∣∣∣ ∣∣∣∣
+~ωT

2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k
_̂S2,k+ 1

a1
_V1,k≤z2,k z3,k+α2,k+ωT

2 ξ2− _α1,k( )
+ z2,k
∣∣∣∣ ∣∣∣∣σM

+~ωT
2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k

_̂S2,k+ 1
a1

_V1,k≤z2,k z3,k+α2,k+ωT
2 ξ2− _α1,k( )

+ 1
Δk

z22,kσ
2
M+1

4
Δk

+~ωT
2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k

_̂S2,k+ 1
a1

_V1,k�z2,k z3,k+α2,k+ωT
2 ξ2− _α1,k( )

+ 1
Δk

z22,kS+
1
4
Δk+ ~ωT

2,kΓ−14 _̂ω2,k+Γ−15 ~S2,k
_̂S2,k+ 1

a1
_V1,k . (28)

Vk and the derivation process of the error system (15) are as

follows:

_Vk � z3,k _z3,k + a3 ~ω
T
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k + a3Γ−18 ~P2,k
_̂P2,k + a3 _V2,k

� a3z3,k uk + ωT
3 ξ3 + σ3,k − P2,k _α2,k( ) + a3 ~ω

T
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k
+a3Γ−18 ~P2,k

_̂P2,k + a3 _V2,k � a3z3,k uk + ωT
3 ξ3 − P2 _α2,k( ) + a3z3,kσ3,k

+a3 ~ωT
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k + a3Γ−18 ~P2,k
_̂P2,k + a3 _V2,k ≤ a3z3,k

uk + ωT
3 ξ3 − P2 _α2,k( ) + a3 z3,k

∣∣∣∣ ∣∣∣∣ σ3,k

∣∣∣∣ ∣∣∣∣
+a3 ~ωT

3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k
_̂S3,k + a3Γ−18 ~P2,k

_̂P2,k + a3 _V2,k ≤ a3z3,k
uk + ωT

3 ξ3 − P2 _α2,k( ) + a3 z3,k
∣∣∣∣ ∣∣∣∣σM

+a3 ~ωT
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k + a3Γ−18 ~P2,k
_̂P2,k + a3 _V2,k ≤ a3z3,k

uk + ωT
3 ξ3 − P2 _α2,k( ) + a3

Δk
z23,kσ

2
M + a3

4
Δk

+a3 ~ωT
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k + a3Γ−18 ~P2,k
_̂P2,k + a3 _V2,k � a3z3,k

uk + ωT
3 ξ3 − P2 _α2,k( ) + a3

Δk
z23,kσ

2
M

+a3
4
Δk + a3 ~ω

T
3,kΓ−16 _̂ω3,k + a3Γ−17 ~S3,k

_̂S3,k + a3Γ−18 ~P2,k
_̂P2,k + a3 _V2,k. (29)

FIGURE 7
Curve of ‖uk‖ with the number of iterations.
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Substitute Eqs 21 and 24 into Eq. 27 to get

_V1,k ≤ a1z1,kz2,k − a1c1z
2
1,k +

a1
4
Δk. (30)

Substitute Eqs 22 and 25 into Eq. 28 to get

_V2,k ≤ z2,kz3,k − c1z
2
1,k − c2z

2
2,k +

2
4
Δk. (31)

Substitute Eqs 23 and 26 into Eq. 29 to get

_Vk ≤ − a3c1z
2
1,k − a3c2z

2
2,k − a3c3z

2
3,k +

3a3
4
Δk, (32)

where for any r> 0, we have mn≤ 1
rm

2 + 1
4n

2r (r � Δk).
According to Assumption 1, there are zi,k(0)2 � 0≤ zi,k(T)2

and i � 1, 2, 3, and by Eq. 20, we get

Vk zi,k 0( ), ω̂i,k T( ), Ŝi,k T( ), P̂1,k T( ), P̂2,k T( )( )
≤Vk zi,k 0( ), ω̂i,k 0( ), Ŝi,k 0( ), P̂1,k 0( ), P̂2,k 0( )( ) + ∫T

0
Vkdt.

(33)

Substituting Eq. 32 into Eq. 33, we get

Vk zi,k 0( ), ω̂i,k T( ), Ŝi,k T( ), P̂1,k T( ), P̂2,k T( )( )
≤V1 zi,k 0( ), ω̂i,k 0( ), Ŝi,k 0( ), P̂1,k 0( ), P̂2,k 0( )( )
−∑3

i�1
∑k
j�1
∫T

0
a3ciz

2
i,jdt +

3a3
4

∑k
j�1
ΔjT.

(34)

Let V0 � V1(zi,k(0), ω̂i,k(0), Ŝi,k(0), P̂1,k(0), P̂2,k(0)) +
3a3
4 ∑k

j�1ΔjT be substituted into Eq. 34, rewritten as

∑3
i�1
∑k
j�1
∫T

0
a3ciz

2
i,jdt≤V0 k( )

− Vk zi,k 0( ), ω̂i,k T( ), Ŝi,k T( ), P̂1,k T( ), P̂2,k T( )( ). (35)

According to Eq. 5, lim
k→∞

V0(k)≤V1 + 2a
4 (3a3)T, V0(k) is

bounded, and

Vk(zi,k(0), ω̂i,k(T), Ŝi,k(T), P̂1,k(T), P̂2,k(T))≥ 0, so

lim
k→∞

∑3
i�1
∫T

0
a3ciz

2
i,kdt � 0. (36)

According to Eq. 20, for any k, Vk(t) � Vk(0) + ∫t

0
_Vk(τ)dτ,

Eq. 29 is substituted, then

Vk t( ) � Vk 0( ) −∑3
i�1
∫T

0
a3ciz

2
i,kdτ + t

3a3
4
Δk. (37)

According to Eq. 36, ∑3

i�1 ∫T

0
a3ciz2i,kdt is bounded.

According to Definition 1, Δk is bounded, and t ∈ [0, T];
therefore, t 3a34 Δk is bounded.

According to ω̂i,k(0) � ω̂i,k−1(T), Ŝi,k(0) � Ŝi,k−1(T),
P̂1,k(0) � P̂1,k−1(T), P̂2,k(0) � P̂2,k−1(T)(i � 1, 2, 3), and Eq.

34, for any k, Vk(0, ω̂i,k(T), Ŝi,k(T), P̂1,k(T), P̂2,k(T)) is

bounded and Vk(0, ω̂i,k(0), Ŝi,k(0), P̂1,k(0), P̂2,k(0)) �
Vk−1(0, ω̂i,k−1(T), Ŝi,k−1(T), P̂1,k−1(T), P̂2,k−1(T)) is bounded.

It can be seen that for any k, Vk(t), ω̂i,k(T), Ŝi,k(T),
P̂1,k(T), and P̂2,k(T) are bounded. Therefore, uk and
_zi,k(i � 1, 2, 3) are bounded, zi,k is consistent and

continuous, so lim
k→∞

zi,k(t) � 0, (i � 1, 2, 3).

FIGURE 8
Trajectory trace graph without iterations.
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4 Simulation analysis

According to the control model established in the design part

of Section 1,

_x1,k � a1x2,k +W1,k x1,k, t( ),
_x2,k � x3,k +W2.k x1,k, x2,k, t( ),
_x3,k � a3uk +W3,k x2,k, x3,k, t( ),

⎧⎪⎨⎪⎩ (38)

where W1,k � f1,k(x1,k) + Δ1,k(xk, t), W2,k � f2,k(x1,k, x2,k)+
Δ2,k(xk, t), W3,k � f3,k(x2,k, x3,k) + Δ3,k(xk, t), Δi,k(xk, t), i �
1, 2, 3 is the uncertain part, |Δi,k(xk, t)|≤ ρi , and ρi is a

positive real number and satisfies

f1,k x1,k( ) � − g

VT
cosx1,k + �L0,

f2,k x1,k, x2,k( ) � g

VT
cosx1,k − �L0 − �Lαx2,k,

f3,k x2,k, x3,k( ) � Mαx2,k +Mqx3,k,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(39)

where a1 � �Lα > 0, a3 � Mδ > 0.

The ideal trajectory x1d � sin t is given corresponding to the

example hypothesis. TakeΔ1,k � 0.01 sin 2t,Δ2,k � 0.1 cos 2t, and

Δ3,k � 0.05 sin t cos 2t.

The unknown physical parameters are selected as follows:
�L0 � −0.1, �Lα � 0.74,Mα � 0.1, Mq � −0.02, andMδ � 1.36.

Assume the stable speed VT � 200m/s and g � 9.8m/s2,

where the initial state of the model takes x(0) � [0 0 0]T.
From the controller design part in Section 2, it can be seen

that the functions that need to be approximated by the RBF

neural network are W1
α1
, W2, and

W3
α3
. Nine hidden nodes are

selected, the center of the Gaussian basis function is evenly

distributed in the range of [−1, 1], and the width is 5.3, then

the initial values of the network weights are set as

W10 � 11.6 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01[ ]T,
W20 � 1 0.001 0.01 0.01 0.001 0.01 0.01 0.01 0.001[ ]T,
W30 � 30 0.01 0.1 0.01 0.01 0.01 0.00 0.01 0.009[ ]T.

Let all the initial values x1,0(0), x2,0(0), and x3,0(0) be zero.
All the initial values S1,0(0), S2,0(0), S3,0(0) are 0.1, and the

initial values P1,0(0) and P2,0(0) are both 0.01. All the initial

errors are zero, ρ1 � 0.01, ρ2 � 0.1, ρ3 � 0.05, a1M � 0.74, and

a3M � 0.36.

The control parameters are selected under the condition that

Lyapunov stability is satisfied. c1 � 23, c2 � 3, c3 �
40, Γ1 � diag 42 0.1 0.1 2 2 0.1 0.1 0.1 0.1{ }, Γ2 � 70, Γ3 � 0.1,

Γ4 � diag 37 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1{ }, Γ5 � 1,

Γ6 � diag 40 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1{ }, Γ7 � 1000, Γ8 � 0.1.

The simulation is carried out under the actual control law

uk � −ω̂T
3,kξ3 − 1

Δk
z3,kŜ3,k − c3z3,k + P̂2 _α2,k − z2,k and the adaptive

law _̂ω1,k � Γ1ξ1z1,k , _̂S1,k � Γ2 1
Δk
z21,k,

_̂P1,k � Γ3 _yrz1,k,
_̂ω2,k � Γ4ξ2z2,k, _̂S2,k � Γ5 1

Δk
z22,k,

_̂ω3,k � Γ6ξ3z3,k, _̂S3,k � Γ7 1
Δk
z23,k,

_̂P2,k � Γ8 _α2,kz3,k, and the given initial state. The simulation

results are as follows.

From Figure 2, the inclination error of the aircraft

trajectory can basically tend to zero with the increase in

the number of iterations. The simulation results from

Figures 3–6 show the boundness of the designed

FIGURE 9
Trajectory trace graph for iteration 400.
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parameters. Figure 7 shows that as the number of iterations

increases, the control input can remain unchanged, and the

stable state of the controller and the control effect are good.

By comparing the tracking effect in Figures 8, 9, the

tracking effect is more significant with the increase in

iteration times.

In summary, the designed neural network adaptive iterative

learning controller is suitable for a tracking control in a limited

time period and the RBF neural network has a very good effect on

approximating any unknown parameters.

5 Conclusion

This paper proposed a new adaptive iterative learning

control method for the flight path of the aircraft to complete

the tracking control problem in the finite time interval based

on the RBF neural network. According to the feedback

system in the form of strict feedback abstracted by the

longitudinal model of the aircraft, the method of an

inversion design is adopted, and the virtual control law is

designed to control each subsystem, and finally, the actual

control law is obtained by inversion. For each subsystem, a

neural network is used to approximate the unknown

function in the control, which can greatly improve the

control performance of the uncertain system. According

to the Lyapunov stability function set by each subsystem, the

adaptive law of the neural network that meets the

constraints is derived. According to the error between the

system output and the ideal trajectory, the adaptive weights

and the adjustment parameters are updated to make the

entire closed-loop system tend to convergence and stability,

and the control objectives of system stability and all signals

in a bounded area are achieved. Finally, the effectiveness

and feasibility of applying the controller designed by the

neural network adaptive iterative learning control method

to the aircraft track system are verified by the example

simulation.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

CZ and XT contributed to the conception and design of the

study. XT performed the statistical analysis and wrote the first

draft of the manuscript. LY wrote sections of the manuscript. All

authors contributed to manuscript revision, read, and approved

the submitted version.

Funding

This work was supported by the National Natural Science

Foundation (NNSF) of China under grants 61603296 and

62073259. This work was also supported by the Key

Laboratory of Complex System Control and Intelligent

Information Processing in Shaanxi Province.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors, and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Zheng C, Yan P, DingM. Research status and trend of aircraft track planning in
Chinese[J]. J Astronautics (2007) 2007(06) 1441–6. doi:10.3321/j.issn:1000-1328.
2007.06.001

2. Zhuang H, Sun Q, Chen Z, Zeng X. Robust adaptive sliding mode attitude
control for aircraft systems based on back-stepping method. Aerospace Sci Tech
(2021) 118:107069. doi:10.1016/j.ast.2021.107069

3. Yan K, Wu Q. Adaptive tracking flight control for unmanned autonomous
helicopter with full state constraints and actuator faults. ISA Trans (2021) 128:
32–46. doi:10.1016/j.isatra.2021.11.012

4. Wang Y, Hu J. Robust control for a quadrotor aircraft with small overshoot and
high-precision position tracking performance. J Franklin Inst (2020) 357(18):
13386–409. doi:10.1016/j.jfranklin.2020.09.033

5. Yao L. Disturbance observer-based backstepping control for hypersonic flight
vehicles without use of measured flight path angle. Chin J Aeronautics (2021) 34(2):
396–406. doi:10.1016/j.cja.2020.09.053

6. Yang L, Dong C, Zhang W, Wang Q. Phase plane design based fast altitude tracking
control for hypersonic flight vehicle with angle of attack constraint. Chin J Aeronautics
(2021) 34(2):490–503. doi:10.1016/j.cja.2020.04.026

7. Yue F, Wang Y, Sun Z, Xi B, Wu L. Robust modification of nonlinear
L1 adaptive flight control system via noise attenuation. Aerospace Sci Tech
(2021) 117:106938. doi:10.1016/j.ast.2021.106938

8. Yue H, Gong C. Adaptive tracking control for a class of stochastic nonlinearly
parameterized systems with time-varying input delay using fuzzy logic systems.
J Low Frequency Noise, Vibration Active Control (2022) 41(3):1192–213. doi:10.
1177/14613484211045761

9. Yue H, Yang W, Li S. Fuzzy adaptive tracking control for a class of nonlinearly
parameterized systems with unknown control directions. Iranian J Fuzzy Syst
(2019) 16(5):97–112. doi:10.22111/IJFS.2019.4909

10. Yu Q, Hou Z. Adaptive fuzzy iterative learning control for high-speed
trains with both randomly varying operation lengths and system constraints.

Frontiers in Physics frontiersin.org10

Zhang et al. 10.3389/fphy.2022.1048942

https://doi.org/10.3321/j.issn:1000-1328.2007.06.001
https://doi.org/10.3321/j.issn:1000-1328.2007.06.001
https://doi.org/10.1016/j.ast.2021.107069
https://doi.org/10.1016/j.isatra.2021.11.012
https://doi.org/10.1016/j.jfranklin.2020.09.033
https://doi.org/10.1016/j.cja.2020.09.053
https://doi.org/10.1016/j.cja.2020.04.026
https://doi.org/10.1016/j.ast.2021.106938
https://doi.org/10.1177/14613484211045761
https://doi.org/10.1177/14613484211045761
https://doi.org/10.22111/IJFS.2019.4909
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048942


IEEE Trans Fuzzy Syst (2021) 29(8):2408–18. doi:10.1109/tfuzz.2020.
2999958

11. Zhou Z, Wang W, Zhang Y, Yan Q, Cai J. Barrier adaptive iterative learning
control for tank gun control systems under nonzero initial error condition. IEEE
Access (2022) 10:8664–72. doi:10.1109/access.2022.3144326

12. Fei Y, Kong X, Mokbel AAM. Complex dynamics, hardware implementation
and image encryption applica tion of multiscroll memeristive hopfield neural
network with a novel local active memeristor[J]. IEEE Trans Circuits Systems–II
(2022). Express Briefs 1–1. doi:10.1109/TCSII.2022.3218468

13. Shen H, Fei Y, Wang C, Sun J. Firing mechanism based on single
memristive neuron and double m emristive coupled neurons[J]. Nonlinear
Dyn (2022) 110:3807–3822. doi:10.1007/s11071-022-07812-w

14. Lin H, Wang C, Sun Y, Ting W. Generating n-scroll chaotic attractors
from a memristor-based magne tized hopfield neural network[J]. IEEE Trans
Circuits Systems–II (2022). Express Briefs 1–1. doi:10.1109/TCSII.2022.
3212394

15. Yu F, Shen H, Yu Q, Kong X, Sharma PK, Cai S. Privacy protection of medical
data based on multi-scroll memristive hopfield neural network. IEEE Trans Netw
Sci Eng (2022) 2022:1–14. doi:10.1109/TNSE.2022.3223930

16. Han H, Zhang L, Hou Y, Qiao JF. Nonlinear model predictive control based
on a self-organizing recurrent neural network. IEEE Trans Neural Netw Learn Syst
(2016) 27(2):402–15. doi:10.1109/tnnls.2015.2465174

17. Han H, Wu X, Zhang L, Tian Y, Qiao J. Self-organizing RBF neural network
using an adaptive gradient multiobjective particle swarm optimization. IEEE Trans
Cybern (2019) 49(1):69–82. doi:10.1109/tcyb.2017.2764744

18. Jin X, He T, Wu X, Wang H, Chi J. Robust adaptive neural network-based
compensation control of a class of quadrotor aircrafts. J Franklin Inst (2020)
357(17):12241–63. doi:10.1016/j.jfranklin.2020.09.009

19. Song J, Yan M, Yang P. Neural adaptive dynamic surface asymptotic tracking
control for a class of uncertain nonlinear system. Circuits Syst Signal Process (2020)
40:1673–98. doi:10.1007/s00034-020-01558-9

20. Zhang C, Tian X. Non-uniform trajectory tracking adaptive iterative learning
control for nonlinear pure-feedback systems with initial state error based on RBF-
neural network[C]. In: 2021 40th Chinese Control Conference (CCC); July 26-28,
2021; Shanghai, China (2021). p. 532–9.

21. Pang Z, Wang T, Liu S. An iterative learning algorithm based on RBF neural
network in upper limb rehabilitation robot[J]. In: IEEE 10th Data Driven Control
and Learning Systems Conference (DDCLS); May 14-16, 2021; China (2021).
p. 293–8.

Frontiers in Physics frontiersin.org11

Zhang et al. 10.3389/fphy.2022.1048942

https://doi.org/10.1109/tfuzz.2020.2999958
https://doi.org/10.1109/tfuzz.2020.2999958
https://doi.org/10.1109/access.2022.3144326
https://doi.org/10.1109/TCSII.2022.3218468
https://doi.org/10.1007/s11071-022-07812-w
https://doi.org/10.1109/TCSII.2022.3212394
https://doi.org/10.1109/TCSII.2022.3212394
https://doi.org/10.1109/TNSE.2022.3223930
https://doi.org/10.1109/tnnls.2015.2465174
https://doi.org/10.1109/tcyb.2017.2764744
https://doi.org/10.1016/j.jfranklin.2020.09.009
https://doi.org/10.1007/s00034-020-01558-9
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048942

	Adaptive iterative learning control method for finite-time tracking of an aircraft track angle system based on a neural network
	1 Introduction
	2 Model building and a controller design
	2.1 System specification
	2.2 Design of a neural network adaptive iterative learning controller for the aircraft track angle system

	3 Stability analysis
	4 Simulation analysis
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


