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As the voice disorder is a typical early symptom of Parkinson, some researchers

attempt to diagnose this disease based on voice data collected from suspected

patients. Although existing methods can provide acceptable results, they just

work in partial scenarios. In other words, they are not generable and robust

enough. To this end, we present a Parkinson’s auxiliary diagnosis system based

on human speech, which can adaptively build a suitable deep neural network

based on sound features. The system includes two modules: hybrid features

extraction and adaptive network construction. We extract kinds of information

from the voice data to form a new compound feature. Furthermore, particle

swarm optimization (PSO) algorithm is employed to build the corresponding 1D

convolution network for features classification. Extensive experiments on two

datasets consisting of English and Italian are conducted for evaluation purposes.

Experimental results show that our method improves the accuracy of voice-

based Parkinson’s disease detection to some extent.
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Introduction

Parkinson’s disease (PD) is a neurological illness caused by the loss of dopamine-

producing cells in the brain, which injures brain function. With the aggravation of the

patient’s condition, there will be problems in the coordination between different parts of

the brain and body, and various symptoms begin to appear, including motor symptoms

[1] (tremor [2], bradykinesia [3], sound disturbance, balance [4], etc.) and non-motor

symptoms (sense of smell, facial expressions, etc.) [5]. Some researchers proposed the

Unified Parkinson’s Disease Rating Scale (UPDRS) [6] for the symptoms of Parkinson’s

disease, each of which is divided into a scale of 0–4 (0 for normal and four for severe).

However, according to the Unified Parkinson’s Disease Rating Scale (UPDRS), the results
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TABLE 1 Details of two datasets.

Name Content Source Languages Size

Pronunciation of Italian Vowels Short tone Italian Parkinson’s Voice and Speech Database Italian 593

MDVR-KCL ReadText Read text Mobile Device Voice Recordings at King’s College London English 297

TABLE 2 Overview of the features used in this study.

Group Explanation Features

Frequency parameters The jitter variable is used to capture the instability that occurs in the vocal cord oscillation mode, and the feature
subset quantifies the periodic variation in the fundamental frequency

Jitter (local)

Jitter (local, absolute)

Jitter (rap)

Jitter (ppq5)

Jitter (ddp)

Pitch parameters To analysis the pitch of vocal fold vibration. Mean, median, standard deviation, minimum and maximum values
are used

Median pitch

Mean pitch

Standard deviation

Minimum pitch

Maximum pitch

Pulses parameters Describe the periodic changes of sound. Mean and standard deviation are used Number of pulses

Number of periods

Mean period

Standard dev. of period

Voicing parameters Describe degree of voice break Fraction of locally unvoiced
frames

Number of voice breaks

Degree of voice break

Amplitude parameters Shimmer variants are used to capture the instability of vocal cord oscillation patterns Shimmer (local)

Shimmer (local, dB)

Shimmer (apq3)

Shimmer (apq5)

Shimmer (apq11)

Shimmer (dda)

Harmonicity
parameters

Harmonicity variants are used to quantify the ratio of signal information over noise Autocorrelation

Noise-to-Harmonics

Harmonics-to-Noise

Segment parameters Describe the characteristics of an audio segment Total duration

Number of pitch onsets

Global acoustic tempo

Period

Frame parameters Describe the characteristics of a frame which is a chunk of the whole audio data contained in a segment Root-Mean-Square energy

Spectral Centroid

Roll-off Frequency

Zero-crossing

MFCCs parameters MFCCs are employed to catch the PD affects in vocal tract separately from the vocal folds MFCC
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depend on the subjective diagnosis, which means different

evaluators may give diverse judgements.

On the other hand, it is found that Nearly 90% of people with

Parkinson’s disease show symptoms of voice disorders at an early

stage [7]. Moreover, there are great differences and changes in

voice signals between patients with Parkinson’s disease and

normal people. In recent years, many researchers explore the

detection of Parkinson’s disease based on voice signals. At

present, the research on voice disorders of Parkinson’s disease

in the field of information processing mainly focuses on three

aspects: information collection [8–14], feature selection [7,

15–19], and classification diagnosis [20–25]. For example, in

terms of information collection, the first Parkinson’s disease

speech disorder dataset OPDD (Oxford Parkinson’s Disease

Dataset) [8] was established in 2007. Orozcoarroyave found

the limitations of English pronunciation detection and

proposed collection methods for Spanish, German and Czech

[12]. On the aspect of feature analysis and feature extraction,

SanDeep et. al use Fourier transform and correlation methods to

extract relevant features from voice signals to classify engine

faults according to sound [15]. R. Das et al. propose the rough set

method for feature selection [16] and Frid employs the self-

learning characteristics of a convolution network for feature

selection [17]. Regarding classification of extracted speech

features, Meghraoui et al. [20] introduced Bernoulli and

polynomial naive Bayesian to select the most relevant feature

parameters to diagnose Parkinson’s. Guruler et al. [21] used

K-means clustering features and artificial neural networks to

classify Parkinson’s disease and proposed a hybrid system called

KMCFW-CVANN. Zayrit Soumaya et al. [25] introduce a

discrete wavelet transform method to extract features from

voice signals and use Genetic Algorithm to optimize SVM to

classify Parkinson’s.

Recently, deep learning techniques have gained tremendous

success in the field of computer vision and natural language

processing. To some extent, deep neural networks can be

regarded as powerful feature extractors or classifiers according

to different structures and objectives employed. Since diagnosis

of Parkinson’s disease based on voice signals can be treated as a

multi-class classification problem, neural networks are naturally

applicable to this task. Some work has made relevant attempts

[26–28] which have profound meaning in multiple aspects.

Firstly, using the dedicated medical equipment for diagnosis

requires a certain amount of expenditure. Secondly, it involves

physical interference, which tends to be a burden since most

patients with Parkinson’s disease are old people. Thirdly, under

the pandemic of COVID-19 nowadays, going to the hospital is

inconvenient. If the algorithm capable of accurately detecting the

appearance of Parkinson’s disease based on voice signals is

available, then we can deploy it on small-scale electronic

products like mobile phone, realizing initial diagnosis with

low cost and high convenience.

FIGURE 1
The pipeline of the proposed method.

FIGURE 2
Example of a single particle used in the network structure search.
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An important problem of employing deep neural

networks is to determine specific network structures [29,

30]. Some researchers consider using evolutional

algorithms (EAs) in neural architecture search (NAS).

Motivations behind this consideration can be summarized

into two points: 1) manually constructing the network

candidates is inefficient because of the large searching

space; 2) EAs are usually good at finding the global

optimum with relatively few iterations. Several valuable

attempts [31–33] have been made in this direction. For

instance, Xue et al. [31] modify the genetic algorithm to

include novel ad-hoc crossover and mutation operators. they

are used deal with a multi-objective modeling of the network

design. Zhang et al. [32] employ the particle swarm

optimization (PSO) to help the construction and stable

training of a generative adversarial network. Experiments

on CelebA dataset validate the effectiveness and robustness of

their method.

FIGURE 3
Demo of how to compute differences between two particles.

FIGURE 4
Demo of velocity computation.
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Inspired by the findings and related work mentioned above,

here we propose a new method for computer-aided diagnosis of

Parkinson’s disease based on voice signals. We extract various

types of features from the human speech data and combine them

into a hybrid one. The particles and updating rules of PSO have

been transferred to the scene of network structure search, which

eventually finds the optimal 1D convolutional neural work that is

able to produce the best performance among all network

candidates. The main contributions of this work are following:

1. The introduction of a new approach for PD detection using

voice recordings. Extensive experiments on two datasets verify

its effectiveness and robustness.

2. Experimental evidence show that hybrid features embedding

diverse kinds of information is superior to those with single

contents in PD diagnosis.

3. A paradigm of how to leverage PSO to search for 1D neural

architecture structures.

The rest of this article is organized as follows. Section

2 introduces the various datasets and methods used in this

study. Section 3 presents the results and discussion. Finally,

section 4 gives the conclusion and future scope.

Data and feature extraction

Datasets description and data selection

Italian Parkinson’s Voice and Speech Database consists of

audio recordings, which are yielded by 15 healthy people between

the ages of 19–29 years, 22 healthy people between the ages of

60–77 years, and 28 PD patients within the ages of 40–80 years.

All participants are from Italy. They are asked to produce vocals

in different modes and execution times, as described in the

following list:

a) Two readings of a phonemically balanced text spaced by a

pause (30 s);

b) Execution of the syllable ‘pa’ (5 s), pause (20 s), execution of

the syllable ‘ta’ (5 s);

c) Two phonations of the vowel ‘a’;

d) Two phonations of the vowel ‘e’;

e) Two phonations of the vowel ‘i’;

f) Two phonations of the vowel ‘o’;

g) Two phonations of the vowel ‘u’;

h) Reading of some phonemically balanced words, pause

(1 min), and reading of some phonemically balanced phrases.

In this study, we select 593 recordings of short vowel

pronunciations from the database and name the total of them

as “Pronunciation of Italian Vowels” dataset.

The “Mobile Device Voice Recordings at King’s College

London” (MDVR-KCL) are collected from 37 participants. In

particular, 16 of them are patients who are at early or late stage of

PD, while the rest persons are healthy ones. The subjects are

asked to read two paragraphs, which include “Sun and wind” and

a snippet of “computer applications in geography”. Since these

two paragraphs are relatively large, segmentation is performed on

the relevant sound data. To be more specific, manual

segmentation is performed at the standstill point including

commas and periods that locate in the middle and at the end

of a sentence, respectively. For the case of long sentences, they are

separated by conjunctions. In this way, we obtain a total of

297 segmented recordings which are taken as the “MDVR-KCL

ReadText” dataset in this study. A brief summarization of the

above two datasets is given in Table 1.

Feature extraction

Voice signals are the mixture of sustained oscillations and

non-oscillatory transients. In this work, we extract three types of

characteristics from sound files and apply them to different

subsequent classification methods. The first kind of

characteristic is the time series features which are directly

extracted from sounds. The time-series feature of sound is a

1D time-domain signal, so it is difficult to get the law of

FIGURE 5
Demo of how to update a particle architecture.
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frequency change intuitively. If it is directly transformed to the

frequency domain by Fourier transform, the frequency

distribution of the signal can be seen without time-domain

information, and the change of frequency distribution over

time cannot be obtained. Therefore, the second kind of

characteristic is collected by converting time-series features to

spectrograms with the help of short-time Fourier transform [34].

FIGURE 6
Optimal model structure for dataset one searched by PSO.

FIGURE 7
Optimal model structure for dataset two searched by PSO.
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Specifically, in the time domain, the digitally sampled data is first

sliced into overlapping windowed segments, and Fourier

transform is conducted on each segment to generate a

frequency spectrum [17]. We then compute corresponding

power spectrums and apply the Mel-scale filter banks to them

to get its Mel Spectrogram.

And the last way is to extract different types of features from

voice samples and combine them as the third kind of

characteristic. In this paper, we use Praat acoustic analysis

software [35] to extract a group of 26 linear and time-

frequency features from each piece of voice sample. For the

frame features, we intentionally extract 13 statistics including

mean, median, root-mean, square, maximum, minimum, first

and third quartile, interquartile range, standard deviation,

skewness, and kurtosis. In total, 187 manual features at frame

and segment levels are extracted from audio, covering attributes

FIGURE 8
Diagnostic accuracy of Parkinson’s disease using LEAF and ResNet50.

FIGURE 9
Diagnostic accuracy of Parkinson’s disease using conventional machine learning algorithms with linear and time-frequency features.
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based on frequency, structure, statistics, and time. Note that a

segment refers to a complete piece of audio, while a frame is a

chunk that makes up a piece of audio. Table 2 gives a detailed

description of the above features.

Classification

Particle swarm optimization

In this paper, a new method for detecting Parkinson’s disease

using sound data is proposed. As mentioned before, we integrate

26 linear and time-frequency features with 187 artificial features.

These features are utilized as inputs to the classifier. In this work,

we introduce particle swarm optimization (PSO) algorithm to the

adaptive construction process of a 1D convolution network,

whose final structure depends on the kind of languages and

features. Figure 1 shows a graphical representation of the

proposed framework.

The PSO algorithm originates from the study of the

predation behavior of birds, and its purpose is to find the

optimal solution through cooperation and information

sharing among individuals in the group. PSO is

initialized into a group of random particles (random

solution). Then the optimal solution is found after series of

iteration. In each iteration, the particle updates itself by

simultaneously tracking its own and the whole swarm’s

best positions (denoted as “pBest” and “gBest”) in the

searching space. After finding these two optimal values, the

particles update their speed and position through the

following formula.

vi � vi + c1 × rand () × (pBesti − xi) + c2 × rand() × (gBesti − xi)

(1)
xi � xi + vi (2)

Among them, i = 1, 2, . . . , N is the total number of particles

in this group, vi is the velocity of the particles, xi is the current

position of the particles, c1 and c2 are the learning factors, and

rand () is a random number between (0,1).

Adaptive classification network

PSO algorithm is used to find the most suitable architecture

of a 1D convolution network for Parkinson’s classification based

on voice recordings. More specifically, it determines to use how

many convolution layers and fully-connected layers to constitute

the final classification network, which layers are convolution

layers, and which layers are fully connected layers. Considering

the fact that the audio features used are specially selected, thus we

do not employ pooling layers in our classification network since

that may discard some information useful. First, the particle

swarm and the network structure are initialized randomly

according to the specified input and output. To ensure that

the network structure is trainable, we limit that the first and

the last layers to be convolutional and fully-connected,

respectively. Figure 2 is an example of the structure of particles.

After a network structure is determined, the particles are

trained, the loss function is calculated, and the particle swarm is

evaluated by the loss function, thereby updating the gBest and

pBest. In order to calculate the velocity of the current particle P, it

is first necessary to compare the differences between the network

FIGURE 10
Diagnostic accuracy of Parkinson’s disease using conventional machine learning algorithms with hybrid features.
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structures. As shown in Figure 3, the convolutional layer and the

fully-connected layer are compared separately. If the current

layer structure of the two particles is the same, the difference is

zero. Note that the comparison is based on the first network. If

the first network has fewer layers than the second, the difference

is recorded as -1, whichmeans the layer should be removed. If the

case is opposite, the result of the network comparison of this layer

will be recorded as + L, indicating that a layer of type L needs to

be added. The differences between the current particle P and

gBest and pBest can be obtained by conducting above operations.

Recall that the goal of optimization is to search for the most

appropriate network structure and determine the type of each

layer of the network. For a specific layer in the network, three

candidate operations would be applied to it: holding, deleting, or

changing type. The final velocity is calculated by randomly

selecting a number between (0, 1) and selecting a certain layer

of operation from two differences according to the decision factor

Cg. When the random number is less than Cg, select the global

best position of the current swarm denoted as gBest-P.

Otherwise, choose the best position of the current particle,

which is referred to as pBest-P. These implementation details

are demonstrated in Figure 4. Finally, as shown in Figure 5, the

network structure of current particle P is updated according to

the calculated speed. In particular, it determines whether each

layer in the current network is retained and whether a new layer

is added.

FIGURE 11
Parkinson detection model based on LEAF and time-series
features.

FIGURE 12
Parkinson detection model based on ResNet50 and Mel
Spectrograms.
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Experiments

Analyses of different features

Results with time-series features and Mel Spectrograms. In

recent years, under the continuous efforts of many researchers,

outstanding achievements have been made in audio

classification. LEAF [36] is a fully learnable frontend for audio

classification which achieves good results in many audio

classification tasks. Here we used it to diagnose the

Parkinson’s disease based on time-series features extracted

from speech signals. LEAF frontend cascades a Gabor 1D-

convolution, a Gaussian lowpass pooling (GLP), and

smoothed Per-Channel Energy Normalization (sPCEN). Then

a convolutional neural network (CNN) was trained to be the

classifier. The above process is shown in Figure 6. Time series are

utilized as input features to train the LEAF model separately

while all other parameters are consistent. We chose a learning

rate of 1e-4, a batch size of 64, and total epochs of 50.

In addition to general audio classification methods,

converting audio signals into image data and using the image

classification approaches to detect Parkinson’s disease is also a

major trend in recent years. In this work, we utilized short-time

Fourier transform (STFT) to extract spectrograms from speech

recordings and converted them to Mel Spectrograms with Mel-

scaled filters. Then, the ResNet50 [37] was selected as the

backbone which was trained with the Mel Spectrogram data.

The above process is demonstrated in Figure 7. We converted the

Mel Spectrogram to the right size and fine-tuned the network

structure as needed. For the model using ResNet50 as the

backbone, we set the learning rate to 1e-3, the batch size to

64, and entire epochs to 100. ReduceLROnPlateau was employed

to update the learning rate and speed up training.

Experimental results on two datasets of respectively using

time-series features and Mel Spectrograms to diagnose

Parkinson’s disease are shown in Figure 8. Seeing from them,

we can have the following observations. 1) No matter for the

method based on LAEAF or ResNet50, a much higher

recognition accuracy on the Pronunciation of Italian Vowels

dataset is obtained than that on the MDVR-KCL dataset, while

the performance gaps are 12.51% and 9.38% for each approach,

respectively. A possible reason for this phenomenon is that,

compared to pronouncing a single vowel, reading texts usually

lasts for a longer period of time, which may exhibit more

conditions of the speaker. As a result, algorithms might have

more information to make judgements. 2) On each specific

database, ResNet50 plus Mel Spectrograms consistently

outperforms the LAEAF plus time-series features. The former

even reached 100% accuracy when making diagnosis on the

Pronunciation of Italian Vowels dataset. This again validates that

the Mel Spectrogram is a powerful hand-engineered

representation of sound, considering its desirable properties of

invariance to shift and insensibility to small deformations.

Results with hybrid features. To study the effectiveness of

proposed hybrid feature, we conducted experiments on six

different conventional machine learning classification

methods, including Support Vector Machine (SVM) [38],

K-Neareast Neighbors (KNN) [19], Random Forest [39],

Decision Tree [40], Logistic Regression [41], and Multi-Layer

Perceptron (MLP) [42]. Looking at the results in Figures 9, 10, we

can observe that, employing the hybrid features with

213 dimensions consistently improve the PD classification

accuracy compared to merely using 26-dimensional basic

features. Taking the experiments on Pronunciation of Italian

Vowels for example, after replacing the basic features consisting

of linear and time-frequency voice signals with the proposed

hybrid features, the recognition accuracy of Parkinson’s disease

FIGURE 13
The variation of training accuracy on dataset 1.

FIGURE 14
The variation of training accuracy on dataset 2.
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by these six methods was significantly improved, with the margin

of 13.33%, 15.85%, 10.21%, 10.21%, 7.33% and 9.96%,

respectively.

Searching for optimal network structures

Firstly, the key feature combinations are extracted from the

dataset, and then a suitable 1D convolution network is built by

PSO. For dataset 1, the structure of the optimized networkmodel is

shown in Figure 11, which consists of four convolution layers, five

standardization layers, and one full connection layer. For dataset 2,

the optimal network structure includes two convolution layers, five

standardization layers, and three full connection layers which can

be seen in Figure 12. For network training, we employed the

categorical cross-entropy loss function and the Adam optimizer.

The learning rate was initialized to 0.01 and then updated with the

assistance of ReduceLROnPlateau function provided by Keras

deep learning framework. Results in Figures 13, 14 show that

training process on two datasets.

Comparisons among different methods

In this section, we compare our entire method, namely

employing the optimal neural network structure found by

PSO to deal with hybrid features of the speech signals

(denoted as PSOCNN), with other approaches on the

diagnosis of Parkinson’s disease. The results are given in

Figure 15. The LEAF obtained the worst performance on two

datasets compared to other approaches. This indicates that

general audio classification methods performing well in

common life scenarios may be not suitable for the diagnosis

of Parkinson’s disease. Although the Mel Spectrograms are

strong audio features, ResNet50 network using them to judge

whether the occurrence of Parkinson’s disease only got 90.62%

accuracy, which is largely behind the performance of considered

machine learning methods. It is notable that the SVM with the

proposed hybrid features obtained recognition accuracies of

99.05% and 99.40% on two datasets. Our full method

PSOCNN still outperforms it by achieving 100% accuracies on

two databases.

FIGURE 15
Diagnostic accuracy of Parkinson’s disease using different methods.
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Conclusion

The key problem in the diagnosis of Parkinson’s disease is

that there is no simple screening method to detect it in the

early stage. Meanwhile, it is difficult for doctors to make

diagnosis based on the voice of suspected patients. This

paper introduces in detail how to extract different kinds of

feature data from voice data, and proposes a set of key feature

combinations for Parkinson’s speech recognition. In

addition, the PSO optimization algorithm is introduced to

adaptively build a most appropriate 1D convolution

network for feature classification purposes. That removes

the requirement of manually constructing network

components according to specific voice signals.

Experimental results on two datasets validate the efficacy of

our method. In the future, more efficient, accurate, and

practical approach to diagnose Parkinson’s disease still

deserve to be further explored.
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