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We report both experimentally and numerically that near-perfect absorption of

low-frequency sound is realized in an open tunnel embedded with two deep

sub-wavelength (0.085 λ) Mie resonators. The resonators are composed of a

multiple-cavity structure and an outer frame on three sides. In the eigenmode

analysis, we obtain two types of monopolar Mie resonance modes (MMR I&II) in

a single resonator around 250 Hz. The eigenfrequency of MMR I is mainly

determined by the Helmholtz resonance of each cavity in the multiple-cavity

structure, while that of MMR II is closely related to the coupling between the

multiple-cavity structure and its outer frame, showing high performances of

coupling and sound absorption. Based on the thermal viscous loss of sound

energy in the channels created by the mutual coupling of MMR II of both Mie

resonators with different diameters, the near-perfect sound absorption through

the open tunnel is realized around 283 Hz. More interestingly, by increasing the

number of Mie resonators in the tunnel, a broadband near-perfect sound

absorption is observed, and the fractional bandwidth can reach about

0.25 and 0.46 for the tunnels with 6 and 13 resonators, The proposed deep

sub-wavelength Mie resonator and its associated near-perfect sound

absorptions have great potential applications in architectural acoustics and

mechanical engineering.
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Introduction

Sound absorbers have attracted considerable interest from

both the physics and engineering communities due to their

important potential applications, such as noise control and

architectural acoustics. Recent advancement of metamaterials

[1–20] with the ability of manipulating wave propagation in

unprecedented ways, has motivated a variety of sound absorber

designs, which show superior absorptive features than

conventional structures, such as porous and fibrous materials

and micro-perforated plates. The demonstrated sound absorbers

based on the acoustic metamaterials are usually composed of

deep sub-wavelength resonant unit cells to absorb and dissipate

sound energy inside, such as Helmholtz resonators [21–26],

coiled Fabry-Perot resonators [27–29], sound membranes

[30–33], acoustic metasurfaces [34–36], split-ring-resonators

[37–39], Mie resonators [40, 41], etc. But in most of these

types of absorbers, the structures are almost closed, which

would inevitably affect the exchange of media between both

sides, including heat, air, light and water.

To realize sound absorbers with an open structure, the coherent

perfect sound absorbers [42–45] are proposed by using two sound

beams with the same amplitudes and opposite phases which

propagate into two ports simultaneously. Furthermore, by

introducing lossy Bragg stacks or hybrid membrane resonators in

two-port open systems [46, 47], the sound absorption can also be

obtained. However, these systems usually impose high requirements

in the structure design (such as loss factor and surface tensor). By

attaching Helmholtz resonators with different sizes on both sides of

an open tunnel, the sound absorption can be realized with a simpler

structure [48]. However, these selected Helmholtz resonators

inevitably require larger sizes for the absorption of low-frequency

sound, which significantly affect their practical applications. Thus, the

design of open structures for low-frequency sound absorption with

deep sub-wavelength resonators still remain a technical challenge.

In this work, we demonstrate an open tunnel of near-perfect

sound absorption with two deep sub-wavelength Mie resonators

composed of a multiple-cavity structure and an outer frame on three

sides. We find that two types of monopolar Mie resonance (MMR)

modes exist in a single resonator around 250 Hz, and the

eigenfrequency of MMR II decreases greatly by the coupling

between the multiple-cavity structure and its outer frame. Based

on the thermal viscous loss in the channels created by the mutual

coupling ofMMR II of bothMie resonators with different diameters,

we can realize the near-perfect sound absorption through the open

tunnel at 283 Hz. Additionally, by increasing the number of Mie

resonators, we further increase the bandwidth of near-perfect sound

absorption, and the fractional bandwidth can reach about 0.25 and

0.46 for the cases of 6 and 13 resonators, The measured results also

demonstrate the characteristics of near-perfect sound absorption

through the designed open tunnel, which agree with the simulated

ones. The proposed deep sub-wavelength Mie resonator and its

associated near-perfect sound absorption could potentially be

applied in architectural acoustics, mechanical engineering, and

noise reduction.

Design and performance of unit cell
of Mie resonance

Figure 1A shows the photograph of the unit cell of Mie

resonance, which consists of a circular multiple-cavity structure

with the outer and inner radii R and r surrounded by hard sound

boundaries with a thickness e on three sides. The bottom side of

the unit cell is open with a length L. The unit cell is made of epoxy

resin by the three-dimensional (3D) printing technology, and the

background medium is air. The multiple-cavity structure is

composed of a central circular cavity, surrounded by

8 interconnected cavities, which are divided by 4 channels.

The thickness of all frames is t, the width of 4 channels is w,

and the open width and radial length of all cavities are b and l,

respectively. In our work, the sound absorption is caused by the

visco-thermal loss inside the unit cell. When the acoustic wave

propagates into the deep sub-wavelength resonators with narrow

channels, the sound energy is attenuated owing to the thermal

and viscous losses. Thus, we use the Thermoviscous Acoustic-

Solid Interaction module of COMSOL Multiphysics software to

numerically simulate sound characteristics. In the model, the

structure parameters e = 10.0 mm, t = b = 1.2 mm, w = 2.0 mm,

and l = 17.6 mm, and the other parameters R, r and L are

variables, in which their relations are r = R-2.0 cm and L =

2R + 0.4 cm. The material parameters of epoxy resin are the

density ρ = 1,050 kg/m3, the Young’s modulus E = 5.08 GPa, and

the Poisson ratio v = 0.35, and the material parameters of air are

calculated as density ρ � p0M/R0T and sound speed

c � �������
γR0T/M

√
, respectively, where γ = 1.4, M = 28.97 ×

10−3 kg/mol, R0 = 8.31 J/(mol/K), p0 = 101.325 kPa, and T =

293 K. Here, it is noted that the proposed sound absorber can also

be applied in a 3D open tunnel via 3DMie resonators [49]. In this

work, we mainly design a two-dimensional open tunnel of sound

absorption based on the proposed Mie resonator.

Figure 1B shows the simulated pressure amplitude and phase

eigenfunctions of the unit cell with R = 5.0 cm. We can see that

the pressure amplitude and phase distributions of both

eigenmodes exhibit typical characteristics of monopolar Mie

resonance (MMR), denoting as MMR I and II. Here, note that

the sound amplitude outside the multiple-cavity structure for

MMR II is much larger than that for MMR I, indicating that the

coupling effect between the multiple-cavity structure and outer

frame for MMR II is stronger. Furthermore, we simulate the real

and imaginary eigenfrequencies of both MMR modes with

different values of R, in which the parameters t, b, w and l are

the same as those in Figure 1B. As shown in Figure 1C, with the

increase of R, the real eigenfrequencies of both modes decrease

gradually. However, the imaginary eigenfrequencies of MMR I

are around zero (shown in Figure 1D), which is much lower than
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those of MMR II, showing that performance of sound absorption

for MMR II is much higher than that for MMR I.

Beyond that, we simulate both types of eigenmodes (MMR

I’&II’) for the unit cell without outer frames (see Supplementary

Material). It is worth noting that the real eigenfrequencies of

MMR II’ are much larger than those of MMR II, but those of

MMR I’ and MMR I are almost the same. Therefore, MMR II is

closely related to the coupling between the multiple-cavity

structure and outer frame, but MMR I is mainly created by

Helmholtz resonances of each cavity in the multiple-cavity

structure (see Supplementary Material). Based on the

aforementioned results, we also demonstrate that the coupling

of MMR II is much stronger than that of MMR I.

Performance andmechanism of open
tunnel

Figure 2A shows the schematic of an open tunnel of sound

absorption for the left incidence of sound, which is composed of a

straight waveguide with a height h and two types of unit cells with

different values of R. The distance between both unit cells is d,

and the other parameters of the tunnel are h = 40 cm, RI = 4.9 cm,

RII = 5.0 cm and d = 18.5 cm. Here, it is worth mentioning that

the height ratio between the open tunnel and the resonator is

about 4.0, which is much larger than those of the previously

demonstrated absorber [48]. Beyond that, compared with other

sound absorption structures in the open tunnel, the proposed

Mie resonators have a smaller size. Figure 2B shows the

absorption spectrum through the open tunnel. The absorption

coefficient of sound is calculated as α = 1–R–T, in which R and T

represent the acoustic reflectance and transmittance,

respectively. We can see that, for the tunnel with both unit

cells, three absorption peaks (denoted as A, B and C) can be

observed, which corresponds to 249, 256, and 283 Hz,

respectively. The absorption coefficient at the peak C can

reach about 0.98, which is much larger than those at the

peaks A and B. Therefore, the proposed open tunnel has a

good practical applicability. Additionally, as shown in

Figure 2C, the values of R and T through the tunnel with

both unit cells are almost zero at the peak C, displaying a

typical characteristic of near-perfect sound absorption in the

open tunnel. To theoretically investigate the sound absorption

performance at the peak C, we also calculate the relative

FIGURE 1
(A) Photograph of the unit cell of Mie resonance. (B) Simulated pressure and phase eigenfunctions of the unit cell with R = 5.0 cm. Eigenmodes
of MMR I and II can be observed at 249 and 282 Hz, respectively. (C) Real and (D) imaginary parts of the eigenfrequencies for MMR I and II with
different values of R.
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impedance of the open tunnel by using an acoustic equivalent

circuit, which is shown in Supplementary Material. We can see

that, at the peak C (283 Hz), the real part of the relative

impedance Z/Z0 is close to 1, and its imaginary part is close

to 0, further demonstrating the near-perfect sound absorption of

the open tunnel.

To investigate themechanism of the three peaks, we simulate the

distributions of intensity field in both unit cells created by the acoustic

wave passing through the tunnel at three frequencies, which is shown

in Figure 2D.We can see that, at the peaks A and B, theMMR of the

unit cells II and I are excited, respectively, while those of both unit

cells are obtained simultaneously at the peak C. Additionally, the

frequencies of the peaks A and B are close to those of the MMR I for

the unit cells II (249 Hz) and I (256 Hz), respectively, and the

frequency of the peak C is between those of the MMR II of the

unit cells II (282 Hz) and I (288 Hz). We therefore demonstrate that

the absorption peaks A and B are created by the MMR I of the unit

cells II and I, respectively, while the near-perfect sound absorption at

the peak C is created by the coupling of theMMR II of both unit cells.

To verify this, we simulate the sound absorption spectra with

different values of d, which is shown in Figure 3. We can see that,

with the increase of d, the frequencies of both absorption peaks A

and B remain unchanged, while the frequency of the peak C

FIGURE 2
(A) Schematic of the open tunnel with the unit cells I and II, and the diameters of the unit cells I and II are RI = 4.9 cm and RII = 5.0 cm,
respectively. (B) Simulated absorption spectra through the open tunnels. The frequencies of the peaks A, B and C in (B) are 249, 256 and 283 Hz,
respectively. (C) Simulated transmittance and reflectance spectra through the tunnel with the unit cells I and II. (D) Simulated distributions of intensity
field in both unit cells at 249, 256 and 283 Hz.

FIGURE 3
Simulated sound absorption spectra through the tunnel with
different values of d. Dashed lines represent three absorption
peaks A, B and C.
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changes gradually. Thus, we further demonstrate that the peak C

is created by the coupling of both unit cells I and II.

To further show the characteristic of near-perfect sound

absorption at the peak C, we simulate the pressure amplitude

distribution created by the acoustic wave passing through the

tunnel, which is shown in Figure 4A. We can see from the sky

blue arrows that almost all sound energy is absorbed into

both unit cells, and MMR II of both unit cells are excited

simultaneously. Meanwhile, there is almost no sound energy

reaching the right side of the unit cell II, which is obviously

shown in Figure 4B.

Furthermore, we simulate the distributions of thermal

viscous loss density in a red open rectangle R1 in

Figure 4A, which is shown in Figure 4C. We can see that

the viscous loss is mainly distributed on both sides and output

port of the channels, especially the bottom three channels.

FIGURE 4
(A) Simulated pressure amplitude distribution created by the acoustic wave passing through the tunnel at 283 Hz. Red and sky blue arrows
represent the directions of incident wave and propagating sound energy flux. (B) Simulated pressure amplitude distribution along the white dashed
line in (A). x1 and x2 are the center positions of the unit cells I and II. (C) Simulated distributions of thermal viscous power density, (D) x-direction and
(E) y-direction vibration velocity in R1 in (A). Zooms at the right side are the corresponding distributions in R2-R4.
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This is because the viscous force is closely related to the

vibration velocity gradient of sound, and so is the viscous

loss. To demonstrate it, we present the corresponding

vibration velocity of sound in x and y directions. We can

see that, there exists a large velocity gradient in x direction at

the output port (Figure 4D). For the case of the vibration

velocity in y direction (Figure 4E), the value is large at the

center, but is almost zero at the walls on both sides of the

channel. Therefore, we deduce that the near-perfect sound

absorption at the peak C is created by the thermal viscous loss

of sound energy in the channels under the coupling of MMR II

for both unit cells.

Beyond that, we also discuss the absorption performance

through the open tunnel for the right incidence of sound, in

which the parameters of the open tunnel remain constant. The

simulated results show that the maximum absorption coefficient is

only about 0.66, which is much smaller than that from the left

incidence of sound (see Supplementary Material). Such a

phenomenon arises from sound reflections created by the

asymmetric design of both Mie resonators, and the proposed

open tunnel of asymmetric sound absorption can be applied to

exhaust pipes of cars with the need of unidirectional noise reduction.

Additionally, we simulate the sound absorption through the open

tunnel with a symmetric system of Mie resonators which is

composed of a unit cell I and two unit cells II on both sides, and

the maximum absorption coefficient is about 0.88, which is still

lower than that in Figure 2B. The corresponding results are displayed

in the Supplementary Material.

Bandwidth optimization of open
tunnel

To optimize the bandwidth of sound absorption, we

design another type of open tunnel by using 6 unit cells

with different values of R, which is schematically shown in

Figure 5A. The size of the open tunnel and the distance

between adjacent unit cells are the same as those in

Figure 2A, and the incident plane wave is still placed at the

left port. Figure 5B shows the absorption spectra through the

open tunnel around the peak C. It is found that, in the range

227–292 Hz (shaded region), the absorption coefficients of the

open tunnel with 6 unit cells are larger than 0.5, and thus the

fractional bandwidth can reach about 0.25. Beyond that, in the

range 240–280 Hz, the absorption coefficient can exceed 0.9,

and both coefficients R and T are close to zero (Figure 5C),

showing the characteristic of broadband near-perfect sound

absorption. Moreover, we can further broad the working

bandwidth of the tunnel by increasing the number of the

unit cells, and the fractional bandwidth can reach about

0.46 with 13 unit cells, which is shown in Supplementary

Material.

FIGURE 5
(A) Schematic of the open tunnel with 6 unit cells. The parameters t andw of the unit cells are fixed at 1.2 and 2.0 mm, and the diameters of the
unit cells I-VI are RI = 4.9 cm, RII = 5.0 cm, RIII = 5.2 cm, RIV = 5.4 cm, RV = 5.6 cm and RVI = 5.8 cm, respectively. (B) The absorption spectrum
through the open tunnel with 6 unit cells. (C)Transmittance and reflectance spectra through the open tunnel with 6 unit cells.
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Experimental demonstration

Finally, we experimentally demonstrate the near-perfect

sound absorption of the two types of open tunnels, in which

the detailed description of the experimental setup is shown in

Supplementary Material. As shown in Figures 6A,B, the samples

are placed at the left side of a planar waveguide composed of two

parallel plexiglass plates (dimension 3.0 m × 0.4 m×3 cm), The

height of sample is selected as 3 cm to match the height of the

waveguide, in which the thicknesses of each unit cell and the

cover plate on both sides are 2.7 and 0.15 cm, respectively. The

other parameters of the unit cells in Figures 6A,B are the same as

those in Figures 2A, 5A.

Figures 6C,D show the measured absorption, transmittance

and reflectance spectra through the two types of tunnels. Note

that both results show the typical characteristics of the near-

perfect sound absorption. The measured maximum sound

absorption coefficients in Figures 6C,D can reach about

0.88 and 0.96, respectively, while the measured transmittance

and reflectance are close to zero around the absorption peaks.

However, the measured frequency ranges of the near-perfect

sound absorption are not consistent with the simulated results in

Figures 2, 5. This is because the sound absorption is very sensitive

to the structure parameters of each unit cell, and the measured

parameters of the unit cells in both samples are different from

those in the simulations due to the fabrication accuracy of 3D

printing and the deformation of the unit cells with circular

structure. The error analysis of experimental measurement is

shown in Supplementary Material.

Conclusion

In conclusions, we have experimentally demonstrated an

open tunnel of near-perfect sound absorption by using a type

of deep sub-wavelength Mie resonator composed of a multiple-

cavity structure and an outer frame on three sides. The results

show that there exist two types of MMR modes in a single

resonator around 250 Hz. The eigenfrequencies of MMR I and II

are mainly determined by the Helmholtz resonance of each cavity

in the multiple-cavity structure and the coupling between the

multiple-cavity structure and its outer frame, respectively. By

combining the two Mie resonators with RI = 4.9 cm and RII =

5.0 cm, we can observe the near-perfect sound absorption

through the open tunnel at 283 Hz, which arises from the

thermal viscous loss of sound energy in the channels created

by the mutual coupling of MMR II of both Mie resonators.

Moreover, by increasing the number of Mie resonators in the

tunnel, the broadband near-perfect sound absorption is realized,

and the fractional bandwidths can reach about 0.25 and 0.46 for

the cases of 6 and 13 resonators, respectively. Finally, we

experimentally demonstrate the near-perfect sound absorption

through the two types of tunnels with 2 and 6 Mie resonators, in

which the measured results agree with the simulated ones. The

FIGURE 6
Photographs of the open tunnels with (A) 2 and (B) 6 unit cells in the experiment. Measured absorption, transmittance and reflectance spectra
through the tunnels with (C) 2 and (D) 6 unit cells.
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proposed Mie resonator has the advantages of deep sub-

wavelength size (L/λ ~ 0.085) and high coupling performance,

which has certain application prospect in the fields of

architectural acoustics and mechanical engineering. It also

advanced the deep sub-wavelength coupling resonance with

versatile applications in sound communication, bio-sensing,

and noise reduction.
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