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Research on quantum cryptography has burgeoned in the recent decades and

combined quantum mechanics and cryptography theory. Among the existing

quantum cryptographic primitives, quantum obfuscation is an emergent force

to be reckoned with. Quantum obfuscation means obfuscating a circuit by

quantum mechanics to improve security. It is used to hide functionality and

prevent the reverse engineering of quantum circuits. However, research studies

on the construction of quantum obfuscation are relatively immature due to its

difficulty in implementation and application. Also, the obfuscation for quantum

non-linear functions has not been suggested yet, although quantum non-linear

functions cover a wide range of quantum functions that can be obfuscated. In

this paper, we initiate a universal definition of quantum obfuscation which

utilizes quantum teleportation to construct an obfuscator and interpreter for

quantum non-linear functions. Furthermore, we demonstrate the validity of

applying the obfuscation to the quantum asymmetric encryption scheme and

rigorously prove that the encryption realized by quantum obfuscation satisfies

IND (indistinguishability)-security. This work provides a positive possibility of

quantum obfuscation for quantum non-linear functions and will complement

the theory of both quantum obfuscation and quantum asymmetric encryption.
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1 Introduction

The development of quantum cryptography has borne witness to a variety of

distinguished quantum theories, such as quantum one-time pad [1], quantum money

[2], and quantum homomorphic encryption [3]. Currently, quantum key distribution

Sibson et al. [4] and quantum secure direct quantum communication [5] are the two

major forces of secure communication. In addition, quantum incompatibility [6] and

perfect NOT and conjugate transformations [7] also provide the capability of hiding

information in a set of states. However, efficient compilers applied in quantum

cryptosystems may lead to the reverse engineering of quantum circuits. Quantum

obfuscation is a developing branch of quantum cryptography. It can hide or encrypt

the functionality of quantum circuits and quantum functions to prevent the
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decompilation of quantum circuits and can thus improve the

security of encryption. It is essentially an infant topic and

requires more basic research studies and applications.

Quantum obfuscation stems from the concept of classical

obfuscation and at first refers to code obfuscation in software

engineering [8]. In 2001, Barak et al. [9] initiated the first

negative result of classical obfuscation that it is impossible to

achieve virtual black-box (VBB) obfuscation. They considered

indistinguishability obfuscation to avoid the impossibility of

black-box obfuscation. In 2013, Garg et al. [10] constructed

indistinguishability obfuscation and functional encryption

that support all circuits of polynomial size. Subsequently, a

significant number of applications [11–17] were gradually

presented. The security of classical obfuscation was

threatened with the advent of quantum computing which

can destroy the hardness of logarithms. It is natural to

consider using quantum obfuscation to encrypt circuits or

functions against quantum adversaries. In 2016, Alagic and

Fefferman [18] initiated the definition of quantum black-box

obfuscation and quantum indistinguishability obfuscation.

They then suggested some related applications, including

quantum-secure one-way functions, quantum private-key

encryption, and quantum public-key encryption. Their

work promoted the research on quantum obfuscation

significantly. Subsequently, there are quite a number of

applications of quantum obfuscation such as quantum

FIGURE 1
Quantum teleportation circuit of a qubit.

TABLE 1 Relationship of measurement results, collapsed states, and unitary operations.

Measurement result Collapsed state Unitary operation

|00〉 [α|0〉 + β|1〉] ZM1XM2(M1 � 0,M2 � 0)

|01〉 [α|1〉 + β|0〉] ZM1XM2(M1 � 0,M2 � 1)

|10〉 [α|0〉 − β|1〉] ZM1XM2(M1 � 1,M2 � 0)

|11〉 [α|1〉 − β|0〉] ZM1XM2(M1 � 1,M2 � 1)

FIGURE 2
Overall construction of quantum obfuscation for quantum non-linear functions.
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homomorphic encryption [19], quantum symmetric and

asymmetric encryption [20,21], and quantum zero-

knowledge [22].

However, there are few constructions of quantum

obfuscation for some types of quantum functions.

Quantum non-linear function plays a significant role in

constructing quantum circuits, and its correlation with

quantum obfuscation still needs exploration. The first idea

of utilizing quantum obfuscation to construct public-key

encryption was initiated succinctly by Alagic and Fefferman

[18] as an application of efficient black-box obfuscators. It is

enlightening to consider the relationship between quantum

obfuscation and quantum asymmetric encryption, which can

be intensively applied in quantum digital signature [23],

quantum secure network [24], quantum experiment [25],

and quantum key distribution [26]. In this work, we

propose a construction of quantum obfuscation for

quantum non-linear functions and give the concrete

circuits of obfuscation for two specific quantum non-linear

functions. Moreover, we propose a quantum asymmetric

encryption scheme based on the obfuscation and verify its

correctness and security. Our work formally demonstrates the

implementation and application of quantum obfuscation. We

hope that the work will be constructive in the area of quantum

obfuscation.

The main contributions of our work are as follows:

(1) Construction of universal quantum obfuscation for

quantum non-linear functions. The quantum

obfuscation based on quantum teleportation is

universal to quantum non-linear functions. The

functionality of quantum functions can be represented

as a quantum state |a〉 to be obfuscated. We provide a

valid application of quantum obfuscation to some specific

quantum non-linear functions, including the quantum

power function and quantum point function.

(2) Application in quantum asymmetric encryption based on

quantum obfuscation. We clarify the construction of the

public-key quantum encryption by means of the quantum

obfuscation we design. We show that the scheme embodies

the essential link between quantum obfuscation and

FIGURE 3
Obfuscation for quantum non-linear functions.

TABLE 2 Universal steps of quantum obfuscation.

Step Operation

Step 1 Input the auxiliary state acted on the point function to get the parameter of the quantum state |a〉 = α|0〉 + β|1〉

Step 2 Obfuscate the quantum state via quantum teleportation to get one state of the four possible states

Step 3 Measure the obfuscated state and transform it back to the initial parameter to get Cq′(|a〉)

Step 4 Input |x〉 and implement the equivalent functionality of the quantum non-linear function to calculate and output |0〉 or |1〉

FIGURE 4
Interpreter of quantum non-linear functions.
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quantum asymmetric encryption and provide a rigorous

analysis of its correctness and IND-security.

This paper is structured as follows: first, the work introduces

preliminaries, including basic quantum operation, quantum

teleportation, and quantum obfuscation. Second, it focuses on

the construction of quantum obfuscation for quantum non-

linear functions. Then, quantum obfuscation is applied to

some specific quantum functions, including the quantum

power function and quantum point function. Finally, this

paper presents the IND-secure quantum asymmetric

encryption based on quantum obfuscation.

2 Preliminaries

2.1 Basic quantum operation

2.1.1 Pauli matrix
The Pauli matrix refers to four frequently used matrices

which are of 2 × 2 size and own their names, respectively. Eq. 1

shows these matrices and their symbols. Sometimes, we omit

matrix I and regard matrices X, Y, and Z as the Pauli matrix.

σI � 1 0
0 1

[ ], σX � 0 1
1 0

[ ], σY � 0 −i
i 0

[ ], σZ � 1 0
0 −1[ ]. (1)

2.1.2 Quantum measurement
Quantum measurement is the main way to observe the

internal situation of a quantum system. The state of the

system will collapse to a state when the measurement is

completed. Quantum measurement is an irreversible operation

which transforms quantum information into classical

information. If quantum measurement was reversible, it would

never reveal any information on quantum states.

Quantum measurement is described by a set of operations

of measurement Mm, where m represents any possible

FIGURE 5
Equivalent circuit of quantum power function in KI operation of the interpreter.

FIGURE 6
Equivalent circuit of single-qubit point function in KI
operation of the interpreter.

FIGURE 7
Quantum encryption scheme.
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measurement results for the subsystems measured. The

measurement operation Mm satisfies the completeness

equation.

∑M†
mMm � I. (2)

The possible measurement result of a quantum system of the

state |ψ〉 can be expressed as p � 〈ψ|M†
mMm|ψ〉, which holds for

all |ψ〉. After the measurement of a quantum system is finished,

its state converts to be Mm|ψ〉���������
〈ψ|M†

mMm |ψ〉
√ .

2.2 Quantum teleportation

Quantum teleportation is a quantum communication branch

theory proposed by Bennett et al. [27]. It is used to transfer

quantum states between the sender Alice and the receiver Bob

without direct connection of a quantum communication

channel. Alice and Bob share an EPR

(Einstein–Podolsky–Rosen) pair to form a quantum

entanglement channel, |β00〉 � 1�
2

√ (|00〉 + |11〉).
The circuit in Figure 1 gives an accurate description of

quantum teleportation. The state ready to be teleported is |

ϕ〉 = α|0〉 + β|1〉, where α and β donate unknown

amplitudes, and the input state is |ϕ0〉.

|ϕ0〉 � |ϕ〉|β00〉 � 1�
2

√ α|0〉 |00〉 + |11〉( ) + β|1〉 |00〉 + |11〉( )[ ].
(3)

In (3), we define that the first two qubits belong to Alice,

while the third qubit belongs to Bob. The second qubit of Alice

and the qubit of Bob are derived from the same EPR pair. Alice

sends her qubit to a CNOT gate to get the state |ϕ1〉.

|ϕ1〉 � 1�
2

√ α|0〉 |00〉 + |11〉( ) + β|1〉 |10〉 + |01〉( )[ ]. (4)

Then, Alice has the first qubit implemented by a Hadamard

gate to get the state |ϕ2〉.

|ϕ2〉 � 1�
2

√( )
2

α |0〉 + |1〉( ) |00〉 + |11〉( ) + β |0〉 − |1〉( ) |10〉 + |01〉( )[ ].
(5)

After regrouping these items, the state can be rewritten as

follows:

|ϕ3〉 � 1�
2

√( )
2

|00〉 α|0〉 + β|1〉( ) + |01〉 α|1〉 + β|0〉( ) + |10〉 α|0〉 − β|1〉( )[
+|11〉 α|1〉 − β|0〉( )]. (6)

FIGURE 8
Quantum circuit of encryption.

FIGURE 9
Quantum circuit of decryption.
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As listed in Table 1, Alice may obtain four measurement

results and send them to Bob via the classical channel. Bob needs

to perform the transformation of ZM1XM2 to the qubit received.

2.3 Quantum obfuscation

Quantum obfuscation is derived from classical obfuscation

and was first proposed by Alagic et al.[18].

Definition 1: A black-box quantum obfuscator is a quantum

algorithmO and a QPT (quantum polynomial time) interpreter δ

such that whenever C is an n-qubit quantum circuit, the output of

O is an m-qubit state O(C), satisfying the following three

conditions:

1. Polynomial expansion:

m � poly n( ). (7)
Here, m means the scale of quantum algorithm.

2. Functional equivalence: For any possible qubit ρ,

δ O C( ) ⊗ ρ( ) − UCρU
†
C

���� ����tr ≤ negl n( ). (8)

Here, O is the quantum obfuscator, δ is the quantum interpreter,

and UC represents the quantum circuit.

3. Virtual black-box: For any QPT adversary A who has output

of obfuscation, there exists S which can simulate A’s behavior

by virtual black-box access to the circuit C,

Pr A O C( )( ) � 1[ ] − Pr SUC 0n| 〉( ) � 1[ ]∣∣∣∣ ∣∣∣∣≤ negl n( ). (9)

Here, A means QPT adversary and S means quantum simulator.

Definition 2: A quantum point function Uα,β with a general

output is

Uα,β: |x, 0n〉↦|x, Pα,β x( )〉. (10)

Here, α ∈ {0.1}n, β ∈ {0.1}n\0n, and Pα,β is a classical point function
with a multi-bit output working as

Pα,β x( ) � β if x � α
0n otherwise

{ . (11)

By means of constructive proof, Shang et al.[22]

demonstrated the obfuscatability of the quantum point

function with a general output.

3 Quantum obfuscation for quantum
non-linear functions

In this section, we introduce quantum obfuscation based on

quantum teleportation to obfuscate quantum non-linear

functions. Quantum non-linear functions are derived from

classical non-linear functions, which mean the non-linear

relationship between the independent variable and dependent

variable. The property of quantum functions can be extracted to a

quantum state or some quantum states which we name as

parameter states. Here, we obfuscate one quantum state for

example.

3.1 Construction of quantum obfuscation

For quantum obfuscation based on quantum teleportation,

an obfuscator is used to obfuscate a quantum function and

FIGURE 10
Average fidelity—bit error rate curve for eight-qubit keys.
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output an obfuscated state, while an interpreter can transform

the obfuscated state back to its original state.

The parameter of the quantum function is expressed as anm-

qubit state Cq (|ϕ〉). Cq (|ϕ〉) is extracted from the n-qubit circuit

C of the quantum non-linear function. It can be obtained by

inputting an auxiliary state into the circuit of the quantum

function. For example, we get the parameter |a〉 of the

quantum exponential function |y〉 = |a〉|x〉 with |x〉 = |0〉
input. So, Cq (|ϕ〉) is another representation of the function’s

functionality.

The state |ψ〉 is measured so that we can get a classical bit

string. According to the classical bit string measured, we use the

corresponding Pauli matrix to restore the quantum state

Cq′(|ϕ〉). Both Cq (|ϕ〉) and Cq′(|ϕ〉) represent the

functionality of the quantum function. We input a quantum

state |x〉 into the interpreter. With the input quantum state |x〉
and the circuit C restored from the function’s parameter Cq (|ϕ〉),
we obtain the output value Cq (|x〉). In this way, we achieve the

objective of quantum obfuscation, which utilizes the

functionality of the quantum functions to calculate some

values without divulging any information about it.

Theorem 1: Quantum non-linear functions are obfuscatable

by means of quantum teleportation. It satisfies the three

conditions of quantum obfuscation.

Proof 1: To prove the correctness of quantum obfuscation

based on quantum teleportation, we prove its polynomial

expansion, functional equivalence, and virtual black-box

property as follows.

For the quantum polynomial functions of quantum non-

linear functions, the input size and output size of the quantum

obfuscator are certainly of polynomial size. While for other

quantum non-linear functions, the state Cq (|ϕ〉) is

transformed into an obfuscated state |ψ〉 with a Bell state

through quantum teleportation. Obviously, the obfuscator O

computes H(Cq (|ϕ〉) ⊕|β〉) and generates |ψ〉, which is also

of polynomial size. Supposing Cq (|ϕ〉) = |ϕ0〉, the output of O,
i.e., the obfuscation of C, is

O C( ) � H|ϕ0 ⊕ β〉. (12)

Here, C is an n-qubit quantum circuit, β is a variable according to

the size of C, and ϕ0 ism-qubit. The total size of the output of the

quantum obfuscator O is m + n.

In the obfuscator, the state Cq (|ϕ〉) is obfuscated by

the kernel operation KO. In the interpreter (taking one-qubit Cq

(|ϕ〉) as an example), the first two qubits of the obfuscated

quantum state |ψ〉 are measured into a classical bit string so

that we can perform the operation of the Pauli matrix to get the

state Cq′(|ϕ〉). According to the principle of quantum

teleportation, we know Cq′(|ϕ〉) is equal to Cq (|ϕ〉), and they

both present the functionality of the quantum function to be

obfuscated. Then, we implement the kernel operation KI

equivalent to the functionality of the quantum function on the

input state |x〉 to get Cq (|x〉). Thus, the interpreter makes

Cq′(|ϕ〉) correspond to the function correctly with the

probability 1. For specific quantum non-linear functions, the

construction of the interpreter and its property are elaborated in

Section 4.

The size of O(C) is m + n. So, the polynomial expansion

property holds when m = ploy(n). Through the aforementioned

explanation and the overall construction of δ in Figure 2 (Figures

5, 6 for specific quantum functions), the functionality

equivalence property is demonstrated. Since the oracle is truly

random to any adversary, the obfuscation O(C) leaks no

information about Cq (|ϕ〉). Therefore, quantum non-linear

functions are obfuscatable.

3.2 Universality of quantum obfuscation

Quantum obfuscation based on quantum teleportation is

universal to quantum non-linear functions. The specific

explanation is as follows.

Theorem 2: Quantum obfuscation based on quantum

teleportation is universal to quantum non-linear functions

whose parameter can be represented as a quantum state |a〉.
That is,

|x, O C( )〉↦|x, a〉. (13)

Proof 2: For quantum non-linear functions, we can

transform its parameter into a corresponding quantum

state and input it into a quantum obfuscator. KO operation

in the obfuscator contains a set of quantum gates. It depends

on what the input quantum state of the parameter is. If we

input a single-qubit state, KO operation can be presented as

the circuit shown in Figure 3. If we input a multi-qubit state,

the circuit can be altered by other forms of quantum gates.

According to the function we want to obfuscate, we can design

KI operation in the interpreter to restore its functionality.

Significantly, for KI operation, we just present the idea of

constructing the interpreter for quantum non-linear

functions, so the basic circuit of KI operation cannot be

described as a unified form but adaptive to the types of the

functions to be obfuscated. Hence, we achieve the universality

of quantum obfuscation based on quantum teleportation.

For example, if we want to obfuscate the quantum point

function in Definition 2.3 to determine whether the input

quantum state is equal to |a〉, we can obfuscate its parameter

|a〉. In the same way, if we would like to obfuscate a quantum

power function |y〉 = |x〉|a〉, we can obfuscate |a〉. The exact KO
operation of quantum teleportation in the obfuscator in Figure 3

depends on whether the parameter is a single-qubit state or

multi-qubit state. To utilize the functionality of the original

function, we just need to design the corresponding KI

operation of the interpreter. Through the aforementioned
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proof, these functions are obfuscatable and satisfy the three

properties of quantum obfuscation.

4Application of quantumobfuscation
to quantum power function and
quantum point function

Quantum obfuscation based on quantum teleportation is

universal to various types of quantum non-linear functions. The

universal phase of quantum obfuscation is listed in Table 2. The

obfuscator keeps the functionality secret, while the interpreter is

designed to interpret the functionality to implement it in the

input state. Figure 4 shows the construction of the interpreter of

quantum non-linear functions. In this section, we take two

quantum non-linear functions that have only one single

parameter as examples. One is a quantum point function

which is an easy form of quantum non-linear functions to

implement the functionality of judgment. The other is a

quantum power function which is the component of quantum

polynomial functions.

4.1 Quantum power function obfuscation

A quantum power function is derived from the classical

power function. In the classical case, a power function is

defined as

y � xa. (14)

According to the theory of quantum computation, any

classical function f can be implemented by a quantum circuit.

To implement such a function, a quantum circuit maps the input

register and target register |x, b〉 to |x, b ⊕ f(x)〉. On this premise,

we now define a quantum power function.

Definition 3: A quantum power function Ua is defined as

Ua: |x, y〉↦|x, y ⊕ Pa x( )〉. (15)

Here, a ∈ {0, 1} and Pa is a function working expressed as

|Pa x( )〉 � |x〉|a〉 � |1〉 if a � |0〉
|x〉 if a � |1〉{ . (16)

The parameter of the quantum power function is represented

as |a〉. We then obfuscate it by quantum teleportation to get an

obfuscated state |ψ〉 which is one of the possible states α|0〉 + β|

1〉, α|0〉 − β|1〉, α|1〉 + β|0〉, or α|1〉 − β|0〉. For every qubit, we
measure its first two qubits to get a classical bit string. According

to the classical bit string obtained, we perform the corresponding

Pauli matrix to restore each qubit making up the state M(|a〉).
Hence, we know what exactly |a〉 is. Apparently, with the

superposition state α|0〉 + β|1〉 input, we can give the overall

construction of the quantum power function interpreter as

shown in Figure 5. The ‘OR’ operation can be achieved by

NAND relation. Thus, we reach the goal of outputting |1〉
when |a〉 = |0〉 and outputting |x〉 when |a〉 = |1〉, which
satisfies the functionality of a quantum power function.

4.2 Quantum point function obfuscation

The concept of quantum point function is presented in

Definition 2.3. We transform the property of a point function

into a single-qubit quantum state |a〉. Then, for every qubit, we
measure its first two qubits to get a classical bit string. According

to the classical bit string obtained, the corresponding Pauli

matrix is performed to restore each qubit, and the result is

represented as the quantum state M(|a〉). Here, M(|a〉) = |a〉
holds. In this way, we design the quantum circuit as shown in

Figure 6, which presents an implementable way to determine the

equivalence of two quantum states to represent a quantum point

function. We use it to judge whether |x〉 is equal to |a〉 or not and
finally output |0〉 or |1〉.

5 Quantum asymmetric encryption
scheme based on obfuscation

In this section, we construct a quantum asymmetric

encryption scheme based on quantum obfuscation for

quantum non-linear functions. We prove the IND-security of

the obfuscation scheme according to the VBB property of

quantum obfuscation.

5.1 Scheme

Let O be a quantum obfuscator for quantum non-linear

functions and Uk,r be a quantum non-linear function. A

quantum asymmetric encryption scheme based on quantum

obfuscation is shown in Figure 7 (consisting of Figures 8, 9)

and can be described as the following algorithms:

5.1.1 Key generation
Output sk = |k〉, k ∈ {0,1}n and pk � XαYβZγ|k〉

Z†
γY

†
βX

†
α ⊗ O(Uk,r′), where sk is the secret key generated

randomly from the uniform key space {0,1}n. Thus, the public

key pk � Encsk′ � Enck′ � XαYβZγ|k〉Z†
γY

†
βX

†
α ⊗ O(Uk,r′), where

r′ is chosen from {0,1}3n randomly and α, β, and γ are the first,

second, and last n bits of r′, respectively. Here, the quantum

obfuscation is implemented to achieve the goal of generating the

public key of the quantum asymmetric encryption scheme.

5.1.2 Encryption
Output Encpk(ρ) � pk(|m, r〉) � [XαYβZγ|k〉 Z†

γY
†
βX

†
α ⊗ O

(Uk,r′)] ⊗ [XaYbZc(|r〉〈r|⊗|m〉)Z†
cY

†
bX

†
a], where |m〉 refers to
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the information to be encrypted, r ∈ {0,1}n, and a, b, and c

represent the first, second, and last n bits of the random bit r,

respectively. Encpk(ρ) means utilizing the public key pk to

encrypt the integration of random qubit |r〉 and the message

|m〉.

5.1.3 Decryption
Output Decsk (μ ⊗ σ) = δ(σ ⊗|k〉〈k|⊗ μ), where σ is the

measurement result of O(Uk,r′) and μ is the measurement result

of XaYbZc(|r〉〈r|⊗|m〉)Z†
cY

†
bX

†
a.

5.2 Theoretical analysis

5.2.1 Correctness
To demonstrate the correctness of the obfuscation scheme

for quantum non-linear functions, we suppose the information |

m, r〉 is to be encrypted; thus, we have

Decsk Encpk |m, r〉( )( )
� Tr δ σ ⊗|k〉〈k|⊗ μ( )( )
� Tr O Uk,r′( ) ⊗|k〉〈k|⊗ XaYbZc|m, 0n〉Z†

cY
†
bX

†
a( )

� Tr Uk,r′ |k〉〈k|⊗ XaYbZc|m, 0n〉Z†
cY

†
bX

†
a( )U†

k,r′( )
� Tr |k〉〈k|⊗ Um,r|m, 0n〉U†

m,r( )
� Tr |k〉〈k|⊗|m, 0n〉( )
� ρ.

(17)

According to the properties of quantum obfuscation and

density operator, we explain the correctness of the

aforementioned quantum asymmetric encryption scheme. We

calculate the trace of the quantum state to obtain the value ρ,

which is the system density operator of the quantum state |m, r〉.
Here, ρ =∑ipi|mi, r〉〈mi, r| holds. In this way, the quantum state |

m, r〉 is presented by ρ, and the information to be encrypted is

restored. Thus, we prove the correctness of the quantum

asymmetric encryption scheme.

5.2.2 Security
The quantum asymmetric encryption scheme based on

quantum obfuscation for quantum non-linear

functions satisfies IND-security, which can be described as

follows.

Theorem 3: If there exists a secure quantum one-way

trapdoor function and quantum black-box obfuscation, then

the quantum asymmetric encryption scheme based on

obfuscation for quantum non-linear functions satisfies

indistinguishability chosen-plaintext attack (IND-CPA) security.

Proof 3: A quantum polynomial time interpreter δ with only

black-box access to Encsk can be used to simulate the access of

any QPT adversary A and simulator S. Here, for any QPT

adversary, A = (Γ, Δ), w � (PuρP†
u ⊗ I)ρΓ, v � (PuρP†

u ⊗ I)
(|0〉〈0|⊗ ρ), and Pu represents the unitary matrix

transformation of XaYbZc. So, there is

∣∣∣∣∣Pr{Δ Encpk ⊗ I[ ]
ρT
� 1} − Pr{Δ Encpk ⊗ I( ) |0〉〈0|⊗ ρ( )[ ] � 1}∣∣∣∣∣

� Pr Δ w ⊗ O Uk,r′( )[ ] � 1{ } − Pr Δ v ⊗ O Uk,r′( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣
� Pr Δ w,O Uk,r′( )[ ] � 1{ } − Pr Δ v, O Uk,r′( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣.

(18)
After decomposing the aforementioned formula with the

probability theory,

Pr Δ w,O Uk,r′( )[ ] � 1{ } − Pr Δ v, O Uk,r′( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣
≤∑

p r′( ) Pr Δ w, p ρ( )[ ] � 1{ } − Pr Δ v, p ρ( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣
·Pr Δ′ O Uk,r′( )( ) � p ρ( ){ }.

(19)

According to the properties of virtual black-box, there is∣∣∣∣Pr Δ O Uk,r′( )( ) � 1[ ] − Pr SUk,r′ 0n( ) � 1[ ]∣∣∣∣≤ negl n( ). (20)

Under the quantum accessible random oracle model, if the

simulator S successfully accesses the quantum non-linear

function Uk,r′, there is p(ρ) = ρ; if not, there is p(ρ) = 0.

∑
p ρ( ) Pr Δ w, p ρ( )[ ] � 1{ } − Pr Δ v, p ρ( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣ · Pr Δ′ O Uk,r′( )( ) � p ρ( ){ }

≤∑
p ρ( ) Pr Δ w, p ρ( )[ ] � 1{ } − Pr Δ v, p ρ( )[ ] � 1{ }∣∣∣∣ ∣∣∣∣ · Pr SUk,r′ 0n( ) � p ρ( )[ ] + negl n( )∣∣∣∣ ∣∣∣∣

� Pr Δ w, ρ( ) � 1{ } − Pr Δ v, ρ( ) � 1{ }∣∣∣∣ ∣∣∣∣ · Pr SUk,r′ 0n( ) � ρ[ ] + negl n( )∣∣∣∣ ∣∣∣∣
+ Pr Δ w, 0( ) � 1{ } − Pr Δ v, 0( ) � 1{ }| | · Pr SUk,r′ 0n( ) � 0[ ] + negl n( )∣∣∣∣ ∣∣∣∣.

(21)

As Pr[SUk,r′(0n) � ρ]≤ 1
2 poly(n)≤ negl(n), there is

|Pr Δ w, 0( ) � 1{ } − Pr Δ v, 0( ) � 1{ }|
�
∣∣∣∣∣Pr{Δ PuρP

†
u ⊗ I( )ρΓ � 1} − Pr PuρP

†
u ⊗ I( ) |0〉〈0|⊗ ρ( ) � 1{ }∣∣∣∣∣.

(22)
The aforementioned error can be ignored, so

∣∣∣∣∣Pr Δ Encpk ⊗ I[ ]
ρΓ
� 1{ } − Pr Δ Encpk ⊗ I( ) |0〉〈0|⊗ ρ( )[ ] � 1{ }∣∣∣∣∣

≤ Pr Δ w, ρ( ) � 1{ } − Pr Δ v, ρ( ) � 1{ }∣∣∣∣ ∣∣∣∣ · Pr SUk,r′ 0n( ) � ρ[ ] + negl n( )∣∣∣∣ ∣∣∣∣
+ Pr Δ w, 0( ) � 1{ } − Pr Δ v, 0( ) � 1{ }| | · Pr SUk,r′ 0n( ) � 0[ ] + negl n( )∣∣∣∣ ∣∣∣∣
≤ Pr Δ w, ρ( ) � 1{ } − Pr Δ v, ρ( ) � 1{ }∣∣∣∣ ∣∣∣∣ · negl n( ) + negl n( ) · Pr SUk,r′ 0n( ) � 0[ ]∣∣∣∣
+negl n( )| � negl n( ). (23)

In conclusion, the asymmetric encryption scheme of

quantum obfuscation satisfies IND-security.

5.3 Simulation results

In this section, we use the quantum computing simulation

tool QLib [28] to simulate the quantum asymmetric encryption

scheme mentioned previously and prove the correctness of the

scheme. The simulation results of average fidelity and bit error

rate are shown in Figure 10.

We simulate the circumstance of using different secret keys of

8 bits to decrypt ciphertext and draw the following curve with

average fidelity. For example, supposing the quantum plaintext to

be transmitted |m〉 = [0.93614, − 0.14736 + 0.31925i], random

number r= 111, r′ = 000, and secret key sk= 11100010, thenwe have
pk = 10000111, XaYbZc|m〉XaYbZc = [0.35161, 0.39234 + 0.84996i],

the obfuscated result O = [0, 0, − 0.93299, 0, 0, 0, 0.3599, 0], and

ciphertext c = [0, 0, − 0.32805, 0, 0, 0, −36605 − 79301i, 0]. If the
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correct secret key sk = 11100010 is used to decrypt the ciphertext, we

can obtain the original quantum plaintext |m′〉 = [0.93614, −

0.14736 + 0.31925i] with fidelity F = 1. When the wrong secret

key sk’ = 01101000 is used, the fidelity is as low as 0.2759, and we

cannot get the original quantumplaintext information. As the length

of the erroneous bits of the secret key increases, the fidelity of the

information decrypted with the wrong secret key decreases further.

5.4 Further discussion

Although the problem of applying quantum obfuscation to

the quantum encryption scheme is solved, the real difficulty

exists in the construction of the quantum circuits in the

interpreter to restore the functionality of quantum functions.

In the construction of the quantum interpreter of a quantum

power function, Definition 4.1 is achieved by the quantum circuit

which uses |1〉 and the XOR gate to reverse the quantum state

|a〉. In this way, when |a〉 = |0〉, |x〉|a〉 = |1〉 is output from the

circuit. When |a〉 = |1〉, the quantum state |0〉 is obtained after

reversal. The final result is |x〉 by operating the XOR gate on |0〉
and |x〉. Now, the key to the problem comes to the output of the

whole interpreter. The OR result of the outputs under two cases

should be output, but there is no quantum OR gate. Because just

the functionality of the quantum power function needs to be

achieved, the NAND gate constructed by the XOR gate will be

used to achieve the functionality of the quantum OR gate in the

future implementation.

6 Conclusion

The construction and application of quantum obfuscation

are significant to the development of the quantum computing

theory. In this work, we proposed quantum obfuscation for

quantum non-linear functions and applied it to quantum

power functions. In addition, the correctness and security of

the quantum asymmetric encryption scheme are also

demonstrated in this work. The obfuscation illuminated the

connection between quantum obfuscation and quantum

teleportation. In particular, this work just suggested the idea

of designing quantum obfuscation for quantum non-linear

functions, so the structure of the quantum obfuscator and

interpreter is variable according to the specific properties of

quantum non-linear functions to be obfuscated. In addition,

the applications of obfuscation to other types of circuits remain

open and will be explored in our further work.
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