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Melanoma is a high-grade malignant tumor. Melanoma and mole lesions are

highly similar and have a very high mortality rate. Early diagnosis and treatment

have an important impact on the patient’s condition. The results of dermoscopy

are usually judged visually by doctors through long-term clinical experience,

and the diagnostic results may be different under different visual conditions.

Computer-aided examinations can help doctors improve efficiency and

diagnostic accuracy. The purpose of this paper is to use an improved

quantum Inception-ResNet-V1 model to classify multiple types of skin lesion

images and improve the accuracy of melanoma identification. In this study, the

FC layer of Inception-ResNet-V1 is removed, the average pooling layer is the

last, SVM is used as the classifier, and the convolutional layer is quantized. The

performance of the model was tested experimentally on the ISIC 2019 dataset.

To prevent the imbalance of the sample data set from affecting the experiment,

the sample data is sampled with weight. Experiments show that the method

used shows excellent performance, and the classification accuracy rate reaches

98%, which provides effective help for the clinical diagnosis of melanoma.
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Introduction

Melanoma is one of the most harmful skin cancers, and it is a deadly malignant tumor

[1–3]. There are many risk factors leading to the formation of melanoma, such as

ultraviolet radiation, drug treatment, gene, family history, skin color, race, age, gender, etc.

Although melanoma is not common, it is more lethal, and the incidence rate is still rising

in the world. And the average diagnosis and treatment cost of melanoma is 10 times that

of non-melanoma skin cancer [4–6]. Melanoma is cancer with the highest mortality

among skin cancers. If melanoma is diagnosed at an early stage, a small operation can
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increase the chance of recovery and reduce the mortality rate of

cancer. But without early detection and treatment, it can spread

to other parts of the body [7]. Early and correct diagnosis is the

key to ensuring the best prognosis for patients [8]. However,

melanoma is misdiagnosed more than any cancer except breast

cancer. Dermatoscopy is one of the most commonly used

imaging techniques for dermatologists. It enlarges the surface

of skin lesions, and its structure becomes more obvious to

dermatologists [9,10]. The diagnosis of melanoma is usually

carried out by using the vision of experienced doctors, first

visually inspecting the skin lesions (usually using the ABCD

rule and the seven-point inspection method) [11,12], analyzing

the results of dermatoscopy and matching them with medical

science [13]. The weakness of manual detection is greatly affected

by human subjectivity, which makes it inconsistent under certain

conditions because it is completely based on doctors’ vision and

experience. Although the accuracy of suspicious cases can be

further improved by using special high-resolution cameras and

magnifying glasses to capture dermoscopic images for visual

examination [14]. However, recent studies have shown that the

classification method based on CNN has become the best choice

for melanoma detection. The high accuracy of CNN based

classifier for skin cancer image classification is equivalent to

an experienced dermatologist [15].

[16] proposed a deep learning system for detecting

melanoma lesions. They first performed illumination

correction on the input image, and cut, scaled, and rotate

the image. Then, they fed back the enhanced image to the pre-

trained CNN for a large number of sample training and

obtained an accuracy rate of 81%. [17] also preprocessed

the skin image data set, segmented the region of interest

(ROI) of the lesion area, extracted the features of the

segmented image using the gray level co-occurrence matrix,

and combined with the ABCD rule to identify and classify

malignant tumors, achieving an accuracy rate of 92.1%. [18]

used GoogLeNet to train the ISIC 2016 dataset and processed

the samples of the ISIC 2016 dataset through the traditional

data enhancement method to reduce the impact of the

unbalanced training dataset on the CNN performance, with

the maximum accuracy of 83.6%. [19] used the ResNet-152

model to classify clinical images of 12 skin diseases, fine-tuned

the model using the training part of the Asan dataset, the

MED-NODE dataset, and atlas site images, and the trained

model passed Asan, Hallym and Edinburgh datasets for

validation. Experiments demonstrate that the algorithm

performance, tested with 480 Asan and Edinburgh images,

is comparable to the results of 16 dermatologists. [20] used

CNN to extract features from images, used SVM, RF, and NN

to train and classify features, and processed the datasets ISIC

2017 and PH2 using data augmentation to avoid overfitting in

accuracy. Due to the influence of the integration problem, the

experiment obtained an accuracy of 89.2%. [21] used the

improved Inception V4 model to classify skin cancer

diseases, pre-trained the model on the ImageNet dataset,

fused the low-level and high-level features of the image, and

used the ISIC 2018 dataset to achieve 94.7% classification

accuracy. [22] proposed an enhanced encoder-decoder

network to overcome the limitations of uneven skin image

features and blurred boundaries, which made the semantic

level of the encoder feature map closer to the decoder feature

map, and The model was tested on the ISIC 2017 and

PH2 datasets for melanoma recognition and achieved 95%

accuracy. [23] pre-trained Alex Net with the Softmax layer as

the classification layer, and the model achieved 97% accuracy

for skin cancer classification on three datasets: MED-NODE,

Derm (IS & Quest), and ISIC. [24] analyzed ISIC images using

a fully convolutional residual network (FCRN) and CNN to

check for anomalies in the skin, a residual network was used to

segment the images in the dataset, and a neural network was

used for classification. [25] firstly preprocess the input color

skin image to segment the region of interest (ROI); secondly,

use traditional transformation to enhance the segmented ROI

image. They evaluated the performance of the proposed

method on three different datasets (MED-NODE, DermIS &

DermQuest, and ISIC 2017) using the improved AlexNet,

ResNet101, and GoogLeNet network structures, and

achieved 99% accuracy on the MED-NODE dataset. [26]

used a hybrid quantum mechanical system to encode and

process image information to classify cancerous and

noncancerous pigmented skin lesions in the

HAM10000 dataset. [27] proposed a high-precision skin

lesion classification model, using transfer learning and

GoogLeNet pre-training model, to classify eight different

categories of skin lesions in the dataset ISIC 2019, with an

accuracy rate of 94%.

In this study, the trained model is applied to images of skin

lesions, the classification layer is replaced with SVM, and the

convolutional layer is quantized to improve the classification

process. One of the difficulties in image classification is that the

amount of computation in the classification process is very large,

resulting in a relatively slow classification speed and consuming a

lot of computing resources. [28, 29] Due to the characteristics of

quantum parallel computing, the quantum image classification

algorithm can still quickly complete the classification task in the

case of a large amount of image data. [28] The contributions of

the proposed method are as follows:

• This study quantizes the convolutional layers of Inception-

ResNet-V1 to enhance the performance of the network.

• In this study, the FC layer of the network was removed, and

SVM was used as the classifier because SVM also showed

excellent performance in melanoma classification, which

can be compared with the original model.

• This study adopts data augmentation and weighted

sampling methods to alleviate the impact of data

imbalance.
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• The model exhibits a high accuracy classification rate.

Proposed method

The proposed method is elaborated in this section, and the

method structure is shown in Figure 1. The proposed method

first augments and normalizes the image data, and then feeds the

proposed model for training. The following is a detailed

description of the proposed method.

Data augmentation and weighted
sampling

ISIC 2019 dataset is an imbalanced dataset, which may

make the model biased toward classes with a large number of

samples during training. For example, the number of the

most NV class is 50 times more than that of the least VASC

class, which is likely to lead to the model being biased toward

NV during training, thus affecting the accuracy of the

model. To reduce the imbalance in the given dataset, this

study uses the data augmentation method to expand the

images of minority classes through rotation, cutting,

flipping, and other ways [30,31], to reduce the image

quantity gap between the majority class and the model, to

reduce the influence of unbalanced data sets on the model.

However, using traditional data augmentation alone has

defects, because repeated samples lead to over-sampling,

which will easily lead to overfitting of the learning

algorithm. To solve this problem, this study applies the

weighted random sampling method to the overlapping of

repeated samples, that is, the weight of each instance is

defined by the number of instances in the class [32], and this

weight represents the probability of the instance being

randomly sampled [32], which can offset the

oversampling effect of the class with a small number of

samples. The weighted sampling method is based on weight

FIGURE 1
Method structure.
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sampling, which can reserve more labels and meet the

diversity. Although there are changes, they are still

constrained by the relative weight size of labels [33].

Image normalization

For image data, the pixel value of the image is an integer

between 0 and 255. When training a deep neural network for

fitting, a small weight value is generally used. If the value of the

training data is large, the model training process may be slowed

down. Therefore, pixel normalization of image data is necessary.

In this paper, Min-Max normalization is used to remove the pixel

unit of image data and convert the data into dimensionless pure

values. Specifically, after pixel normalization, the image pixel

value is scaled to [0,1] [34].

Improved quantum Inception-ResNet-
V1 model

The research uses residual connections to join the filter

connection stage in the Inception architecture, which will allow

the Inception architecture to retain its computational efficiency

while gaining the benefits of the residual connection method. The

residual version of the Inception network uses a more simplified

Inception module than the source Inception uses. Each Inception

module is followed by a filter expansion layer (i.e., a 1 ×

1 convolutional layer without an activation function) that enlarges

the dimension of the filter bank before adding it to match the input.

This compensates for the dimensionality reduction in the Inception

block. The research removes the FC of the Inception-ResNet-

V1 model and uses the SVM as a classifier to test the

performance. The architecture is shown in Figure 2.

FIGURE 2
Model architecture.

Frontiers in Physics frontiersin.org04

Li et al. 10.3389/fphy.2022.1046314

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1046314


The backbone network Stem in Figure 2 uses a quantum

convolution layer for feature extraction, which is composed of

multiple parameterized quantum filters. Similar to the convolution

kernel in the classical convolution layer, it uses a parameterized

quantum filter to extract the characteristic information of all

quantum bits in the local space of the data. The quantum filter

includes many types of quantum bit gates, including single-bit gate

and double-bit gate, which can perform unitary conversion of

corresponding quantum bit, and impose a double-bit gate on

adjacent quantum bits, thus causing quantum entanglement of

adjacent quantum bits. In this paper, the quantum rotation gate

R(θ) is used to transform the pixel value information of the image

into quantum state information by quantum state encoding. On this

basis, the obtained image feature information is converted into the

angle of the quantum rotary gate. Each pixel value provides the

corresponding parameters for the quantum rotary gate. Different

quantum rotary gates act on the corresponding initial state |0〉 of the
quantum bit, and the feature information is stored in the quantum

state, which can be used as the model input to the quantum

convolution neural network [35]. For example, for n ×n, the

quantum feature extraction function first encodes it into a

quantum state through quantum bit coding, then evolves the

quantum state through the parameterized quantum circuit, and

finally outputs a real number through the expected value

measurement. This method not only has the unique properties of

quantum mechanics but also can keep the weight sharing of the

convolutional kernel. In this study, we introduce a quantum circuit

with parameters to enhance the performance of the network. The

quantum convolution layer is shown in Figure 3.

The quantum filter used in this study consists of CNOT gate

and rotary gate Rx(θ). The quantum circuit diagram is shown in

Figure 4.

FIGURE 3
Quantum convolution layer.

FIGURE 4
Two-qubit gate.

TABLE 1 ISIC 2019 dataset.

AKIEC BCC BKL DF MEL NV VASC SCC

867 3,323 2,624 239 4,522 12,875 253 628
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Experiments and results

Dataset description

The data in this article comes from the ISIC 2019 [36]

challenge (Skin Lesion Analysis Towards Melanoma

Detection). The ISIC 2019 dataset contains

25,331 dermoscopy images in 8 categories, namely actinic

keratosis (AKIEC): 867, basal cell carcinoma (BCC): 3,323,

benign keratosis (BKL): 2,624, skin fibers Tumor (DF): 239,

Melanoma (MEL): 4,522, Melanocytic nevus (NV): 12,875,

Angiosarcoma (VASC): 253, Squamous cell carcinoma (SCC):

628, as shown in Table 1. In the experiments, we randomly 80%

of images (about 20,231 images) of the dataset for training, 10%

images (about 2,550 images) for testing, and 10% images (about

2,550 images) for validation.

Experiment

The study conducted three experiments using the ISIC

2019 dataset. The first is to evaluate the proposed method

using the original dataset without image augmentation. The

second approach is to augment the dataset and re-evaluate the

proposed method. The third is to use the processed dataset to

evaluate the proposed method after processing the dataset using

image augmentation and weighted sampling. All experiments are

performed with fixed values, i.e. batch size 10, number of training

TABLE 2 Results of the first experiment.

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

95.05 80.8 81.16 99.22

FIGURE 5
Confusion matrix for the first experiment.
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32, and initial learning rate 0.001. The proposed model was

evaluated using four performance metrics [37]: accuracy,

precision, sensitivity, and specificity.

Accuracy � tp + tn
tp + fp + fn + tn

(1)

Precision � tp
tp + fp

(2)

Sensitivity � tp
tp + fn

(3)

Specificity � tn
fp + tn

(4)

where tp, fp, tn, and fn refer to true positives, false positives, true

negatives, and false negatives, respectively.

In the first experiment, we use the original dataset to evaluate

the proposed method, the experimental results are summarized

in Table 2, and the confusion matrix of the first experiment is

shown in Figure 5.

In the second experiment, we augment the number of images

for the minority classes AKIEC, DF, VASC, and SCC to 1743,

1,667, 1920, and 1856, respectively, resulting in a total of

3,053 images. Table 3 summarizes the experimental results,

and the confusion matrix for the second experiment is shown

in Figure 6.

TABLE 3 Results of the second experiment.

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

97.31 96.14 96.73 99.6

FIGURE 6
Confusion matrix for the second experiment.
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Compared to the first experiment, we observed a significant

increase in sensitivity and precision. The imbalance gap in the

number of minority class images is reduced. The accuracy of the

model also increases to 97.31%, indicating that data

augmentation plays an important role in model performance.

In the third experiment, we augmented the images of the

minority classes AKIEC, DF, VASC, and SCC to 1743, 1,667,

1920, and 1856, respectively, and used the weighted sampling

method for the augmented class images to prevent duplicate

samples affect the experimental accuracy. Table 4 summarizes

the experimental results, and the confusion matrix for the second

experiment is shown inFigure 7.

The accuracy of the model after using the weighted sampling

method is increased to 98.76%. Compared with the first two

experiments, each index has been improved to varying degrees.

The performance comparison of the three experiments is shown

in Figure 8.

Experimental results show the lowest performance when using

the original dataset in the first experiment. In the second experiment,

the obtained results were improved. The third experiment shows the

best value for the performance metric. The accuracy of the model

increased from 95.05% to 98.765%, the Precision increased from

80.8% to 98.26%, the Sensitivity increased from 81.16% to 98.45%,

and the Specificity increased from 99.22% to 99.81%.

TABLE 4 Results of the third experiment.

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

98.76 98.26 98.4 99.81

FIGURE 7
Confusion matrix for the third experiment.
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The sampling process can be combined with the

memorylessness of the Markovian effect, that is, the system

does not remember the previous state of the current state, and

only decides what state to transition to at the next moment based

on the current state. Markov Decision Processes (MDPs)

maximize returns by using methods such as dynamic

programming, random sampling, etc.

The performance of this method is compared with that of

existing skin cancer classification methods, and Table 5

summarizes the data image types, used models, and

accuracy rates of existing methods. Table 5 clearly shows

that this method outperforms the literature methods listed

in the table.

Conclusion

In this study, the improved quantum Inception-ResNet-

V1 network was used, and after data augmentation and weighted

sampling of the ISIC 2019 dataset, the skin damage images were

classified, and the classification accuracy was as high as 98.76%.

Inception with residuals makes the network need to learn less

knowledge and the data distribution of each layer is close, making

it easy to learn. The feature extraction function of quantum

convolution can extract features in a larger space and achieve

higher learning accuracy. In the quantum convolution layer, a

single quantum gate applies operations to adjacent qubits, and the

same quantum convolution is performed. Within the layers, all

FIGURE 8
Performance comparison.

TABLE 5 Results of the third experiment.

Year Method Dataset Accuracy (%)

[38] 2019 An ensemble composed of 13 CNN SENet architecture ISIC 2019 91

[39] 2020 One-dimensional fractal feature method based on texture feature ISIC 2019 97.35

[40] 2020 A multi-classifier based on neural network and feature ISIC 2019 95

[25] 2020 ABCD and GLCM are used to extract statistical features and texture features, and SVM is used for classification ISIC 2019 96.25

[41] 2021 Weighted average ensemble learning model ISIC 2019 93

[42] 2021 CNN is based on transfer learning ISIC 2019 81.2

[43] 2021 CNN is based on transfer learning ISIC 2019 81.2

[44] 2021 Using deep learning models with image and metadata features ISIC 2019 80
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quantum gates have tunable parameters, preserving the properties of

local connections and weight sharing in convolutional neural

networks. These two characteristics enable the quantum

convolutional neural network to effectively extract image features,

reduce the complexity of the network model, and significantly

improve the computational efficiency of the model.
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