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Financial crisis prediction is essential in preventing financial problems as its

monitoring indicators help regulators judge the probability of future crises. In

this context, the activities of the scientific community have been focused on the

dynamics of single/multiple sequences and utilized unsupervised/supervised

methods for financial crisis prediction. It is noteworthy that the cross-

correlation between the risks of multiple economic entities makes financial

network analysis paramount in crisis prediction. Focusing on this point, we

propose a multilayer supervised network analysis (MSNA) method to train the

multilayer network, and select the most suitable layer for financial crisis

prediction. Specifically, we use 37 crucial stock market indices from

4 continents to create successive multilayer financial networks with 120-day

windows and 1-day step by Pearson cross-correlation (PCC), variance

decompositions (VD), transfer entropy (TE), minimum spanning tree (MST),

directed MST (DMST), planar maximally filtered graph (PMFG) and directed

PMFG (DPMFG) methods. Based on the multilayer network, we embed the

graph neural network classification (GNNC) model and train the dynamic

multilayer networks at each window scale (240,120, and 60 days). Finally, we

conclude that the accuracy of the short window (60 days) is significantly higher

than that of the long window. The network constructed by PCC with MST is the

most suitable for short sequence (60 days) crisis prediction (AUC = 0.959), and

the network constructed by TE with DMST is the most suitable for long

sequence (240 days) crisis prediction (AUC = 0.772).
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1 Introduction

A financial crisis refers to various situations, such as stock market crashes and

bursting of financial bubbles, in which some financial assets suddenly lose a large part of

their nominal value. Many economists have proposed theories about how financial crises

develop and how they can be prevented. Frankel and Rose predicted the probability of

crises by establishing the joint probability distribution between independent and

dependent variables [1]. Subsequently, Kaminsky et al.used the KLR signal analysis

method to detect the index signals exceeding the threshold at a certain time point or
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period, and used signal strength for crisis prediction [2]. Further,

Berg et al. integrated the advantages of the FR probability model

and KLR signal analysis method and created DCSD (developing

country studies division) model, that can send out early warning

signals for crises more accurately and shorten the prediction

interval to 24 months [3]. However, the probability model, the

KLR signal analysis method and DCSD model do not consider

the heterogeneity of the financial crisis and the difference in the

actual situation between countries. Sachs et al. constructed an

STV cross-sectional model of a currency crisis early warning

system based on cross-sectional data [4].

Some scholars have constructed quantitative indices for

financial crisis prediction. Billio et al. used an entropy

measure to analyze the evolution of systemic risk among

European banks and constructed a banking crisis early

warning index system based on marginal expected shortfall

(MES), conditional value at risk (CoVaR) indicators and

network connectivity. Additionally, they determine the

effectiveness of entropy measures in banking crisis prediction

[5]. Dastkha et al. used CoVaR as a market-based systematic risk

measurement method to investigate the systematic risk of the

Tehran stock exchange and provide early warning signals of

systematic risk [6].

As the FR probability model, KLR signal, and risk

quantitative index can only explain the occurrence of crisis

and cannot compare and test the early-warning results,

Kumar et al. established a logit model to test the effects of

early crisis warnings [7]. Moreover, Klomp used a random

coefficient logit model to improve the traditional logit model

and analyzed the heterogeneity of banking crises from 1970 to

2007 [8]. Schularick et al. used a logit model for crisis prediction

and proved that credit growth is a powerful predictor of financial

crisis [9]. Similarly, Greenwood et al. posited that crises can be

predicted using past credit growth in simple linear forecasting

regressions, and that the probability of a financial crisis within

the next 3 years is 45% [10]. Boonman et al. applied the KLR

Signal method and logit model method to the data of 15 groups of

emerging economies, and found that the index prediction based

on consistent expectation tended to eliminate extreme situations,

resulting in no timely warning when predicting a large number of

crises [11]. This shows that the logit prediction model can

determine the key leading indicators of the financial crisis.

Moreover, some important indicators lead to false early

warnings. Simultaneously, the prediction time of the logit

model for a crisis remains at 24 months.

To enhance the prediction accuracy of limited data, Sornette

et al. used the log-periodic power law singularity (LPPLS)

method to evaluate data on the Shanghai and Shenzhen stock

indices from May 2005 to July 2009. The results show that the

LPPLS method can successfully find the prediction signals before

the two-stage sharp decline in China’s stock market (from mid-

2005 to October 2007, and from November 2008 to early August

2009), and improve the prediction accuracy to approximately

2 months [12]. Fricke used a machine learning model and a

traditional logit model to predict various financial crises and

discovered that the prediction results of the machine learning

model were not always more accurate than those of the

traditional logit model [13]. Tölö used long-term and short-

term memory (RNN-LSTM) and gated recursive unit (GRU)

neural network model for crisis prediction. They found that the

prediction effect of the RNN-LSTM method was significantly

higher than that of the traditional logit model [14]. Zhu et al. used

a K-means clustering algorithm to classify financial risk types and

optimize the financial risk control. They found that the K-means

algorithm can distinguish the state intervals of different financial

crises more accurately and objectively [15]. Liu et al. found that

the machine learning models, especially the random forest,

gradient boosting decision tree, and ensemble models,

outperform logistic models in terms of providing early

predictions of financial crises [16].

Nevertheless, LPPLS method and machine learning model

generally utilize a single stock for prediction, lack consideration

of the correlation analysis between multiple financial institutions,

and can not investigate the risk contagion of financial

institutions. The question that needs to be considered is as

follows: How can the correlation of financial markets be

applied to crisis prediction and improve supervised

characteristics?

Due to the complexity of the financial system and the

unrealistic theoretical assumptions, it is difficult to provide

scientific and effective suggestions for economic policies after

the financial crisis, and to point out the need to studying financial

problems from the perspective of a complex system [17–20]. As

an emerging technical means, the financial complex network is

very intuitive in describing the relationship of various financial

elements. Building an effective financial network has always been

the focus of scholars’ researchers worldwide. In recent years,

many methods have been used to build a financial network.

Researchers have used Pearson cross-correlation [21], mutual

information [22], Granger causality tests [23, 24], transfer

entropy [25] and variance decomposition [26]to create

financial matrices expressing the relationship between

financial institutions. Additionally, they have used the

threshold method [27], MST method [28, 29], plane

maximum filter graph method [30], DMST [31] and DPMFG

[32] to create financial networks. However, a problem that still

needs to be considered is how to build a network that is suitable

for financial crisis prediction. Hence, it is necessary to use the

crisis prediction results as a supervised condition for the

supervision and early warning analysis of high-dimensional

financial networks.

Traditional machine learning and neural network models

[33–36] have limitations when processing non-Euclidean spatial

data (e.g., financial networks, social networks and information

networks). In addition, compared with the most basic network

structure of neural network containing the total connection layer
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(MLP), the graph neural network [37, 38] has an adjacency

matrix, which simplifies the calculation form and improves the

calculation efficiency.

With the help of the excellent performance of graph neural

network method in graph classification, we integrate multilayer

network construction method and graph neural network

supervised analysis to study the supervision and prediction of

financial crisis. The method derived from this paper is called

multi-layer supervised network analysis (MSNA). Specifically, we

constructed multilayer networks by utilizing PCC, VD and TE

combining withMST and PMFG.We employed the graph neural

network classification method to add the supervised

characteristics to the multilayer networks, and use the existing

crises as the tag values to study the supervision and financial

crisis prediction.

The remainder of this paper is organized as follows. In

Section 2, we present our method (i.e.,MSNA) of the article in

two parts: 1) the construction of the multiplex network and, 2)

the supervised characteristics of dynamic multiplex networks. In

Section 3, our datasets are briefly presented. In Section 4, we

show the main results. The findings show that the MSNA model

has better prediction results, compared with long series. Second,

the first-layer network (PCC-MST) is the most suitable for

financial crisis prediction. Section 5 presents the conclusions

and discussion.

2 Materials and methods

2.1 Multiplex network creation

2.1.1 Creating a pearson correlation-coefficient
network

The complex relationships between stocks vary with the stock

market and the economic environment. Thus we can use these

relationships to describe the state of the stock market. We

consider many stock log-return series, and each index is as

follows:

P �
P1,1 P1,2 / P1,T+1
P2,1 1 / P2,T+1
..
. ..

.
1 ..

.

PM,1 PM,2 / PM,T+1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (1)

where Pi,t is the price of the index i on day t. We calculate the

daily return for each index i as:

R � ri,t+1 ≡ lnPi,t+1 − lnPi,t,{
i � 1, 2, , . . . ,M; t � 1, 2, . . . , T.} (2)

where T denotes the total length of the stock log-return series,M

indecates the number of the log-return series. A series of

sequence fragments is extracted from the sequences R by a

sliding window whose length is L.

Rs �
r1,Δ▪ s−1( )+1 r1,Δ▪ s−1( )+2 / r1,Δ▪ s−1( )+L
r2,Δ▪ s−1( )+1 1 / r2,Δ▪ s−1( )+L

..

. ..
.

1 ..
.

rM,Δ▪ s−1( )+1 rM,Δ▪ s−1( )+2 / rM,Δ▪ s−1( )+L

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

s � 1, 2,/W, W � T − L

Δ[ ] + 1

(3)

where Δ denotes the sliding step and W indicates the total

number of fragments, [.] means rounding. The sth segment of

R, Rs, and Pearson correlations between stocks are as follows:

ρi,j s( ) �
∑L
t�1

ri,Δ▪ s−1( )+t − Rs i, .( )( ) rj,Δ▪ s−1( )+t − Rs j, .( )( )��������������������∑L
t�1

ri,Δ▪ s−1( )+t − Rs i, .( )( )2√
▪

��������������������∑L
t�1

rj,Δ▪ s−1( )+t − Rs j, .( )( )2√ ,

s � 1, 2,/W, i � 1, 2,/M, j � 1, 2,/M.

(4)
where Eq. 4 represents the correlation coefficient of two

sequences of the s fragments, while Rs,i and Rs,j represents the

average value of the i row and j row in formula Eq. 3 respectively.

For these Pearson correlation matrices, we choose two

popular methods (MST and PMFG) to create financial

networks. The steps of the Kruskal MST method are as follows:

1) Translate the Pearson correlation matrix to a distance matrix:

Dij �
��������
2 1 − ρij( )√

(5)

where Dij indicates the distance between stock i and stock j,

2) Sort the values from the distance matrix named Dac
ij in

ascending order.

3) Add the edge to the spanning tree from Dac
ij in ascending

order. If the adding edge forms a ring, we select the next value

in Dac
ij and skip this edge.

4) Repeat step 3 until the number of edges is M − 1.

The simplest structure can be obtained from the MST, but

some important information is ignored. Thus we also use the

PMFG method to create a network using a Pearson correlation

matrix. The steps of the PMFG method are as follows:

1) The correlation degree between each node is arranged in

ascending order according to the values in the matrix.

2) The corresponding node pairs are selected from the arranged

weight values in order to establish the edge connection. If the

newly added edge makes the network appear non-planar, that

is, if the newly added edge and its other edges cross on a plane,

the connection will be abandoned.

3) Repeat step 2 until all nodes join the network.

In this way, we constructed the dynamic Pearson correlation

matrices into multilayer networks using the MST and PMFG
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method. The two networks are regarded as first-layer (PCC-

MST) and second-layer (PCC-PMFG) networks.

2.1.2 Construction of a risk spillover network
Although the Pearson correlation network can analyze the

volatility correlation between stocks, it can not explain the risk

spillover between stocks. Therefore, we intend to use the VD

method to create a risk spillover network. The steps of the VD

method [26] are as follows:

1) We construct A VAR(Q) process (1) model based on the

relevant infectious variables of financial institutions to

establish inter-agency relationships as follows:

zt � ∑Q
q�1

ϕqzt−q + εt (6)

zt � ∑∞
q�0

Aqεt−q (7)

where zt is aM-dimensional vector of endogenous variables. Aq is

aM-by-M matrix, ϕ represents the parameter matrix, ε indicates

independent and identically distributed perturbed term and

follows: ε ~ (0, ∑). The forms of Aq in Eq. 7 are as follows:

Aq � ϕ1Aq−1 + ϕ2Aq−2 +/ + ϕpAq−Q (8)

where A0 is a unit matrix and A0 = 0 when q < 0.

2) Based on Eqs 6–8, we obtain the directed correlation

coefficients between mechanisms in different periods

(forward H step) using the generalized variance

decomposition technique. The calculation formulas are as

follows:

dh
ij �

σ−1ii ∑H−1

h�0
e′iAh∑ej( )2

∑H−1

h�0
e′iAh∑A′hei( )2 (9)

where Σ is the covariance matrix of the error ε, σii is the standard

deviation of error for the ith equation. Further, ej is a selection

vector with jth element unity and zeros elsewhere. Additionally,

dhij is called directed spillover index of j over i. Lastly, H indicates

the number of steps to forward the predicted variance.

The risk spillover network created directly by the directed

spillover matrix contains many noise edges. We intend to use

DMST and DPMFG to reduce the noise and create multilayer

financial networks namely, third-layer (VD-DMST) and fourth-

layer (VD-DPMFG) networks. The steps of DMST [39] are as

follows:

1) Select a node as the root node randomly.

2) Travel all edges and find the smallest entry edges of all

points except for the root node. Then, the weighted values

of the edges are summed to form a new graph. The final

minimum arborescence is determined if no cycles exist in

the new graph.

3) If a ring exists in the new graph, it shrinks the ring into a point

and change the edge weight. The steps to change the edge

weights are as follows:

① Choose a node u in the ring and set the incoming edge of

this node as in [u], and the outgoing edge of this node as (u, i, w).

Further, i and w refer to the source node and the weight,

respectively. ② Set the new edge weight of node u as (u, i,

w − in [u]).③ Return to Step 2 if the new weight graph contains

rings.

4) Expand the new graph if rings do not exist by the breaking

loop method [40]. The steps of the breaking loop method are

as follows:

① Find a loop in the graph. ② Remove the edge with the

largest weight in the loop, but keep the graph connected. ③

Repeat this process until there are no loops in the graph (but they

are still connected) and get the minimum spanning tree.

The steps of DPMFG [32] are as follows:

1) We convert the asymmetric matrix into a symmetric matrix

by summing two edges.

2) We use PMFG to transfer the symmetric matrix into a PMFG

matrix.

3) Based on the result of the PMFGmatrix, we select the larger of

the two edges to represent the direction and delete the

smaller one.

2.1.3 Constructing information transmission
networks

The risk spillover network can describe the contagion from

one stock to others, but cannot describe the co-movement

between stocks. Thus we select transfer entropy to express the

co-movement and information transmission between stocks.

Transfer entropy [41] developed by Schreiber is a measure to

evaluate dynamic, nonlinear, and non-symmetric relationships.

The measurement of Transfer Entropy is Shannon Entropy.

Shannon Entropy is defined as follows:

E � −∑N
t�1

pt logpt, (10)

for a sequence x and pt ≠ 0, where N is the number of bins by

dividing the sequence x, pt is the probability of the tth bin by the

probability density function (PDF). Based on Shannon entropy,

transfer entropy can be conceived as a parameter that can be used

for describing the interaction between the series X and Y.

Reciprocities have directivity, TEx→y or TEy→x. The transition

probabilities can be defined as follows:
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p xt+1 | x k( )
t , y l( )

t( ) � p Xt+1 � xt+1 | X k( )
t � x k( )

t , Y l( )
t � y l( )

t( )
(11)

where time series ofX could be treated as aMarkov process of degree

k. Likewise, Y is l degree Markov process. X(k)
t �

(Xt,Xt−1, . . . ,Xt−k+1) and Y(l)
t � (Yt,Yt−1, . . . , Yt−l+1). x(k)

t and

y(k)
t are the states ofX(k)

i andY(l)
i , respectively. The transfer entropy

from one variable Y to the other variable X is defined as follows:

TEY→X k, l( ) � E Xt+1 | X k( )
t( ) − E Xt+1 | X k( )

t , Y l( )
t( )

� ∑p xt+1, x k( )
t , y l( )

t( )logp xt+1 | x k( )
t , y l( )

t( )
p xt+1 | x k( )

t( )
� ∑

it+1 ,i k( )
t ,j l( )

n

p it+1, i k( )
t , j l( )

t( )logp it+1, i k( )
t , j l( )

t( )p i k( )
t( )

p it+1, i l( )
t( )p i k( )

t , j l( )
t( )
(12)

where it is element t of the time series of variable X and jt is

element t of the time series of variable Y. To facilitate the

calculation of transfer entropy, we take k = l = 1. Thus the

normal formula for transfer entropy of stock j to stock i is:

TEj→i � ∑
it+1 ,it ,jt

p it+1, it, jt( )log p it+1, it, jt( )p it( )
p it+1, in( )p it, jt( ) (13)

In order to convert transfer entropy matrices into multilayer

financial networks. We also use DMST and DPMFG to reduce

the noise and create multilayer financial networks, namely, the

fifth-layer (TE-DMST) and sixth-layer (TE-DPMFG) networks.

2.1.4 Calculation method of multilayer network
topology parameters

After implementing the aforementioned methods and

conducting a comprehensive analysis, we can obtain the six-

layer (comprising PCC-MST, PCC-PMFG, VD-DMST, VD-

PMFG, TE-DMST and TE-DPMFG) financial networks. To

discover the topological changes of six-layer networks, we use

the out-degree, in-degree, PageRank and Hub of single-layer and

multilayer networks. The single-layer forms of degree, and out-

degree, in-degree are shown in Eqs 14–16:

K α[ ]
i � ∑

j≠i
W α[ ]

ij (14)

K α[ ]
i−in � ∑M

i
Wα

ji (15)
K α[ ]

i−out � ∑M

i
Wα

ij (16)

whereWij
[α] is an element from a (M*M) matrix in α-layer, i = 1,

2, 3, . . . M, j = 1, 2, 3, . . . M. The PageRank PRi of single-layer

network with M nodes is as follows:

PR α[ ]
i � λI∑M

j
Iij
PR α[ ]

j

gout
j

+ 1 − λI( ) 1
M

(17)

where Iij are the elements of the adjacency matrix that are equal

to one if node j points to node i and zero otherwise. Further,

gout
j � max(1, Kout

j ) and λI > 0 are the damping factor. We also

use Hub HU of a single-layer with M nodes to reflect the role of

nodes in information dissemination as follows:

HU α[ ]
i � ∑M

j�1
IjiAU

α[ ]
j (18)

where AU[α]
j is the authority of the node j in the α layer. These

parameters of the multilayer network are illustrated in Eqs 19–23.

The degree,in-degree and out-degree [42, 43] of the multilayer

network are defined as follows:

Oi � ∑θ
α�1

K α[ ]
i (19)

Oi−in � ∑θ
α�1

K α[ ]
i−in (20)

Oi−out � ∑θ
α�1

K α[ ]
i−out (21)

where αmeans the layer number, θ indicates the total amount of

layers. The iterative form of PageRank [44] for a multilayer

network is as follows:

PRmul
i � λTiα

jβ +
1 − λ

Mθ
uiα
jβ (22)

where Tiα
jβ denote the tensor of the transition probabilities for

jumping between pairs of nodes and switching between pairs of

layers, β = 1, 2, . . . , 6, α = 1, 2, . . . , 6, i = 1, 2, 3, . . . ,M, and j = 1,

2, 3, . . . , M. Moreover, λ means the walker jumps to a neighbor

with rate λ and teleport to any other node in the network with

rate 1 − λ, while uiαjβ is the rank-4 tensor with all components

equal to 1. The Hub [45] of multilayer are as follows:

HUmul
i � HU α[ ]

i uα (23)

where uβα represents the rank-2 tensor whose all components

equal to 1.

2.2 Multilayer supervised network model

2.2.1 Graph neural network classification model
Through the foregoing analysis, we can create six-layer

networks and obtain their parameters (degree,out-/in-degree,

PageRank, Hub). To add the supervision to the six-layer

networks, we use the Self-Attention Graph Pooling

(SAGPOOL) method [46] (a verified method for graph neural

network classification) to train the six-layer networks and find

the optimal layer. The detailed steps of the SAGPOOL method

are as follows:

1) Transform the adjacency matrix data of the six-layer network

into a graph neural network classification module.
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2) The importance of each node is adaptively learned from the

graph using Kipf’s concept of graph convolution [47]. The

graph convolution formula is as follows:

Z � σG
~ −1

2W
~
G
~ −1

2FΘatt (24)
where σ is the activation function (e.g. tanh), Z is the self-attention

score, W
~

∈ RM×M is the adjacency matrix with self-connections,

G
~
∈ RM×M is the degree matrix ofW, F is the input features of the

graph withM nodes and θ-dimensional features, Θatt ∈ Rθ×1 is the

only parameter of the SAGPOOL layer.

3) Adopt the node selection method in gpool and retain some nodes

of the input graph. The pooling ratioω∈ (0, 1) is a hyperparameter

that determines the number of nodes to be maintained. The top

[ωM] nodes are selected based on the value of Z.

idx � top − rank Z, ωM[ ]( ), Zmask � Zidx (25)

where top-rank is the function that returns the indices of the top

[ωM] values, idx is an indexing operation and Zmask is the feature

attention mask.

4) Select the TOP ω of features and structures according to idx as

follows:

F′ � Fidx,: , Fout � F′ ⊙ Zmask , Wout � Widx,idx (26)

where Fidx is the row-wise (i.e. node-wise) indexed feature

matrix, ⊙ is the broadcasted elementwise product, and Widx,idx

is the row-wise and col-wise indexed adjacency matrices. Further,

Fout and Wout are the new feature matrix and the corresponding

adjacency matrix, respectively.

5) Add a readout layer according to the idea of JK net

architecture [48], which aggregates node features to form a

fixed size representation:

sag � 1
M

∑M
i�1

wi‖max
M

i�1
wi (27)

whereM denotes the number of nodes, wi denotes the feature

vector of the i − th node, and ‖ denotes concatenation.

6) Create hierarchical pooling architecture, as shown in Figure 1,

and input the sum of the output of each readout layer to the

linear layer for classification.

2.2.2 Sliding rules of multilayer supervised
networks

In actual crisis supervision and prediction, we must use the

dynamic sliding window method to train and test the network

many times to ensure the validity of the SAGPOOL method.

Specifically, the length of the training set was twice that of the test

set and the slide window length. We set the length of the training

set to 240-,120- and 60-day windows.

The main process of the dynamic sliding window method is

illustrated in the Figure 2. Each paragraph (red vertical line) in

Figure 2 represents a single network from the six-layer dynamic

networks. For example, the networks in Figure 2 are the second-

layer dynamic networks (PCC-PMFG). The tags (equal to 1) of

each layer network correspond to the crisis event labels in Table 1

[49–51]. All other tags are equal to 0.

A general flow chart of MSNA method and the summary of

this study are shown in Figure 3.

3 Data set

In this study, we chose 37 important stock markets1 from

four continents:Asia (15 stocks), Europe (12 stocks), America

(9 stocks) and Oceania (1 stock). The detailed contents of the

stocks is listed in Table 2.

Daily indices are considered, while the study period covers

approximately 17 years from 1 January 2005, to 3 October 2021.

The length of the closing price is 5,124.

FIGURE 1
Flow chart of neural network classification.

1 https://www.wind.com.cn/NewSite/wft.html.
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FIGURE 2
(Color online) Window segmentation diagram of the dynamic supervised network.

TABLE 1 The table of crisis events.

Crisis label Crisis name Start date End date Crisis event

C1 Subprime Mortgage 20/06/2007 10/03/2009 1

C2 European Sovereign Debt 20/04/2010 22/12/2011 1

C3 Russian Recession 18/03/2014 11/05/2015 1

C4 Stock Market Selloff 12/06/2015 27/06/2016 1

C5 Trade Conflict between China and the US 23/03/2018 11/10/2019 1

C6 US stock circuit breaker 20/01/2020 29/05/2020 1

FIGURE 3
(Color online) Flow chart of the multilayer supervised network.

Frontiers in Physics frontiersin.org07

Qiu et al. 10.3389/fphy.2022.1048934

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048934


4 Result

4.1 Topology parameters and community
structures of multilayer networks

Based on multlayer network creation methods, we

construct evolving 6-layer networks (PCC-MST,PCC-

PMFG,VD-DMST,VD-DPMFG,TE-DMST,TE-DPMFG) on

240-, 120-, and 60-day windows. In this study, we set up

Δ = 1, L = 120, M = 37, T = 5,123, Q = 2 and H = 4. The

multiplex network of the global financial crisis shown in

Figure 3. Figures 4, 5A,B show that DAX (Germany),

SPX500 (United States) and STI (Singapore) have the larger

degrees in the first layer network. Due to a broader amount of

information in the second layer network, DAX (Germany),

STI (Singapore), NYSE (United States) and HIS (Hong Kong,

China) are all affected. In the third layer network, PSI

(Philippine) is the head node of a directed spanning tree

network owing to its comparatively earlier opening time,

which is similar to Vrost et al [52, 53]. In the fourth-layer

network, the NYSE and the SPX500 of the United States are

the two most affected stock indices. As can be seen from the

DMST in the fifth layer, the in-degree of HSCEI (Hong Kong,

China) is zero, which indicates that the HSCEI is the least

influenced stock. The most influenced node in the sixth layer

network was NASD (United States).

As can be seen from the cumulative PageRank values of each

layer in Figure 5C, the PageRank values of SHI (China), STI

(Singapore), DAX (Germany), and NASD (United States) are

higher, which indicates that these stock indexes have strong

dissemination power. In Figure 5D, AEX (United States) is at the

hub node.

Although the parameters of the individual layer network

can provide us with valuable information, the integration of

multilayer network information is more important. The

parameters of multilayer network at the time of the global

financial crisis are shown in Figure 5. As shown in Figure 6A,

the AEX (Netherlands), TWII (China), HSCEI (China), Tokyo

(Japan) and STI (Singapore) are the most influential stocks. In

Figure 6B, NYSE (United States), NASD (United States), STI

(Singapore) and HIS (HongKong, China) are the most

influenced stocks. From the PageRank index in Figure 6C,

NYSE (United States), NASD (United States), SPX500

(United States) DAX (Germany) and SHI (China

Mainland) are the most highly transmissible index. In

Figure 6D, DAX (United States), AEX (United States), STI

(Singapore), FTSE (Britain) are included as the main nodes in

Hub index. Figure 6 shows that the results derived from the

multilayer network ensemble parameters are more stable than

those in the single layer network.

To analyze the community relationship of each node in

the multilayer network, we use multilayer infomap algorithm

[54] to detect the network’s community structure. The results

of the community division of the mutilayer network are

shown in Figure 7. Figure 6 shows the division of

associations in each layer did not differ greatly, especially

for layers 1–4. Asian stocks such as FKLI, KOSPI, TA100,

Nikkei225, TWII, HIS, HSCEI, CSI300, SZI, SHI, Sensex30,

STI belong to one community. The AORD (Australia) and

NZ250 (New Zealand) belong to an other society. MXX, DJI,

NYSE, NASD and SPX500 are all in one community

TABLE 2 Stock index list.

Continent Abbreviation
of stock index

Country

Asia KOSPI Korea

PSI Philippine

JKSE Indonesia

STI Singapore

Sensex30 India

FKLI Malaysia

TA100 Israel

Nikkei225 Japan

TWII Taiwan, China

HIS Hong Kong, China

HSCEI Hong Kong, China

CSI 300 China mainland

SZI China mainland

SSE180 China mainland

SHI China mainland

Europe RTS Russia

NZ50 New Zealand

SSMI Switzerland

OMXSPI Sweden

OSEAX Norway

AEX Netherlands

ATX Austria

MIB Italy

SMSI Spain

DAX Germany

CAC40 France

FTSE100 United Kingdom

America MERV Argentina

IBOVESPA Brazil

MXX Mexico

TSX Canada

AMEX United States

NYSE United States

NASD United States

SPX500 United States

DJI United States

Oceania AORD Australia
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(American group-1). Ibovessa, Merv, AMEX and TSX belong

to a single community (American group-2). OSEAX,

OMXSPI, AEX, ATX, MIB, SMSI, DAX, CAC40, FTSE100,

SSMI, and RTS are included in one community (the

European group). It also underscores that

JKSE(Indonesia), of layers 1 and 2, belongs to the

European group, while JKSE, of layers 3, 4 and 5 belongs

to American group-2.

FIGURE 4
(Color online) Multilayer network at the time of global financial crisis.

FIGURE 5
(Color online) Parameters of each layer network at the time of global financial crisis.(A) The out-degree of each layer network; (B) The in-degree
of each layer network; (C) The PageRank of each layer network; (D) The Hub of each layer network.
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FIGURE 6
(Color online) Parameters of each layer network at the time of global financial crisis. (A) The out-degree ofmultilayer network, (B) The in-degree
of multilayer network, (C) The PageRank of multilayer network, (D) the hub of multilayer network.

FIGURE 7
(Color online) Community division results of the multilayer network at the beginning of the financial crisis, obtained via a Multi-infomap
algorithm. The horizontal axis means the Layer ID, Episode1 to 6 correspond to Layer1 to 6 respectively. The vertical axis shows the abbreviations of
all stocks.

Frontiers in Physics frontiersin.org10

Qiu et al. 10.3389/fphy.2022.1048934

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048934


In Figure 7, the findings from the distribution of

communities indicate that the layer 1(PCC-MST) and layer

2(PCC-PMFG) belong to one community. In addition, the

layer 3(VD-DMST) and layer 5 (TE-DMST) are similar to

layers 1 and 2. The stock numbers for each community are

shown in Figure 8. Communities 1 to 4 correspond to the Asian-

Oceania group, European group, American group 1 and

American group 2, respectively.

We also show the multiplex network and its parameters of

the European subprime mortgage crisis in Figures 9, 10,

respectively. As shown in Figures 8, 10A, AEX and NYSE

are most influenced in the first layer network. AEX, NYSE,

HIS and HSCEI of the second-layer network are most

influenced. Because of the early opening, PSI is the most

influential stock in the third-layer network. OMXSPI

(Sweden) is the most influenced stock in the fourth-layer

network. In the fifth-layer network, AORD (Australia) is

the most influential stock. In the sixth layer network, the

most influenced stock was TA100 (Israel).

In Figure 10C, AEX (Netherlands),NYSE (United States),

SPX500 (United States) and HSCEI (China) have a strong

infectivity. The hub nodes in Figure 10D are AORD

FIGURE 8
(Color online) Quantity statistics in each community at the beginning of the global financial crisis. The horizontal axis indicates the community
ID. The vertical axis represents quantities of each Community ID.

FIGURE 9
(Color online) Multilayer network at the time of European subprime mortgage crisis.
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(Australia), AEX (Netherlands), Nikkei225 (Japan) and HIS

(China). It can be surmised, by uniting the results of Figures 9,

10 that the European stocks (AEX,OMXSPI) are the most affected

and infected during the European subprime mortgage crisis. Due

to early opening time of AORD (Australia), PSI (Philippines), and

Nikkei225, they have the most influential effect.

FIGURE 10
Parameters of each layer network at the time of the European subprime mortgage crisis. (A) The out-degree of each layer network; (B) The in-
degree of each layer network; (C) The PageRank of each layer network; (D) The Hub each layer network.

FIGURE 11
Parameters of the multilayer network at the time of European subprime mortgage crisis. (A) The out-degree of the multilayer network; (B) The
in-degree of the multilayer network; (C) The PageRank of the multilayer network; (D) The hub of the multilayer network.
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The multilayer result during the European subprime

mortgage crisis is depicted in Figure 11. The out-/in-degree,

PageRank and Hub of AEX (Netherlands) and OMXSPI

(Sweden) are all at the forefront. We also present the

community division results of the multilayer in Figures 12,

13. The biggest difference between Figures 7, 12 is that MXX,

DJI, NYSE, NASD, SPX500, Ibovessa, Merv, AMEX and TSX

belong to one community (the American group) durning the

European subprime mortgage crisis but belong to two

communities (American society-1 and 2) in the Global

financial crisis. Further conclusions are illustrated in Figures

8, 13 show that the number of communities in the period of

global financial crisis is higher than that in the period of

European subprime mortgage crisis period.

FIGURE 12
Community division results of the multilayer network at the beginning of the European subprime mortgage crisis, obtained by a multi-infomap
algorithm.

FIGURE 13
Quantity statistics in each community at the beginning of the European subprimemortgage crisis. The horizontal axismeans theCommunity ID.
The vertical axis indicates quantities of each Community ID.
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4.2 Crisis early warning results based on
multilayer supervision networks

Based on the created dynamic multilayer network, we

intend to add the crisis events as label values and integrate

the supervised characteristics to each dynamic network layer.

Because of the weakness of machine learning and neural

network in handling feature representation of input

dynamic networks, we utilize the GNNC method to fill this

technical gap. Specifically, we train and test all six-layer

dynamic networks utilizing our MSNA method in 60-day,

120-day and 240-day windows. The detailed results of the

three windows are shown in Figure 14 and Table 3. The mean-

total-240, mean-total-120, mean-total-60 in Table 3 indicate

FIGURE 14
Prediction results of all time periods of eachwindow.(A–C) indicate prediction results of all time periods at 240-length scales, 120-length scales
and 60-length scales respectively.

TABLE 3 Mean results of each multilayer networks using MSNA methods.

mean_total_240 mean_total_120 mean_total_60

Accuracy Recall f1_score Accuracy Recall f1_score Accuracy Recall f1_score

Mul1 0.7105 0.6886 0.7027 0.8800 0.8637 0.8732 0.9344 0.9338 0.9308

Mul2 0.7682 0.7492 0.7625 0.8798 0.8589 0.8724 0.9358 0.9239 0.9315

Mul3 0.6665 0.6804 0.6696 0.8204 0.8155 0.8129 0.9319 0.9320 0.9282

Mul4 0.7227 0.7342 0.7245 0.8737 0.8624 0.8672 0.9262 0.9183 0.9216

Mul5 0.7357 0.7191 0.7300 0.8580 0.8422 0.8502 0.9193 0.9118 0.9144

Mul6 0.7128 0.7303 0.7165 0.8605 0.8465 0.8531 0.9217 0.9282 0.9181

TABLE 4 The mean results of each multilayer network of the six crises in the 240-day window.

L240 Mul1 Mul2 Mul3 Mul4 Mul5 Mul6 MeanC

c1 0.5736 0.6611 0.6653 0.6944 0.6917 0.6819 0.6613

c2 0.6000 0.6983 0.5333 0.6850 0.6567 0.6700 0.6406

c3 0.5708 0.5875 0.5417 0.6021 0.5917 0.5899 0.5806

c4 0.7750 0.7750 0.7750 0.7750 0.7472 0.7389 0.7644

c5 0.6850 0.7083 0.6216 0.6483 0.6150 0.6583 0.6561

c6 0.7583 0.7500 0.7333 0.6000 0.8250 0.7083 0.7292

Mean Mul 0.6605 0.6967 0.6450 0.6675 0.6879 0.6745
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the mean precision results of MSNA method in 240-,120- and

60-day windows, respectively.

As shown in Table 3 and Figure 14, the accuracy of
financial crisis prediction increases with the reduction of
window length. In general, accuracy can properly evaluate
the model performance. It represents the prediction
correctness of crisis events and non crisis events (all
events). Recall indicates the prediction precision of all
crisis events. When the model deals with unbalanced
sample classification, f1_score can more correctly evaluate
the model performance than accuracy and recall. For an ideal
early warning model, accuracy, recall and f1_score should be
as large as possible. As can be seen from Table 3, when the
time window is 60, the lowest f1_score (Mul5) also reaches
0.9144. While the window is 240, the lowest layer (Mul3) is
0.6665. This result confirms the effectiveness of our MSNA
method in short sequence crisis prediction. In addition, we
also discovered that the fifth-layer (TE-DMST) network has
the best performance in a long windows, while the first-layer
(PCC-MST) network has the best results in short windows.

Simultaneously, we also intercepted warning results of six

periods of financial crisis for statistics. The detailed results of

accuracy and ROC curve are displayed in Tables 4–6 and

Figures 15–17. Table 6 shows that, in the 240-day window

condition, the best performances of the six financial crises

prediction are Mul4 (VD-PMFG), Mul2 (PCC-PMFG), Mul4,

TABLE 5 The mean results of each multilayer network of the six crises
in the 120-day window.

L120 e1 e2 e3 e4 e5 e6 meanC

c1 0.8050 0.8967 0.7983 0.8183 0.8333 0.8333 0.8308

c2 0.9148 0.8130 0.8130 0.9019 0.8296 0.8852 0.8596

c3 0.6833 0.7714 0.7976 0.8095 0.8286 0.7095 0.7667

c4 0.9222 0.9000 0.9000 0.8944 0.8556 0.8667 0.8898

c5 0.8019 0.7352 0.6907 0.7481 0.7648 0.7500 0.7485

c6 0.7750 0.6750 0.4667 0.6333 0.6000 0.7083 0.6431

mean E 0.8170 0.7985 0.7444 0.8010 0.7853 0.7921

TABLE 6 The mean results of each multilayer network of the six crises
in the 60-day window.

L60 e1 e2 e3 e4 e5 e6 meanC

c1 0.8983 0.8700 0.8967 0.8983 0.8983 0.8900 0.8919

c2 0.8789 0.8807 0.9140 0.9053 0.8772 0.8825 0.8898

c3 0.9359 0.9256 0.9179 0.8846 0.8487 0.8872 0.9000

c4 0.8389 0.8861 0.8444 0.8806 0.8611 0.9167 0.8713

c5 0.9078 0.8863 0.8745 0.8843 0.8843 0.8961 0.8889

c6 0.8333 0.7444 0.7333 0.4667 0.7333 0.7000 0.7019

mean E 0.8822 0.8655 0.8635 0.8200 0.8505 0.8621

FIGURE 15
Prediction of the six crises of each layer network at 60-day windows. (A–F) indicate the prediction result of each financial crisis. C1 to
C6 indicate the following crises: SubprimeMortgage, European Sovereign Debt, Russian Recession, StockMarket Selloff, and TradeConflict between
China and the United States, US stock circuit breaker, respectively.
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FIGURE 16
Prediction results of each layer of the network at 120-day windows. (A–F) indicate the prediction result of each financial crisis. C1 to C6 indicate
the following crises: Subprime Mortgage, European Sovereign Debt, Russian Recession, Stock Market Selloff, and Trade Conflict between China and
the United States, US stock circuit breaker, respectively.

FIGURE 17
Prediction results of each layer of the network at 240-day windows. (A–F) indicate prediction result of each financial crisis. C1–C6 indicate the
following crises: Subprime Mortgage Crisis, European Sovereign Debt, Russian Recession, Stock Market Selloff, and Trade Conflict between China
and the United States, US stock circuit breaker, respectively.
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Mul4, Mul2, and Mul4, respectively. In Table 5 corresponding

to 120-length condition, we discover that Mul2 (PCC-

DPMFG), Mul1 (PCC-DMST), Mul5 (TE-DMST), Mul1,

Mul1, Mul1 have the best performances of 6 financial crises

(c1 to c6) prediction, respectively. Table 6 is the result of the

accuracy of six financial crisis predictions in a 60-length

condition. We can conclude that Mul1, Mul4, Mul1, Mul6,

Mul1, and Mul1 have the best performances of the 6 financial

crisis (c1 to c6) predictions, respectively. The optimal mean

values of the accuracy of the six crises from 240-length to 60-

day are Mul2, Mul1, and Mul1, respectively. In summary, the

correlation network is the most accurate system for predicting

financial crises.

As can be seen in Figure 15, the PCC-MST, VD-DPMFG,

PCC-PMFG, PCC-MST, TE-DPMFG, and PCC-MST

networks are the most stable and efficient graphs for

predicting the six financial crises of 60-day condition,

respectively. In Figures 16, 17, the results of the AUC

values in the 120- and the 240-day conditions were not all

stable and efficient. In the 120-day condition, there are five

efficient networks (VD-DPMFG, VD-DPMFG, PCC-PMFG,

PCC-MST, TE-DPMFG) corresponding to c1, c3, c4, c5, and

c6, respectively. In the 240-length condition, there are only

three efficient networks (VD-DPMFG,PCC-MST,TE-

DPMFG) corresponding to c1, c2, and c4, respectively.

5 Conclusion and discussion

Several scholars have proposed various effective methods for

financial network construction. For example, Gan et al. applied

the threshold method to reduce noise in a pearson correlation

network [55]. Further, Marti et al. proposed using the MST

method and PCC to construct the network, which resolved the

shortcomings of artificial and subjective threshold selection, and

likewise simplified the topology of the financial network (M-1)

[56]. Because the MST method will result in a loss of important

information, Hosseini et al. proposed constructing it using PCC

and PMFG (3M-6) [57]. Because there are many nonlinear

relationships between financial institutions, analyzing only

linear relationships will result in a loss of important

information. Therefore, Hosseini et al. applied the TE method

to investigate the relationship between several stocks, and utilized

DMST to construct the network [58]. Zhang et al. constructed a

financial network by employing VD method [59]. Additionally,

some scholars have used DCC GARCH t copula [60], GARCH

BEKK model [61], symbolic dynamics model [62], and non-

linear Granger causality tests [63] to build financial networks.

In this study, we employed PCC, VD, TE, MST, PMFG,

DMST, and DPMFG, which are popular among the above

methods, to construct a six-layer dynamic financial network.

Through the analysis of topological quantities (degree, out-/in-

degree, PageRank, Hub, etc.) in multilayer networks, we conclude

that in the stage of global financial crisis, the external risk

contagion effect and affected intensity of the United States,

China, Japan and Singapore were comparatively large. At the

stage of the European subprime mortgage crisis, Australia, the

Netherlands and Singapore had the greatest external impact,

while the Netherlands, the United States, Sweden and the

United Kingdom were the most affected. The community

division results of the multilayer network show that the

community number during the global financial crisis (four

communities) was lower than that during the European

subprime mortgage crisis (three communities). In short, we

use the topological features of the information spillover

network between stock indices in various essential places as a

training element to improve existing macroeconomic-based

warning indicators. The proposed MSNA early warning

model, with a multi-layer information spillover network as

input variable, has shown excellent early warning effect in

empirical studies on real-world datasets and can provide

strategic support to regulatory authorities to prevent financial

crises.

Further research should be conducted to enhance the

accuracy of long-term crisis warning, which is affected by the

amount of training data, model overfitting and other factors. For

the problem of training set data volume, we will unite the

macroeconomic data, sentiment indices and other data in the

future, and merge the mixed frequency model [64] to reduce the

impact of the data volume of the training set. For model

overfitting, we will improve model’s prediction accuracy in the

future by adjusting its regularization.
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